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Abstract

Facial Recognition Systems (FRSs) are being developed and
deployed all around the world at unprecedented rates. Most
platforms are designed in a limited set of countries, but de-
ployed in other regions too, without adequate checkpoints
for region-specific requirements. This is especially problem-
atic for Global South countries which lack strong legislation
to safeguard persons facing disparate performance of these
systems. A combination of unavailability of datasets, lack of
understanding of how FRSs function and low-resource bias
mitigation measures accentuate the problems at hand. In this
work, we propose a self-curated face dataset composed of
6,579 unique male and female sports-persons (cricket play-
ers) from eight countries around the world. More than 50% of
the dataset is composed of individuals from the Global South
countries and is demographically diverse. To aid adversarial
audits and robust model training, we curate four adversarial
variants of each image in the dataset, leading to more than
40,000 distinct images. We also use this dataset to bench-
mark five popular facial recognition systems (FRSs), includ-
ing both commercial and open-source FRSs, for the task of
gender prediction (and country prediction for one of the open-
source models as an example of red-teaming). Experiments
on industrial FRSs reveal accuracies ranging from 98.2% (in
case of Azure) to 38.1% (in case of Face++), with a large dis-
parity between males and females in the Global South (max
difference of 38.5% in case of Face++). Biases are also ob-
served in all FRSs between females of the Global North and
South (max difference of ≈ 50%). A Grad-CAM analysis
shows that the nose, forehead and mouth are the regions of in-
terest for one of the open-source FRSs. Based on this crucial
observation, we design simple, low-resource bias mitigation
solutions using few-shot and novel contrastive learning tech-
niques that demonstrate a significant improvement in accu-
racy with disparity between males and females reducing from
50% to 1.5% in one of the settings. For the red-teaming ex-
periment using the open-source Deepface model we observe
that simple fine-tuning is not very useful while contrastive
learning brings steady benefits.

Introduction
Artificial Intelligence (AI) systems are being developed and
deployed at an unprecedented rate around the world for
various applications ranging from face recognition (Face++
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2023; Amazon 2023) to web search (Google 2023) and chat-
bots (OpenAI 2023). Often, the development is done in a sin-
gle place but the deployment is done worldwide. For exam-
ple, facial recognition system AWS Rekognition (Amazon
2023) has been developed by Amazon in the USA but is de-
ployed in other countries for tasks like ID verification (Sur
2023) at airports, with no clear distinction between differ-
ent geographical deployments. Thus, if the AI model is de-
signed without considering the deployment context, the sys-
tem may end up propagating stereotypes (Olier and Spadav-
ecchia 2022) and biases (Buolamwini and Gebru 2018).
Facial recognition systems: Face recognition is a group of
classification tasks that involve detecting a face in an image
followed by downstream tasks like gender/age/emotion de-
tection and/or matching the input face against images stored
in a database (face identification). Facial recognition sys-
tems (FRSs) are increasingly deployed for highly sensitive
applications like surveillance (Kamgar-Parsi, Lawson, and
Kamgar-Parsi 2011), person re-identification (Rao, Lu, and
Zhou 2019), policing (Krueckeberg and Ferris 2018), etc.
This has put FRSs under the scanner of researchers and pol-
icymakers alike (Fitzpatrick 2023; Dizikes 2023).
Impact on deployment in the Global South: FRSs have
historically been developed in countries which are defined
by the UN as economically developed nations, i.e., the
Global North (UN 2022) that includes Western countries like
USA, UK and Germany, and others like Australia, Japan and
Korea. A majority of the large-scale training datasets also
consist of faces from this socio-economic region (Raji et al.
2020; Ma, Correll, and Wittenbrink 2015; Ma, Kantner, and
Wittenbrink 2020; Zhang, Song, and Qi 2017; Yang et al.
2016; Karkkainen and Joo 2021; Parkhi, Vedaldi, and Zis-
serman 2015; Rothe, Timofte, and Van Gool 2018; Eidinger,
Enbar, and Hassner 2014). Due to economical pricing, and
relaxed licensing rules, commercial (Amazon 2023; Face++
2023; Microsoft 2023) and open-source systems (Parkhi,
Vedaldi, and Zisserman 2015; Umagat 2023; Serengil and
Ozpinar 2021) trained on such datasets are available all
around the world for use by individuals, governments and
corporations alike. Multiple studies have reported large-
scale biases in these platforms against minority races and
genders in the Global North (Buolamwini and Gebru 2018;
Raji et al. 2020; Jaiswal et al. 2022; Dooley et al. 2022).
The US and EU have recently strengthened their rules and
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introduced various measures to ensure fair and proper use
of such AI platforms (NIST 2020; Parliament 2023), but the
Global South countries are still lagging behind in terms of
such interventions. Thus, unrestricted deployment of FRSs
in the Global South may have more serious ramifications
like denial of services or facilities (Bansal 2022), without
legal recourse and impacting individuals’ quality of life.
A face dataset from the Global South: Developing and
benchmarking any deep learning model like FRSs, requires
a large amount of well-annotated data. Unfortunately, there
is a lack of such face image data from the Global South,
be it South Asia or South America. To evaluate and im-
prove model efficiency such datasets are very important.
This brings us to the first research gap in literature– Un-
availability of well-annotated data for faces from the Global
South. Moreover, the existing face datasets do not have ad-
versarial realistic variants for real-world training. Prior re-
search (Jaiswal et al. 2022; Dooley et al. 2022) has shown
that FRS biases increase manifold for such adversarial in-
put. Thus, the second gap that we identify is– Unavailabil-
ity of realistic adversarial variants for face images. While
FRSs may perform well on standard color images, they may
be confounded on realistic adversarial inputs that can im-
pact real-world deployment. To bridge the gaps stated above,
we present a new inclusive, adversarial and robust dataset
– FARFACE, of cricketers (famous sports individuals, see
Figure 1 for some examples), which is composed of more
than 50% individuals from the Global South. This dataset al-
lows for fair, adversarial and robust face recognition model
training (as our experimental results indicate later).
Benchmarking FRSs for the Global South: The first step
toward evaluating the efficacy of any AI model is to bench-
mark it for a specific deployment scenario. In this work, we
benchmark FRS models for the task of gender prediction.
This is one of the most commonly deployed applications of
FRSs, used for personalized recommendations (Chen et al.
2007; Dai, Ye, and Gong 2009), surveillance, assistive tech-
nologies, safety, and marketing (Ali et al. 2019). Some of
these use cases are sensitive, and any discriminatory per-
formance can have a damaging impact on the targets (Buo-
lamwini and Gebru 2018; Raji et al. 2020; Jaiswal et al.
2022). Since the FRSs are often developed in one region
(geographical or socio-economic) and deployed in many,
without any target-specific modifications, it is important to
benchmark these models’ performance, especially in the
Global South, where aggrieved individuals may have fewer
options for recourse, legal or otherwise. This brings us to
our first research question, (RQ1.) How do existing Fa-
cial Recognition Systems perform on the FARFACE dataset,
which has more than half of the faces from the Global South?
Explaining predictions of FRSs: As a next step, we at-
tempted to understand how a model converges on its pre-
diction. Note that this question is relevant only for the open-
source models, where the internal operations are known. We
use a state-of-the-art explainability tool for computer vision
tasks – Grad-CAM (Selvaraju et al. 2017), to identify the
regions of interest in the images for the Deepface FRS by
analysing the activation maps. This gives us (RQ2.) Why do
the misclassifications occur for different faces in the case

Figure 1: Images from our FARFACE dataset. The first row
has images from Global North – Australia, New Zealand,
England and South Africa. The second row has images from
the Global South – India, Bangladesh, Pakistan and West
Indies. The third row shows the average face for each region
– Global North male, Global North female, Global South
male and Global South female, generated by superimposing
the images of individuals from each region.

of open-source models? A suitable answer to this question
could play a key role in designing solutions that can reduce
the number of misclassifications and, hence, the disparity.
Mitigating biases in FRSs for the Global South: Despite
multiple reports on biases in FRSs for sensitive tasks like
gender prediction, commercial vendors continue to develop
and release these models for public use. As these black-box
models cannot be debiased, researchers and activists have
resorted to either calling for a complete ban of FRS us-
age (for the Future 2023) or various bias mitigation mea-
sures on open-source models. It is already known that train-
ing a deep model from scratch is extremely data and resource
intensive and incurs a significant energy cost impacting the
environment, hence re-training models may not be a good
technique. It is beneficial to fine-tune existing pre-trained
models to adapt them for a particular task and domain. As
already pointed out, there is a significant lack of proper
large-scale datasets from the Global South, a gap we aim
to address with our work. We use low-resource, low-data
and smart techniques like few-shot and contrastive learning
to improve the efficiency of the Deepface FRS, with a spe-
cific focus on reducing the reported bias against individuals
from the Global South. To perform this, we utilize our FAR-
Face dataset, a more inclusive, complementary dataset to ex-
isting ones, with all its adversarial variants. Thus, our final
research question is (RQ3.) Can existing biases and lack of
robustness in open-source FRS models be mitigated, leading
to an overall improved performance, using simple interven-
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tions?
Our contributions: Here, we present a new large-scale,
geographically diverse and adversarial face dataset FAR-
FACE and benchmark it on five facial recognition sys-
tems – three commercial ones viz. Amazon AWS Rekog-
nition (Amazon 2023), Microsoft Azure Face (Microsoft
2023) and Face++ (Face++ 2023), and two open-source
ones viz. DeepFace (Serengil and Ozpinar 2021) and Lib-
faceid (Umagat 2023) – for the gender prediction task, for
both the standard condition (normal face images), as well
as for various adversarial conditions – noisy filters of RGB,
Greyscale, Spread, and an occlusion filter of face mask. We
observe that the gender prediction accuracy for females in
the Global South is worse consistently across the different
FRSs. To further understand the reasons behind the misclas-
sifications (for the open-source models), we use the Grad-
CAM explainability tool and analyse its activation maps. Fi-
nally, we adopt two different paradigms, (a) few shot learn-
ing and (b) contrastive learning, to mitigate the biases ob-
served in the open source FRS. We show that our fine-
tuned model also transfers well to other datasets from the
Global North, thus being equally useful in that region. We
also perform an alternative red-teaming experiment with the
Deepface model to expose biases in tasks other than gender
prediction– we use the Deepface model for the task of coun-
try prediction (and by extensions, ethnicity) from face im-
ages (Batsukh and Tsend 2016; AlBdairi, Xiao, and Alghaili
2020), especially for individuals from the Global South. The
results from this experiment reinforce the cautionary mes-
sage that such tasks, while easy to design, are unfair and
biased and should not be propagated. The primary insights
from our work are as follows:
• Our extensive experiments show that the disparity in ac-
curacy between males and females for gender prediction
is lower in the Global North (maximum disparity of 10%
for commercial FRS– Face++ and 66.77% for open-source
FRS– Libfaceid) than in the Global South (maximum dis-
parity 38.51% for commercial FRS– Face++ and 83.35% for
open-source FRS– Libfaceid).
• There is a consistent trend of high disparity for adversar-
ial inputs of females from Global South (similar to Jaiswal
et al. (2022)), indicating a lack of model robustness. Grad-
CAM analysis shows systematic regions of interest for male
classification, whereas they are random for females.
• Finally, our proposed approaches to overcome the gen-
der disparity in FRSs (for gender prediction task) by adopt-
ing few-shot and contrastive learning demonstrate improve-
ments in female accuracy by 59% and 60%, respectively.
• As an additional red-teaming task, we also study the per-
formance of FRSs for predicting the country from the face.
Our experiment shows that such a task is highly biased and
can lead to unfavourable outcomes for individuals from both
the Global North and South. Simple fine-tuning is not very
useful; however, we get benefits in both accuracy and dispar-
ity reduction when contrastive learning is effectively used.
Dataset availability: The FARFACE dataset is available for
research purposes, on request1. We would like to state here

1Dataset Request: https://forms.gle/2Nd9ntNcc71vvwEJ7

that the original dataset collected by us is gender imbalanced
(86% males). This is reflective of the gender imbalance in
society, including sports (Singh 2023). To prevent further
misuse, we are releasing only a balanced subset (with all
corresponding adversarial variants).

Background & Related Work
We now present a brief overview of the literature on face
datasets and bias mitigation in FRSs.
Face datasets: There exist a multitude of face datasets in
literature meant for different face recognition tasks. Some
are designed specifically for audit studies (Buolamwini and
Gebru 2018) and could be balanced (Raji et al. 2020), be
collected from volunteers (Ma, Correll, and Wittenbrink
2015; Ma, Kantner, and Wittenbrink 2020; Lakshmi et al.
2021), have multiple age (Zhang, Song, and Qi 2017; Ei-
dinger, Enbar, and Hassner 2014; Parkhi, Vedaldi, and Zis-
serman 2015) and racial (Rothe, Timofte, and Van Gool
2018; Zhang, Song, and Qi 2017; Karkkainen and Joo 2021)
groups. All these datasets have images mainly of individu-
als from the Global North and have no adversarial images
for robust model training or testing. We address both these
gaps through our FARFACE dataset.
Audit & bias mitigation on FRSs: Audits on commer-
cial FRSs (Buolamwini and Gebru 2018; Raji et al. 2020;
Jaiswal et al. 2022) and open-source FRSs (Dooley et al.
2022), have shown temporal persistence to biases. Adver-
sarial audits (Jaiswal et al. 2022; Dooley et al. 2022; Ma-
jumdar et al. 2021) on existing datasets show that dispari-
ties get magnified for noisy inputs. Our audit lies at the in-
tersection of (Jaiswal et al. 2022) and (Dooley et al. 2022;
Majumdar et al. 2021) – we audit both commercial and
open-source FRSs for the task of gender prediction. Sim-
ilar to Majumdar et al. (2021), we also study the activa-
tion maps for the prediction outputs but for the task of gen-
der prediction instead of landmark detection. Another prior
work by Wang et al. (2022) proposes bias mitigation strate-
gies by developing adversarial filters on input images in real
time. However, our approach differs from the mentioned ap-
proach (FAAP (Wang et al. 2022)) in the following ways:
(i) Their adversarial filters do not simulate any real-world
situation, and the authors do not disclose what type of filter
is developed, hence it is difficult to compare against or audit
for; (ii) Their adversarial filters conceal the gender and race
information and improve performance for tasks like smile
or hair color identification, whereas we explicitly audit the
platforms for gender prediction, which has a large number of
downstream applications ranging from marketing to surveil-
lance. Furthermore, most existing approaches are either too
complex or need significant changes to the pipeline (Gong,
Liu, and Jain 2020; Wang and Deng 2020; Wang, Zhang,
and Deng 2021; Conti et al. 2022; Wang et al. 2022). We, on
the other hand, perform simple fine-tuning and contrastive
learning to mitigate the observed biases.

Thus, in this work, we perform all three parts of a Re-
sponsible AI pipeline for FRSs viz. (i) benchmark audits of
commercial and open-source FRSs on a large scale inclu-
sive, adversarial dataset for gender bias (if any), (ii) explain-
ing model predictions to better understand the reason behind
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(a) ORIG (b) RGB0.3 (c) Spread (d) Greyscale (e) N95 mask

Figure 2: Adversarial variants in the FARFACE dataset,
shown for an example image (original image in (a)).

misclassifications of images of several demographics and,
(iii) mitigation of the said biases.

FARFACE Dataset
In this section, we describe the collection & preparation pro-
cess of the FARFACE dataset followed by its basic demo-
graphic distribution based on gender and geographic region.

Description of the Dataset
FARFACE is curated from the face images of male
and female cricket players belonging to eight prominent
cricket-playing countries around the world – Australia,
New Zealand, England, South Africa (Global North) and,
Bangladesh, Pakistan, India and West Indies (Global South).
We collect these images by scraping the ESPNCRICINFO
website’s player pages2 for all domestic and international
cricketers of the above countries. While there are multiple
other cricketing nations all around the world, our choice
was guided by the following reasons– (i) most players in
the Global North countries have lighter skin tones, whereas
a majority of the players in the Global South countries have
darker skin tones, giving us more diversity in terms of skin
tone (see Fig. 1), face structure and geography, and (ii) these
countries have both male and female cricketers, giving us
gender diversity. Table 1 presents the number of images, and
gender distribution for all the countries.

We next describe the methodology of dataset collection
and generating their adversarial variants.

Dataset Curation
To collect the dataset, we use the Selenium tool to collect the
images and the player metadata like country, name and gen-
der. We perform the following steps to clean and preprocess
the images:
• We remove all images which have drawings instead of
photographs. We also set aside all images that are greyscale
by default (these are added back later).
• We crop and resize all resulting images to display only
the face area using YOLOv5 (Jocher et al. 2022). The re-
sized images have a resolution of 200×256px. We choose
this resolution heuristically as it creates the least distortion
of the images. YOLOv5 also provides the bounding box co-
ordinates of the final faces. We will release only the cropped
images themselves.

2https://www.espncricinfo.com/cricketers

We are finally left with 5,648 male images and 931 female
images, all in JPEG format. We henceforth refer to this set
of original images as the ORIG set.
Dataset accuracy: We manually checked the country, name
and gender for a randomly chosen 15% subset of the dataset,
and matched the data with the image. The information was
accurate in all cases, showing the sanctity of the dataset.
Adversarial variants: After the above ORIG set of images
was prepared, we used the GIMP3 image editor to create the
following adversarial variants – RGB (with noise values 0.3
and 0.5), Spread and Greyscale. RGB and Spread have been
used previously by Jaiswal et al. (2022) to create realistic ad-
versarial inputs for auditing FRSs. RGB simulates the effect
of edited images from social media, and Spread simulates
the effect of blurry photos captured by cameras, which may
be exposed to natural elements like rainwater. We introduce
Greyscale for the first time to simulate the effect of a black
and white photograph, thus removing the skin-tone of the in-
dividual in the photograph. We also use a popular tool Mask-
TheFace (Anwar and Raychowdhury 2020) to create masked
variants of the ORIG set by applying blue N95 face masks
on the images, to create an occlusion-based adversary. Ex-
ample images for each of the adversarial variants are shown
in Figure 2.

Basic Statistics
Our downloaded set has 7,324 images, which reduces to
6,579 after cleaning. In the cleaned dataset, 85.85% images
are of males, and 14.15% are of females. The size of the two
RGB sets and the Spread set are the same as the ORIG set.
The Greyscale set is slightly larger as it also includes some
images which were greyscale by default. The Masked set is
slightly smaller because the masking tool did not identify
faces in all images. Thus, we effectively get 40,055 images
in the FARFACE dataset after generating the five adversar-
ial variants from the original set of images. The gender dis-
tribution in this final dataset is 85.98% males and 14.02%
females. Some sample images are present in Figure 1.
Task description: While FRSs can be used for multiple
tasks like face detection, gender/age detection and identifi-
cation, in this paper, we only perform gender detection from
the input face since we have the ground truth data for only
this task. Even though the player profiles are labelled with
age, we do not experiment for it as there is no guarantee
on the age being the same as when the photographs were
clicked. Further, a manual inspection reveals that a majority
of the dataset is of young people (expected of sportspersons)
and may cause a model to perform poorly when predicting
the age for old people. We acknowledge that gender is a
spectrum, but in this work, we consider it to be binary be-
cause all FRS models only predict either male or female as
a label for the task of gender prediction (Keyes 2018). The
ground truth labels for all individuals in our dataset are also
only male or female. We also do not study face verification/i-
dentification because we only have 1 image per identity.

As an additional red-teaming task, we also perform coun-
try prediction from the input face for one of the open-source

3https://www.gimp.org/
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Region Country
Type of Image

Total (A×4 + B + C)ORIG / RGB0.3 / RGB0.5 / SPRD (A) GREY (B) MASK (C)
Male Female Male Female Male Female

GN

Australia 666 159 759 181 651 158 5,049
New Zealand 322 232 365 232 312 221 3,346

England 947 112 1,276 133 917 111 6,673
South Africa 444 59 482 59 422 58 3,033

GS

Bangladesh 328 39 328 39 319 39 2,193
India 1,966 187 2,066 188 1,966 187 13,019

Pakistan 442 79 478 79 435 78 3,154
West Indies 533 64 584 65 488 63 3,588
All 5,648 931 6,338 976 5,510 915 40,055

Table 1: Distribution of images across countries, gender and image type in the FARFACE dataset. A majority of the dataset
is composed of images from the Global South countries (54.8%), and has male individuals (85.98%). Among all the types,
greyscale type images have the largest share (18.25%).

FRSs. The results show that such tasks are not only inaccu-
rate but also highly biased.

FRS Platforms & Audit Methodology
We now give a brief overview of the Face Recognition tool-
s/platforms we audit using our benchmark dataset. Next we
describe the methodology of our audits, Grad-CAM analy-
sis and bias mitigation on one of the classical and highly ac-
curate face detection models– VGG-Face (Parkhi, Vedaldi,
and Zisserman 2015). We use the implementation in Deep-
face (Serengil and Ozpinar 2021)4, which is a modified ver-
sion of VGG-Face.

Platforms Audited
In this study, we audit five FRSs– three popular,
economically-priced plug-and-play API-based commercial
FRSs and two popular pre-trained open-source FRSs.
Commercial FRSs: We perform our audits on Ama-
zon AWS Rekognition (Amazon 2023), Microsoft Azure
Face (Microsoft 2023) and Face++ (Face++ 2023). These
models are made available through easy-to-use APIs and
charge nominal fees for their services; thus are easy to
deploy for non-domain experts at scale. However, no in-
formation is shared publicly on the training dataset or the
model architecture, making it impossible for third-party re-
searchers to address any performance or bias issues. Multi-
ple previous audits (Buolamwini and Gebru 2018; Raji et al.
2020; Jaiswal et al. 2022) have exposed large-scale biases in
these platforms for standard benchmark datasets.
Open-source FRSs: We audit two popular pre-trained open-
source models– Libfaceid (Umagat 2023)5 (a modified ver-
sion of CaffeNet (Krizhevsky, Sutskever, and Hinton 2012))
and Deepface (Serengil and Ozpinar 2021)4 (implementa-
tion of VGG-Face (Parkhi, Vedaldi, and Zisserman 2015)).
The training data information for Libfaceid is not avail-
able; Deepface has been pre-trained on two datasets– VGG-
Face for the initial face recognition task and WikiData (from
IMDB-Wiki (Rothe, Timofte, and Van Gool 2018)) for the

4https://github.com/serengil/deepface
5https://github.com/richmondu/libfaceid

gender prediction task. Both these datasets have > 50%
faces of White individuals (primarily found in Global North
countries). As there are no licensing restrictions on their de-
ployment, these models can propagate their pre-training bi-
ases, if deployed in geographies which are not represented
well during training. These models are available for down-
load and use, but require domain knowledge for deploy-
ment. They can be fine-tuned and modified for specific use-
cases allowing improvement of performance and reducing
observed biases. We can extract output explanations to bet-
ter understand the model’s decisions. Both employ standard
CNN-based architectures with Libfaceid having 11 layers (3
convolution layers) and Deepface having 22 layers (13 con-
volution layers); Deepface is a deeper model and captures
more detailed facial features compared to Libfaceid.

Methodology of Experiments
In this work, we perform three sets of experiments described
as follows.
• Audit of all FRSs: We audit all five FRSs on the entire
FARFACE dataset for the task of gender prediction. Each
FRS is supplied with raw image files in JPEG format and
the response for gender prediction is collected.
• Grad-CAM analysis of Deepface: We analyse the predic-
tions for the Deepface model using the Grad-CAM explain-
ability tool to better understand the correct and incorrect pre-
dictions for the two socio-political regions and genders.
• Bias-mitigation of Deepface: As has been observed in
previous literature, and as we shall also show through our
audits in the subsequent sections, all FRSs demonstrate bi-
ases against the females and more so in the Global South
(faces of individuals with darker skin tones and different fa-
cial structures). We shall use two simple techniques to show
that it is quite straightforward to mitigate the observed bi-
ases in such open-source models. We choose Deepface for
this as it is a deeper model and is better designed to detect
more interesting facial features as opposed to Libfaceid; thus
an analysis on this model is expected be more generalizable.
(a) Few-shot fine-tuning: We perform one-shot and two-
shot fine-tuning on the pre-trained Deepface model. To
choose our one-shot data points, we randomly sample one
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image from each country and gender, thereby giving us 16
unique data points; similarly 32 unique data points are cho-
sen for the two-shot scenario. For each learning setup, we
have three settings – involving 0%, 50% and 100% adver-
sarial examples from the RGB0.3 set. In our experiments
we find the RGB filter to be most adversarial resulting in
the highest performance drop (see Figure 3), and hence the
choice. This allows us to target two objectives– reducing ob-
served gender and demographic bias and improving model
robustness to adversarial inputs. The hyperparameters are –
α : 1e−5, epochs: 10, optimizer: ADAM.
(b) Contrastive learning: Contrastive learning has proved
to be very effective in handling adversarial inputs (Aggar-
wal et al. 2023). In this paper we take dual advantage of
the contrastive learning setup. While on one hand, we teach
the model the contrast between males and females, on the
other hand we also teach it that the original and the adver-
sarial versions of a face are the same. Based on this intu-
ition, we propose a triplet loss (Schroff, Kalenichenko, and
Philbin 2015) function to perform a novel contrastive learn-
ing based fine-tuning. The anchor points (any data point in a
given class) (xa) are chosen from each gender and country,
the positive example for each anchor (x+

a ) is an adversarial
image of the same individual, whereas the negative exam-
ple (x−

a ) is an image of another person from the ORIG set
of the opposite gender. We choose the (x+

a ) from RGB0.3 in
this case to improve model robustness while reducing bias
simultaneously and we choose the (x−

a ) from the opposite
gender to create a stronger negative example for every an-
chor. We also experiment with a setup where the negative
example is chosen from the same or opposite gender with a
probability (more results are shared in an extended version
of the paper6). The hyperparameters are – α : 1e−5, epochs:
40, optimizer: ADAM, Ltriplet : LBCE = 0.8:0.2.
Held-out test set for all experiments: A held out test set
of 480 images is created, composed of 60 images from each
country, in a 2:1 ratio of males to females. Each setting is
evaluated three times, and the avg. percentages are reported.
We run our experiments on an Ubuntu 18.04 LTS Intel(R)
Xeon(R) Gold 6126 CPU server with NVIDIA Tesla P100
GPU (CUDA v11.4), 128 GB RAM and 48 cores.

Results & Observations
We now present the results of our benchmarking audit, fol-
lowed by the Grad-CAM analysis, bias mitigation and red-
teaming task of country prediction.

Benchmark Audit of FRSs (RQ1)
In Figure 3, we show the overall accuracy and the gender-
wise results of the different FRSs for the benchmark audit of
FARFACE dataset separated by image type. From Fig. 3a,
we observe that all FRSs perform well on the original set
(ORIG), with Microsoft Azure Face being the best and iden-
tifying the correct gender for 98.22% of the images. On
the other hand, Libfaceid correctly identifies the gender in
87.48% images. All FRSs report low accuracies for the RGB
variants (highest – 93.3% on AWS for RGB0.3; lowest –

6https://arxiv.org/abs/2407.15810

38.05% on Face++ for RGB0.5), but are robust to the Spread
and Greyscale variants (performance on both these variants
is comparable to the ORIG set). For the masked variant,
Azure reports the lowest accuracy of 51%, with others re-
porting > 85%. Among the FRSs studied in this paper, AWS
Rekognition and Deepface are the best performing commer-
cial and open-source FRSs respectively. Commercial FRSs
perform better than open-source ones on five of the image
sets. Deepface open-source FRS is the best performing FRS
for the RGB0.5 variant. We calculate the standard deviation
of the accuracy distribution across different image sets for
each FRS. In general, commercial FRSs are less stable, with
the standard deviation varying from 8% (AWS) to 22.6%
(Face++), but for open-source FRSs, this is less than 3%.

We also perform a deeper analysis of accuracies for males
(Fig. 3b) and females (Fig. 3c). From Fig. 3b, for gender
prediction on male images, we see that all FRSs perform
exceptionally well on the ORIG set, with Deepface being the
best, correctly predicting the male gender for 99.91% of the
images. On the other hand, the lowest accuracy is reported
by Libfaceid at 98.31%. All FRSs except Deepface report
the lowest accuracy for RGB0.5, but are generally robust to
Spread and Greyscale variants. For the masked variant, the
lowest accuracy is reported by Microsoft Azure.

Next, looking at Fig. 3c, we note that the trends are less
systematic for female faces. Even on the ORIG set, the ac-
curacies range from 90.12% (AWS Rekognition) to 23.83%
(Libfaceid). In fact, the open-source FRSs consistently re-
port poor accuracies (independent of the image type) with
the highest being 59% by Deepface on GREY and lowest
being 5.7% for Libfaceid on MASK. The standard deviation
trends reverse here, with commercial FRSs reporting a more
stable performance – 4.14% (Face++) to 18.18% (Azure) as
opposed to open-source FRSs which report a standard devi-
ation of 17.52% (Deepface) and 20.72% (Libfaceid).
Disparity in accuracy is higher for images from GS: Ta-
ble 2 shows the average accuracy (micro avg. for all im-
ages in a given region) of gender prediction for male and
female cricketers for each region in the original (ORIG) and
RGB0.3 sets for all the five FRSs (more results for a bal-
anced set of males and females are in an extended version
of the paper6). In the rest of this section, we choose the
RGB filter to demonstrate our results since it has the high-
est adversarial effect on the model performances (see Fig-
ure 3). For the ORIG set, all five FRSs report high accu-
racy (min. 97.02%) of gender prediction for males in both
Global North (GN) and Global South (GS) countries, with
three FRSs performing marginally better for males in GN
than in GS. In contrast, the accuracy of gender prediction
for images of females from Global South is significantly
lower than those from Global North for all FRSs consis-
tently. This observation corroborates the observations made
in prior literature (Buolamwini and Gebru 2018; Raji et al.
2020; Jaiswal et al. 2022) regarding less accurate perfor-
mance of FRSs on darker female subgroups. Irrespective of
the FRS, the gender prediction accuracy for females is al-
ways lower than males within the same region. The dispar-
ity observed for commercial FRSs ranges from nearly 3%
in MSFT to nearly 10% in Face++ for the images of crick-
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(c) Overall accuracy for females

Figure 3: Overall accuracy for all FRSs, segregated by image type, for all images (a) and for each gender group (b,c). On
average, AWS and Deepface are the best performing commercial and open-source FRSs respectively, independent of gender.
All the FRSs are least robust to RGB0.5 for both genders and MASK for females. The FRSs are AWS Rekognition (AWS),
Microsoft Azure Face (MSFT), Face++ (FPP), Libfaceid (LIBFC), Deepface (DPFC).

Type Region AWS MSFT FPP LIBFC DPFC
M F M F M F M F M F

ORIG GN 98.95 95.37 99.24 96.26 99.33 89.68 97.02 30.25 99.92 75.98
GS 98.81 82.11 98.93 88.35 99.76 61.25 98.53 15.18 99.91 26.29

RGB0.3
GN 93.57 88.61 94.12 91.64 59.77 85.05 84.95 65.48 99.92 47.51
GS 96.21 72.36 92.84 73.44 77.7 69.11 91.28 42.82 100 12.74

Table 2: Average male and female gender prediction accuracies for the images belonging to the ORIG and the RGB0.3 set from
Global North and Global South. M & F refer to the male and female groups, the FRSs are AWS Rekognition (AWS), Microsoft
Azure Face (MSFT), Face++ (FPP), Libfaceid (LIBFC), Deepface (DPFC). Accuracy for male images are comparable between
the two regions, but that for female images are lower than males consistently across regions and FRSs. FRSs report significantly
lower accuracy for female images from Global South than for male images within the same region. This accuracy is also lower
than accuracy observed for female images from Global North.

eters from Global North. However, this disparity increases
to 10% in MSFT and 38.51% in Face++, respectively, for
images from Global South. The disparity in accuracy across
gender is even more pronounced in the open-source FRSs.
For images from Global North, the disparity ranges from
23.94% (for Deepface) to 66.67% (for Libfaceid). However,
for images from the Global South countries, this disparity
goes upwards of 70% for both the open-source FRSs.

Looking at the RGB0.3 set, we see that there is a drop in
accuracy for all FRSs on images from the Global North, but
a slight improvement in accuracy for some FRSs on Global
South images. Interestingly, for the Global North images, the
minimum and maximum disparity between the males and
females reduce to 2.5% and 52.41%, indicating that the ac-
curacy for males reduces more than that for females. For
the Global South images, the max disparity now becomes
87.26%. The disparity in accuracy between females of the
two regions reduces for two of the FRSs.
Takeaways: (a) Gender prediction accuracy for females
is worse than that for males for all the FRSs. This phe-
nomenon is even more pronounced in case of open source
FRSs. (b) Gender prediction accuracy for females is worse
for images from Global South than for those from Global
North across all FRSs.

Grad-CAM Analysis of Predictions (RQ2)
Figure 4 shows the Grad-CAM activation maps for the
Deepface predictions using 12 representative images from
the FARFACE dataset. We observe that the FRS model’s
attention heatmap when classifying images as male is very

different compared to when it classifies them as female. For
the male classifications (the first two rows in Figure 4), the
model’s focus is on a narrow vertical region stretching from
the forehead to the mouth, with the most important region
being the nose, as seen from the color grading on the ac-
tivation map. On the other hand, when the model predicts
an image as female, the region of interest varies and ran-
dom pixels are highlighted in the image. The patterns are
independent of the region to which the individual belongs
(GN or GS). We present some representative images here,
but the observations can be generalized over all images in
the dataset (last column in Fig. 4).
Takeaways: There is a significant difference in the activa-
tion maps of the Deepface model’s classification for the two
genders. For the male classifications, it has a more system-
atic region of interest, whereas the region of interest is ran-
dom for images classified as female.

Mitigating Biases in FRSs (RQ3)
Previously, we presented the audit study for FRSs on
the FARFACE dataset. We observed that all FRSs report
disparate performances for females, specifically from the
Global South. We now study the results for the two bias mit-
igation strategies (discussed earlier) for the Deepface open-
source FRS – (1) few-shot learning, and (2) contrastive
learning.
Results for few-shot learning: In Table 3, we report the re-
sults for the few-shot learning setup (more results are in an
extended version of the paper6). These are compared against
the baseline values from the pre-trained zero-shot setup on
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Type Region Pre-trained One-shot Two-shot
0% Adv 50% Adv 100% Adv 0% Adv 50% Adv 100% Adv

M F M F M F M F M F M F M F

ORIG GN 100 70 86.04 100 88.96 100 88.96 100 93.33 99.58 91.67 99.58 88.75 100
GS 100 30 91.25 88.75 94.38 86.25 94.58 86.25 96.67 80.42 95.21 82.08 92.71 86.67

RGB0.3
GN 100 51.25 91.88 91.67 85.21 97.5 83.96 98.33 94.58 91.67 89.58 97.5 87.5 95.42
GS 100 16.25 95.42 65.83 91.46 77.92 87.29 79.17 98.54 59.17 96.25 72.5 91.04 75.42

Table 3: Average male and female gender prediction accuracies for the images belonging to the ORIG and the RGB0.3 set
from Global North (GN) and Global South (GS) on a test set of 480 images for few-shot fine-tuning on Deepface. One-shot
and two-shot refer to the number of fine-tuning examples chosen from the dataset for each gender from each country. 0%,
50% and 100% refer to the number of RGB0.3 adversarial examples used during fine-tuning, the rest being from the ORIG set.
Accuracies for females improve significantly, irrespective of the region. One-shot performs better on the ORIG set and two-shot
on the RGB0.3 set. Max values for each set and mitigation setup are in bold.

Figure 4: Example activation maps from the Grad-CAM
analysis of the ORIG set for Deepface. The images are or-
dered as – Row 1: Correctly predicted males (New Zealand,
Pakistan, Bangladesh), Row 2: Misclassified females (New
Zealand, West Indies, South Africa), Row 3: Correctly pre-
dicted females (England, West Indies, Australia) and, Row
4: Misclassified males (England, India, India). For images
classified as male, the region of interest is systematic, while
for images classified as female, it appears random. The last
column in each row shows the average Grad-CAM activa-
tion maps, indicating that the analysis generalizes.

the held out test set of 480 images. In the pre-trained model,
the accuracy of females is inferior to males, irrespective of
the region on the ORIG as well as the RGB0.3 set. When the
FRS is fine-tuned with one-shot examples, the accuracy for
females improves significantly – by 30% for Global North
(giving 100% accuracy) and by more than 55% for Global
South in the ORIG set. This improvement is similar for the
RGB0.3 test set (> 40%). Finally, we see that the accuracy

for females on the RGB set improves with an increase in
adversarial examples, whereas the opposite is true for the
ORIG set. We see similar trends for the two-shot scenario,
wherein the absolute values are lower than the one-shot sce-
nario. Here, the accuracy on both sets improves with an in-
creasing number of RGB0.3 fine-tuning examples.

Next, observing the accuracy for predicting the male gen-
der for the one-shot learning scenario, we see that the ac-
curacy decreases from 100% in the pre-trained model by as
much as 14% (ORIG) – 16% (RGB0.3). Increasing the ratio
of adversarial examples in the fine-tuning set reduces the ac-
curacy for male prediction, the opposite of what we observe
for females. Next, in the two-shot scenario, the accuracy of
predicting males increases again – maximum of 98.54% for
males from the Global South in the RGB0.3 set.

Finally, we note two consistent trends – (i) the accuracy
for gender prediction of females from the Global South is
always lower than that of the females from the Global North
and, (ii) the accuracy on females (independent of the fine-
tuning setting) is always higher than the males except in the
RGB0.3 set, when fine-tuned using ORIG examples only.
This shows that only few examples are needed to signif-
icantly reduce the bias and improve the accuracy of the
marginalized class.
Results for generalizability to other datasets: We bench-
mark all the five pre-trained FRSs and the Deepface model
fine-tuned on 2-shot images from the FARFace dataset on
five highly popular diverse face datasets viz. CelebSET (Raji
et al. 2020), CFD-USA (Ma, Correll, and Wittenbrink 2015),
CFD-India (Lakshmi et al. 2021), CFD-MR (Ma, Kant-
ner, and Wittenbrink 2020) and Fairface (Karkkainen and
Joo 2021). From Table 4 we see that while the three com-
mercial systems report significantly high accuracies on all
datasets, Libfaceid and Deepface lag far behind. Thus, these
open-source models, despite being trained on faces from the
Global North do not generalize well to even these datasets.
Our fine-tuned model (DPFC-FT), on the other hand, reports
a significantly high accuracy for other datasets as well ex-
hibiting good generalizability prowess. We also observe a
reduction in disparity in gender accuracy for all datasets for
our fine-tuned model as compared to the pre-trained Deep-
face model (results are in an extended version of the pa-
per6). For all datasets except CFD-MR, the disparity reduc-
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Model Dataset
CelebSET CFD-USA CFD-India CFD-MR Fairface

AWS 99.5% 97.32% 98.59% 97.73% 92.11%
FPP 99.06% 93.47% 92.96% 90.91% 90.83%

MSFT 99.31% 99.83% 100% 100% 80.01%
LIBFC 85.94% 72.70% 79.58% 76.14% 76.67%
DPFC 82.06% 79.56% 73.94% 67.05% 71.67%

DPFC-FT 97.75% 85.26% 93.66% 89.77% 84.62%

Table 4: Benchmark on other datasets for all FRSs and for 2-shot fine-tuned Deepface using the FARFace dataset (DPFC-FT).
The Deepface model reports high accuracies on all datasets after fine-tuning proving generalizability of our technique.

Figure 5: Example activation maps from the Grad-CAM
analysis of the ORIG set (held-out test set) for Deepface af-
ter two-shot fine-tuning on the ORIG set. The images are
ordered as – Row 1: Correctly predicted males (Australia,
New Zealand, Pakistan, Bangladesh), Row 2: Misclassified
females (West Indies, Bangladesh, Pakistan, India), Row 3:
Correctly predicted females (England, West Indies, South
Africa, India) and, Row 4: Misclassified males (Australia,
West Indies, India, England). Row 5 has the average Grad-
CAM activation maps for the images of correctly predicted
males, correctly predicted females, misclassified females,
and misclassified males; it is apparent that there is a more
systematic focus on the nose for correctly predicted females.

tion ranges from 29-60%. Thus, we can state that models
fine-tuned on images from the Global South can be re-used
in other regions without loss in performance.
Grad-CAM analysis: We evaluate the Grad-CAM activa-

Type Region Pre-trained Contrastive
M F M F

ORIG GN 100 70 82.5 88.75
GS 100 30 90 80

RGB0.3
GN 100 51.25 81.88 88.75
GS 100 16.25 87.5 76.25

Table 5: Average male and female gender prediction accura-
cies for the contrastive learning setup on test sets of 480 im-
ages. Female accuracies from both regions improve signifi-
cantly. Accuracy for females is higher than males in Global
North and lower in Global South, for both test sets.

tion maps of the held-out test set for the following setup:
two-shot fine-tuning with all training examples chosen from
the ORIG set. Here we observe a change in the highlighted
area of the image when the model predicts the female gen-
der – the model’s region of interest is around the nose of
the person, as opposed to random areas within the image.
This indicates a clear change in the model’s decision making
process, specially for the true positive data points. Example
activation maps are shown in Figure 5. Consider activation
map in row 2, col 1 of Fig. 4 and in row 3, col 2 of Fig. 5–
both belong to the same female and there is a clear change in
the area of interest. This analysis generalizes over the entire
held-out test set as is evident from the last row of Fig. 5.
Results for contrastive learning: Finally, we also experi-
ment with a novel contrastive learning setup. Recall, for the
computation of the triplet loss for an anchor point (any data
point in a given class) (xa), the positive example (x+

a ) is
an adversarial image of the same individual from RGB0.3,
whereas the negative example (x−

a ) is an image of another
person from the ORIG set of the opposite gender (more re-
sults for other variants are in an extended version of the pa-
per6). Table 5 shows the accuracy in the ORIG set for gen-
der prediction increases significantly for females from both
Global North (18.75%) and Global South (50%). The in-
crease is more significant for images in the RGB0.3 set with
an increment of 37.5% in the Global North and 60% in the
Global South, thereby justifying our choice of adversarial
samples in the learning setup. In compensation, the accu-
racy for males drops, with a max drop of ≈ 20%. We do
not observe a large reduction in bias between the different
groups here.
Fairness vs. accuracy: As this is a binary classification task,
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Scheme Region Type
ORIG RGB0.3 RGB0.5 GREY SPRD MASK

Fine-tuning GN 54.17 60.83 64.17 53.33 52.50 62.50
GS 75 53.33 41.67 76.11 49.44 57.22

Contrastive GN 87.92 83.33 86.25 86.25 81.25 72.38
GS 90.56 89.44 86.67 80.56 92.22 60.42

Table 6: Average country prediction accuracies for the two regions, for the fine-tuning and contrastive learning setup. In the
fine-tuning setup, first, the model is fine-tuned on Geofaces, followed by a 2-shot fine-tuning on FARFace. In the second setup,
the model is trained using contrastive learning first on the Geofaces dataset and followed by a second round of contrastive
learning on the FARFace dataset. The two rounds of contrastive learning produce the best results.

we hypothesize that the drop in accuracy for males and sig-
nificant improvement in accuracy for females is a result of
an angular shift in the separating hyperplane, causing a small
number of previously classified males to now be classified
as female, but a larger number of females to be classified
correctly. Thus we see that the cost of fairness (reduction
in disparity between the performance for the two genders)
is a drop in accuracy for males, the majority class, which
is typically a standard observation in the literature. A more
in-depth mathematical study to bound this shift in accuracy,
while maintaining fairness is deferred to a future study.
Takeaways: (a) The model is highly receptive to few-shot
fine-tuning setups showing a significant improvement in ac-
curacy, especially for females in the Global South, and, (b)
Adversarial examples improve the accuracy as well as the
robustness of the fine-tuning setup.

Results of Red-Teaming Task (Country Prediction)
The results for predicting the country from face image are
shown in Table 6. Here, we see that depending on the ad-
versarial variant, one region reports a higher accuracy over
the other. Overall, fine-tuning results are poor with accuracy
values around 50% only. The 2-stage contrastive learning
setup produces the best and least disparate results. However,
as a note of caution we would like to state that the premise
of predicting one’s country or ethnicity from their face im-
age is a flawed one and has primarily been used for surveil-
lance (Mozur 2019). As an example, one can consider a
country like India with its large ethnicity and individuals be-
ing profiled as belonging to other countries because of their
facial phenotype, leading to unfair and biased outcomes.

Concluding Discussion
Benchmark audit of FRSs: In our benchmark audit, we
see that all models have a good accuracy on the ORIG set,
but commercial models are less robust to adversarial in-
puts; all FRSs report disparate results against Global South
females (generally dark skin tone). Such biases were ob-
served previously on commercial FRSs (Buolamwini and
Gebru 2018; Raji et al. 2020; Jaiswal et al. 2022). Thus
we observe both temporal and emergent biases against dark-
skinned women (Mehrabi et al. 2021) through our study. Our
current study supports existing observations and necessitates
the need for continual temporal audits of FRSs, especially
for adversarial real-world inputs.

Explanation of FRS outputs: Grad-CAM analysis on the
Deepface FRS reinforced the audit observations that FRS
models are better equipped to predict gender for males (the
IMDB-Wiki (Rothe, Timofte, and Van Gool 2018) dataset
has majority male faces (Raji et al. 2020)); these observa-
tions generalize across countries. This leads us to the final
part of our pipeline – bias mitigation.
Bias mitigation on Deepface: Our few-shot and contrastive
learning approaches result in improved accuracy for fe-
males in both regions. Accuracy for the RGB0.3 set also im-
proves, resulting in increased model robustness. Few-shot
fine-tuning performs better than contrastive learning over-
all, but we defer further exploration of the reasoning to a
future study. Simple techniques like fine-tuning and con-
trastive learning improve accuracy while reducing bias, and
adversarial examples improve robustness.
Limitations and scope for future work: While the cur-
rent dataset has images from both Global South and Global
North, the age related information and gender diversity (as
the sport of cricket is male dominated) is missing. We would
like to improve the dataset on these dimensions in the future.
The current study focuses on classification tasks. We intend
to extend it to retrieval tasks like face verification. We also
plan to study the accuracy vs fairness trade-offs for our mit-
igation strategies and introduce better algorithms that recon-
ciles between the two notions better.
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ited to binary gender classification, but this is primarily due
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in all face datasets (ours and in literature). We do not intend
to propagate the perspective that gender is a binary label; we
acknowledge that gender is a fluid spectrum, and hence all
gender labels in our study are to be interpreted as perceived
gender.

Next, we note that our dataset is unbalanced, with a larger
ratio of males than females. This is no surprise as it is reflec-
tive of gender imbalance observed in many professions, in-
cluding sports (Singh 2023) and is a societal issue that needs
deeper reflection and redressal through governmental inter-
vention. Multiple prior open-source models have also been
trained on such imbalanced datasets as is evident from their
bias against females in audit studies. We do not condone this
and, as such, to prevent further misuse, will only share a bal-
anced subset of our dataset for any and all research purposes.
We also audit on a balanced subset of images and identify
that similar biases as shown here persist (Results are in an
extended version of the paper6). Even in our bias mitigation
experiments, we have only used balanced subsets (for both
fine-tuning and contrastive learning).

Images from the Global South can include additional sen-
sitive features, for example, caste or religion in South Asia,
which are correlated to one’s socio-economic position in
these societies. These attributes intersect with sensitive fea-
tures like skin tone and can lead to newer skews beyond
Global North and South. We acknowledge this as a limita-
tion of our dataset and recommend future users of the dataset
to be mindful when performing sociotechnical analyses.

Finally, our red teaming experiment has been done to
show the relative ease of misusing FRSs for controver-
sial and morally ambiguous experiments like predicting the
country of a person from their face. Ironically, the results
from this experiment too are biased, thus showing how mod-
els trained on datasets from the Global North encode strong
biases. We will not be releasing either the code or the spe-
cific subset of images used for this experiment.

Our primary motivation for this work stems from the
under-representation of the Global South in the larger AI
development landscape and over-representation in the AI
testbed landscape. We hope our dataset and bias mitigation
algorithms will break this hegemony and provide some bal-
ance.
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