@article{Alferov_Bliznets_2021, title={New Length Dependent Algorithm for Maximum Satisfiability Problem}, volume={35}, url={https://ojs.aaai.org/index.php/AAAI/article/view/16479}, abstractNote={In this paper, we study the computational complexity of the Maximum Satisfiability problem in terms of the length L of a given formula. We present an algorithm with running time O(1.0927^L), hence, improving the previously known best upper bound O(1.1058^L) developed more than 20 years ago by Bansal and Raman. Theoretically speaking, our algorithm increases the length of solvable formulas by 13.3% (compare this to the recent breakthrough result for Maximum Satisfiability problem with respect to the number of clauses by Xu et al. in 2019 giving a 7.5% improvement). Besides, we propose a significantly simpler algorithm with running time O(1.1049^L). The algorithm outperforms Bansal’s and Raman’s algorithm in simplicity and running time.}, number={5}, journal={Proceedings of the AAAI Conference on Artificial Intelligence}, author={Alferov, Vasily and Bliznets, Ivan}, year={2021}, month={May}, pages={3634-3641} }