TY - JOUR
AU - Alferov, Vasily
AU - Bliznets, Ivan
PY - 2021/05/18
Y2 - 2023/12/10
TI - New Length Dependent Algorithm for Maximum Satisfiability Problem
JF - Proceedings of the AAAI Conference on Artificial Intelligence
JA - AAAI
VL - 35
IS - 5
SE - AAAI Technical Track on Constraint Satisfaction and Optimization
DO - 10.1609/aaai.v35i5.16479
UR - https://ojs.aaai.org/index.php/AAAI/article/view/16479
SP - 3634-3641
AB - In this paper, we study the computational complexity of the Maximum Satisfiability problem in terms of the length L of a given formula. We present an algorithm with running time O(1.0927^L), hence, improving the previously known best upper bound O(1.1058^L) developed more than 20 years ago by Bansal and Raman. Theoretically speaking, our algorithm increases the length of solvable formulas by 13.3% (compare this to the recent breakthrough result for Maximum Satisfiability problem with respect to the number of clauses by Xu et al. in 2019 giving a 7.5% improvement). Besides, we propose a significantly simpler algorithm with running time O(1.1049^L). The algorithm outperforms Bansal's and Raman's algorithm in simplicity and running time.
ER -