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Abstract 
ICU mortality risk prediction may help clinicians take effec-
tive interventions to improve patient outcome. Existing ma-
chine learning approaches often face challenges in integrat-
ing a comprehensive panel of physiologic variables and pre-
senting to clinicians interpretable models. We aim to im-
prove both accuracy and interpretability of prediction mod-
els by introducing Subgraph Augmented Non-negative Ma-
trix Factorization (SANMF) on ICU physiologic time series. 
SANMF converts time series into a graph representation 
and applies frequent subgraph mining to automatically ex-
tract temporal trends. We then apply non-negative matrix 
factorization to group trends in a way that approximates pa-
tient pathophysiologic states. Trend groups are then used as 
features in training a logistic regression model for mortality 
risk prediction, and are also ranked according to their con-
tribution to mortality risk. We evaluated SANMF against 
four empirical models on the task of predicting mortality or 
survival 30 days after discharge from ICU using the ob-
served physiologic measurements between 12 and 24 hours 
after admission. SANMF outperforms all comparison mod-
els, and in particular, demonstrates an improvement in AUC 
(0.848 vs. 0.827, p<0.002) compared to a state-of-the-art 
machine learning method that uses manual feature engineer-
ing. Feature analysis was performed to illuminate insights 
and benefits of subgraph groups in mortality risk prediction. 

1. Introduction   
Mortality risk prediction and early recognition of clinical 
trends can identify actionable items for improving patient 
survival (Buist et al. 2002; McNeill; Bryden 2013; Chan et 
al. 2010). This problem has particular importance in the 
Intensive Care Unit (ICU). Modern ICUs generate multi-
variate time series data for a patient using an increasing 
number of monitoring devices and laboratory tests. The 
close attention required from critical care providers expos-
es ICU patients to human errors known to be common in 
hospital admissions (Levinson; General 2010). Thus auto-
mated tools are needed to help clinicians interpret such 
data in a timely fashion, quickly assemble effective treat-
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ment plans, and ultimately improve patient outcome. 
 In the ICU, monitor sensitivity is often favored over 
specificity, thus alerts based on whether the value of a sin-
gle parameter crosses a threshold may result in a preva-
lence of false alarms (McIntosh 2002). Better trade-off 
between sensitivity and specificity can be achieved by con-
sidering multiple variables comprehensively (Zong et al. 
2004). The assumption is that more volatile patients dis-
play concerted abnormalities in multiple variables, which 
are associated with a high risk of mortality. Calibrated clin-
ical models can be built by mining archived ICU physio-
logic time series. 
 Despite methodological advances in machine learning, 
clinicians often regard learnt models as black boxes. This 
flaw lies partially in the difficulty of translating complex 
clinical events to model features. For example, vital meas-
urements and laboratory test values fluctuate as time pro-
gresses (e.g., glucose level may increase from 158 mg/dL 
to 189 mg/dL after 53 minutes, then fall to 172 mg/dL after 
another 62 minutes). We refer to these events as temporal 
trends. In contrast, the standalone numerical measurements 
(e.g., 158 mg/dL glucose level) are single time point snap-
shots. Snapshot measurements have been widely used due 
to their simple extraction and robust statistical properties. 
However, they are less informative and interpretable than 
temporal trends. Temporal trends are more expressive and 
informative, but their extraction is often cumbersome. For 
better modeling, temporal trends often need to be consid-
ered in groups because the underlying pathophysiologic 
evolution of a patient (e.g. kidney failure) usually mani-
fests itself through multiple physiologic variables (e.g., 
abnormalities in glomerular filtration rate, creatinine, etc.). 

2. Related Work 
Previous work in predicting mortality risk based on ICU 
patients’ physiological status generally falls into two cate-
gories. Score-based methods (e.g., SAPSII (Le Gall et al. 
1993) and APACHE (Knaus et al. 1991)) assume a re-
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source-limited ICU setting and aim to select a limited set 
of commonly measured clinical predictors that can (often 
manually) be aggregated into a severity score and best as-
sociated to a particular outcome. Others adopt a broader 
modeling perspective. Hug et al. (Hug; Szolovits 2009) 
considered a comprehensive set of physiologic measure-
ments from the Multiparameter Intelligent Monitoring in 
Intensive Care (MIMIC-II) clinical dataset (Saeed et al. 
2011) and manually defined a set of trend patterns. Quinn 
et al. (Quinn et al. 2009) developed a factorial switching 
linear dynamic system to model the patient states underly-
ing 8 physiologic measurements. Cohen et al. (Cohen et al. 
2010) used hierarchical clustering to extract 10 clusters as 
clinically relevant patient states from physiologic meas-
urements, over a set of 17 patients and 14 measurements. 
However, these methods either model temporal trends in-
dependently without capturing correlated trends manifest-
ing underlying pathophysiologic states, or lack scalability 
to many more physiologic variables. Recently, the 2012 
PhysioNet/Computing in Cardiology Challenge tackled the 
problem of in-hospital mortality prediction on MICMIC-II 
dataset with 36 physiologic time series from first 2 days of 
admission (Silva et al. 2012; Johnson et al. 2012; Lee et al. 
2012; Citi; Barbieri 2012; Xia et al. 2012; McMillan et al. 
2012; Vairavan et al. 2012; Krajnak et al. 2012; Severeyn 
et al. 2012; Pollard et al. 2012; Hamilton; Hamilton 2012; 
Bera; Nayak 2012). The challenge used the minimum of 
precision and recall (score1) as official evaluation metrics 
with highest score1 around 0.53. Several systems also re-
ported AUC scores from 0.82 (e.g., (McMillan et al. 2012), 
score1=0.46) to 0.86 (e.g., (Johnson et al. 2012), 
score1=0.53). Joshi et al. (Joshi; Szolovits 2012) extended 
to 54 physiologic time series to predict 30-day mortality 
for ICU patients. They manually clustered the physiologic 
measurements into organ specific patient states by associ-
ating each measurement with the status of a particular or-
gan, and achieved a state-of-the-art 30-day mortality AUC 
of 0.91 on the MIMIC-II dataset. Despite improving scala-
bility, their manual feature clustering applies to only snap-
shot measurements and can be a subjective call. For exam-
ple, low hematocrit may be linked to blood loss, bone mar-
row problems or kidney problems, thus is hard to assign to 
a specific organ. Addressing these challenges, we study 
how to group temporal trends instead of single time point 
measurements, and how evidence-based grouping can be 
performed over a comprehensive set of physiologic varia-
bles. Our representation of temporal trends falls into the 
category of time series abstraction that discretizes time 
series into sequences of symbols and attaches meaning to 
the symbols (Lin et al. 2007; Dagliati et al. 2014; Combi et 
al. 2012; Moskovitch; Shahar 2014; Sacchi et al. 2015). 
We chose our discretization approach to be consistent with 
the state-of-the-art comparison model (Joshi; Szolovits 
2012), which showed that a customized z-score was an 

effective discretization on MIMIC-II data. Our approach 
also handles time series with irregularly sampled time 
points, though we expect augmenting it with some of the 
above abstraction methods may lead to further improve-
ments and leave this as future work. 

3. Methods 
In this work, we develop an unsupervised feature learning 
method in order to build machine learning models that are 
both more accurate and more interpretable to clinicians. 
The model applies non-negative matrix factorization to 
discover groups of subgraph-encoded temporal progression 
trends, hence the name Subgraph Augmented Non-
negative Matrix Factorization (SANMF). 

3.1 Workflow of SANMF 
We first outline the workflow of the SANMF algorithm in 
Fig 1. ICU physiologic time series are first converted to 
graph representations. The graph representation is derived 
by discretizing time and measurement axes for physiologic 
measurements. We use a frequent subgraph mining tool to 
collect important subgraphs where the subgraphs are iden-
tified as common temporal trends of the physiologic varia-
bles. With such representations, subgraphs encode tem-
poral trends, and we use “subgraphs” and “temporal 
trends” interchangeably within the context of this paper. 
We model the correlation between the subgraphs, and ap-
ply non-negative matrix factorization to discover groups of 
subgraphs and patients, and then train a logistic regression 
model to predict the mortality risk using subgraph groups 
as features. We next explain each step in more detail. 

3.2 Representing Time Series as Graphs 
In representing the time series as graphs, we focus on the 
data from the second half of the first day after patients’ 
admissions to ICU. We exclude the first half of the first 
day because many measurements are not yet available in 
that time period. The time series of different variables are 
often sparse and irregularly sampled, and contaminated by 
a variety of noise and human error. Thus before converting 
time series into graphs, we perform discretization on both 
the time axis and the measurement axis. We discretize the 
time axis by linearly interpolating the time series and re-
sampling at regularly spaced time intervals. We expect 
more advanced imputation algorithms such as EM or 
Gaussian processes inference may lead to better perfor-
mance at the expense of more parameter tuning and leave 
these to future work. We determined empirically (by 5-fold 
cross-validation over choices of 1, 2, 4, or 6 hour intervals) 
that a two-hour time interval was best in our experiment. 
With the interpolated time series, we compute a custom-
ized z-score (z’-score) where we define measurements 
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within the reference range of a certain test to be 0. For a 
physiologic variable , let  and  be the low and high 
ends of the reference range, let  index different ICU pa-
tient stays, and  and  be the mean and standard 
deviation of variable  across different ICU patient stays, 
the z’-score is calculated using the following equations 

 ( 1 ) 

 ( 2 ) 

 
Fig 1 Workflow of SANMF. We focus on the physiologic time 
series from the second half of the first day in ICU admission, 
balancing the trade-off between early detection of clinical trends 
and data availability. In the flow chart, shaded blocks indicate 
comparison models, see section 2 for organ level summarization, 
section 3.2 for D,I-measure, section 3.3 for subgraphs. The block 
with bold fonts corresponds to the features output by SANMF. 

Interpolating-then-normalizing aims to address the sam-
pling bias that normal physiologic variables are sampled 
less frequently (email correspondence with MIMIC-II cu-
rators). Admittedly, interpolations are not real measure-
ments, but they are reasonable estimates to counterbalance 
sampling bias, as ICU monitoring should catch most sud-
den/drastic changes. Each individual measurement is then 
discretized based on whether its value is within the refer-
ence range (label 0), within one  outside the reference 
range (label 1), or beyond one  outside the reference 
range (label 2). Such discretization is essentially a 
thresholded round-up from equation ( 2 ). After discretiza-

tion, we generate the time series graph for each measure-
ment by connecting the discretized measurement values 
that are adjacent on the time axis. We use three types of 
edges to distinguish changes between adjacent nodes, 
namely up, down and same, and to encode partial direc-
tionality in temporal progression. 

3.3 Frequent Subgraph Mining 
Frequent subgraph mining (FSM) is a technique for pattern 
mining and has seen applications in natural language pro-
cessing (Luo et al. 2014; Luo et al. 2015; Liu et al. 2013). 
In this work, we adapt FSM to produce the temporal trends 
that are common in the dataset. Intuitively, similar patients 
undergo similar physiologic trajectories during their ICU 
stays. Compared to temporal pattern mining (e,g, motif 
mining in (McMillan et al. 2012) and temporal variation 
summarization in (Hug; Szolovits 2009)), FSM supports 
flexible sequence/graph size and frequency based selec-
tion. FSM is defined on the notion of graph subisomor-
phism. We say one graph  is subisomorphic to another 
graph  if all its nodes  and edges  match with part of 
the other one. A subgraph occurs once in a corpus whenev-
er it is subisomorphic to a graph in that corpus. Frequent 
subgraph mining identifies those subgraphs whose occur-
rences in a corpus are above a given threshold. In this 
work, we use the frequent subgraph miner MoSS (Borgelt; 
Berthold 2002) with frequency threshold empirically cho-
sen (by 5-fold cross-validation on choices including 5, 10 
or 15) to be 10 (i.e., subgraphs must occur at least  times 
in the dataset). Example frequent subgraphs are shown in 
Fig 3. The frequent subgraph mining step takes 1 min on a 
2.7GHz CPU 8GB RAM laptop and generates 5534 fre-
quent subgraphs. Among them, smaller subgraphs may be 
subisomorphic to other larger frequent subgraphs. When a 
larger subgraph is frequent; all of its subgraphs are neces-
sarily also frequent. Furthermore, if a patient case has a 
larger subgraph, then both the larger and smaller subgraphs 
are counted for that patient. This may cause the signal from 
larger subgraphs to be overwhelmed by the signal from 
many smaller subgraphs. Therefore, we kept only the larg-
er subgraphs in such pairs when a patient case has both. 
Note that such filtering is different from the notion of min-
ing maximal frequent subgraphs, where only subgraphs 
that are not a part of any other frequent subgraphs at all are 
collected (Huan et al. 2004). It is cost prohibitive to per-
form a full pairwise check because the subisomorphism 
comparison between two subgraphs is already NP-
complete (Nijssen; Kok 2005), and a pairwise approach 
would ask for over 15 million such comparisons for our 
task. However, in our case, we only need to compare sub-
graph pairs from the same physiologic variable. Further-
more, subgraph subisomorphism comparison can be sim-
plified into string matching because our subgraphs are es-
sentially sequences of maximum length 6. Combining the 
two observations, the algorithm for determining the 
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subisomorphism relation among frequent subgraphs is 
shown in Fig 2. The above filtering step takes 0.5 min and 
in fact does exclude some small subgraphs completely, 
leaving the final number of subgraphs at 5387. 
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Fig 2 Algorithm for determining subisomorphism relation among 
time series subgraphs. The simplification mainly comes from 
variable partition (line 1-2) and reduction of subisomorphism to 
substring match (line 8) for time series subgraphs. 

3.4 Subgraph Augmented NMF 
Non-negative Matrix Factorization (NMF) has been a high-
ly effective unsupervised method to cluster similar patients 
(Hofree et al. 2013) and sample cell lines (Müller et al. 
2008), and to identify subtypes of diseases (Collisson et al. 
2011). We explore a novel application of NMF based on 
the observation that a patient’s underlying pathophysiolog-
ic evolution usually manifests itself in a group of temporal 
progression trends concerning multiple physiologic varia-
bles. This motivates us to use NMF to group time series 
subgraphs by factorizing the patient-by-subgraph count 
matrix, hence the name Subgraph Augmented NMF 
(SANMF). A schematic view of SANMF is shown in Fig 
3. Let  be the patient-by-subgraph count matrix of di-
mension , where  is the number of patients and  is 
the number of subgraphs. NMF approximates  using two 
lower ranked matrices  (of dimension  where  is 
the number of subgraph groups) and  (of dimension 

), as formalized in the following equation.  
 

 
( 3 ) 

where  indicates squared Frobenius norm (squared 
summation of all entries in a matrix) and  means that 

 is entry-wise non-negative. Intuitively, each row of  
gives the composition of each subgraph group, each col-
umn of  reveals how each patient may be viewed as hav-
ing a mixture of subgraph groups (approximating patho-
physiologic evolutions).  

As we are focusing on count data that is by definition 
nonnegative, we use NMF instead of other grouping meth-
ods such as k-means or principal component analysis 
(PCA) that do not have a built-in nonnegative constraint. 
The NMF solver we used is the projected gradient NMF 

(Lin 2007) implemented in Scikit-learn (Pedregosa et al. 
2011). We use nonnegative double singular value decom-
position as a deterministic initialization method (Boutsidis; 
Gallopoulos 2008). We also enforce sparsity on subgraph 
groups (Hoyer 2004) so that a group has only a limited 
number of non-zero weighted subgraphs and places most 
weight on only a few subgraphs, which is easier to inter-
pret for clinicians. 

3.5 Feature Group Discovery Using SANMF 
In SANMF, the column vectors in the subgraph factor ma-
trix  specify the grouping of subgraphs. Such groupings 
can be viewed as mixtures of subgraphs, as they allow 
sharing of a subgraph among different groups as specified 
by its fractional weights across groups. In Fig 3 two exam-
ple subgraph groups are shown. The top ranked subgraphs 
in subgraph group 1 indicate a general progression to an 
improved state. The top ranked subgraphs in subgraph 
group 2 indicate a general progression to a worse state. The 
motivation is to identify some subgraph groups that can 
indicate concerted progression patterns of physiologic var-
iables as driven by the patient’s underlying pathophysio-
logic evolution. The subgraph groups as specified in  are 
used as features in logistic regression with the instance-
feature matrix being . Using the trained regression model, 
we rank the subgraph groups by their regression coeffi-
cients and focus on the top subgraph groups that are asso-
ciated with high mortality risk.  

3.6 Evaluating the Groups Discovered by SANMF 
Because there is no innate way to determine whether the 
groupings of subgraphs discovered by SANMF are good or 
poor, we evaluate their utility as features, abstracted from 
the base data, in a prediction model. We assume that good 
features will improve prediction and will give us some 
insights into which temporal trend patterns are indicative 
of patient mortality risk. We use physiologic time series 
from the MIMIC-II database (Saeed et al. 2011). The time 
series include laboratory test values and physiologic meas-
urements captured from patients monitored in the ICU at 
Beth-Israel Deaconess Medical Center (BIDMC) (see ap-
pendix A-Table 1 for a list of variables and their interpreta-
tion). Our dataset is a subset of the one used by Joshi et al. 
(Joshi; Szolovits 2012) (patients from the year 2000 to 
2008); we only include those patients who have at least one 
day length of time series data. We predict whether a patient 
survives or dies in the ICU or within 30 days after ICU 
discharge, from data available for each patient during the 
period between 12 and 24 hours after their admission to the 
ICU. Choosing the 30-day mortality instead of in-hospital 
mortality emphasizes our motivation to detect clinical 
trends early on. We partitioned the cases equally, stratified 
by mortality, into a training set (3932 cases total) and a test 
set (3931 cases total), as shown in Table 1. 
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Fig 3 Subgraph Augmented Non-negative Matrix Factorization model. In the figure,  is the patient-by-subgraph count matrix. Next to it 
are some example subgraph (trends). We also show example trend group 1 and trend group 2 after factorization. It is often desirable to 
have some trend groups indicate a general progression to the better states (e.g., trend group 1), or to the worse states (e.g., trend group 2). 

Patient ICU Stays 

Mortality Total Cases Training Cases Test Cases 

 30 days 788 383 (9.7%) 405 (10.3%) 

 30 days or alive 7075 3549 (90.3%) 3526 (89.7%) 

Table 1. Statistics of experiment data. The table includes the ICU 
patients’ 30-day mortality distribution. The dataset is split equal-
ly into a training set and a test set. 

To evaluate the effectiveness of SANMF in abstracting 
raw data into more predictive features, we use 5-fold cross-
validation on the training set to choose the number of sub-
graph groups, and use these subgraph groups as independ-
ent features to train a logistic regression model. We chose 
logistic regression over alternatives such as SVM or ran-
dom forests for its capability to generate deterministic 
weights for individual features. As we have already 
grouped the subgraphs by accounting for their correlations, 
logistic regression provides a convenient way to directly 
assess subgraph group contribution. We then evaluate the 
model on the held-out test cases, and compare its perfor-
mance against the following models: (a) as a baseline, 30-
day mortality prediction by a logistic regression model 
using an approximation of the SAPSII score and its loga-
rithm as predictors, where the SAPSII variable “chronic 
diseases” is approximated using ICD9 codes and the varia-
ble “type of admission” is approximated using the ICU 
service type (Hug; Szolovits 2009); (b) a state-of-the-art 
organ-level summarization model (Joshi; Szolovits 2012) 
for which we obtained their code and adapted it to account 
for our use of 12 hours of data rather than snapshot meas-
urements by replacing the binary representation of whether 
an organ system is in a specific state with the number of 
times it is in that state during the 12 hours; (c) the D,I-
measure based on our discretized (D) and interpolated (I) 
data values, where we also count the number of times each 
physiologic variable took on a discretized value during the 
12 hours; and (d) a model based on treating subgraphs as 
independent features. The comparison models (b-d) are 
shaded in Fig 1. We compare the Area Under the ROC 
Curve (AUC) of our model against these four others. 

4. Results 

4.1 Performance on ICU Mortality Prediction 
When using NMF to identify latent groups of temporal 
trend features, the number of groups needs to be empirical-
ly determined. We set this parameter to 100 by 5-fold 
cross-validation on the training data and considered a range 
of groups between 10 and 120 (at increments of 10), see 
appendix A-Fig 1 for detail. NMF with 100 groups takes 
12 min in total for training and test data on a 2.7GHz CPU 
8GB RAM laptop.  

The AUC performance results of SANMF, comparison 
models and the baseline on held-out test data are shown in 
Fig 4. Comparing all the models and baseline, we can see 
that SAPSII approximation has an AUC of 0.673, which is 
lower than what is generally reported for SAPSII in the 
literature (Le Gall et al. 1993; Hug; Szolovits 2009; Joshi; 
Szolovits 2012) (We address this issue in detail in the Dis-
cussion). Nevertheless, all models that abstract the meas-
ured data by discretizing and aggregating them perform 
better by a large margin, each with an AUC greater than 
0.8. The predictive model based on our SANMF-derived 
trend groups has the best performance, with an AUC of 
0.848, significantly better (p<0.002 by random permutation 
test (Noreen 1989)) than the next-best model (AUC=0.827) 
based on abstraction by organ-system. 

4.2 Important Subgraph Groups 
Using the method in the feature group discovery section, 
we identified the top two subgraph groups that are associ-
ated with high mortality risk as listed in Table 2. These 
subgraph groups typically contain physiologic trends that 
stay at constant discretized values or sometimes progress to 
more severe states. In addition, they collectively indicate 
problematic pathophysiologic processes that involve one 
organ or multiple organs simultaneously, while still retain-
ing the temporal trend details at the physiologic variable 
level. 

For example, the first associated subgraph group has 
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several subgraphs suggesting that the patient mainly has 
pulmonary problems (continuously low minute ventilation, 
high plateau pressure, fluctuating airway resistance, and 
high level of positive end-expiratory pressure set on the 
ventilator). On the other hand, this group also has Glasgow 
Coma Scale staying very low, meaning that the patient is 
probably unconscious or sedated. Thus this group may be 
interpreted as unconscious or sedated patients with severe 
pulmonary problems. The second associated subgraph 
group displays abnormal trends related to problems in mul-
tiple organs including kidney, lung, and heart.  

 
Fig 4 ROC curves for proposed method SANMF, comparison 
models including subgraphs as independent features, discretized 
& interpolated measures (D,I-measure), and organ level status, 
as well as the baseline model using SAPSII approximation. 
SANMF significantly outperforms the next-best model (AUC 
0.848 vs 0.827, p<0.002). 

An interesting observation is that top ranked subgraph 
groups contributing to high mortality risk usually involve 
problems in multiple organs rather than a single organ, 
which is more likely to happen in real ICU settings. Such 
grouping is difficult to achieve using manual grouping 
according to only organ status as done by Joshi et al. 
(Joshi; Szolovits 2012) and is considered one of the bene-
fits of using NMF to automatically group temporal pro-
gression trends in an evidence-driven fashion. 

5. Limitation, Discussion and Future Work 
We observe that the AUC for our approximation to SAPSII 
is lower than in previously reported studies (Le Gall et al. 
1993; Hug; Szolovits 2009; Joshi; Szolovits 2012). We 
believe that this is due to the large amount of missing data 
in our data set and the approximations we make because 
our data do not include the exact parameters used in 
SAPSII. Moreover, we built SAPSII predictions on 12hr 
data and obtained a 30-day mortality AUC=0.67, whereas 
(Joshi; Szolovits 2012) used all the data and reported an 
AUC=0.77 by SAPSII. Putting system performance into 
context, our system outperforms (AUC 0.848 vs. 0.827) the 

system by (Joshi; Szolovits 2012) adapted to use 12hr data 
(Fig 4 organ model). Their AUC drop from 0.91 to 0.827 is 
consistent with using less data (totality vs. 12hr). In addi-
tion, both 0.848 and 0.827 30-day mortality AUCs are infe-
rior to those for in-hospital mortality prediction (e.g., 
AUC=0.86, (Johnson et al. 2012) from Physio-
Net/CinC2012), highlighting that 30-day mortality predic-
tion is a more difficult task. Note that we combined per-
spectives from previous studies by reducing 48hr data in 
Physionet/CinC2012 to 12hr and predicting 30-day mortal-
ity. Although both extensions increase task difficulty, they 
offer potential clinical value as observed separately by pre-
vious studies.  

30-day Mortality 1st Subgraph Group 
0.1000 Glasgow Coma Scale -2 -2 -2 -2 -2 -2 
0.0085 Minute Ventilation -2 -2 -2 -2 -2 -2 
0.0082 Minute Ventilation -1 -1 -1 -1 -1 -1 
0.0081 PEEPSet 2 2 2 2 2 2 
0.0066 Airway Resistance 1 0 
0.0060 Airway Resistance 0 1 1 
0.0059 Plateau Pressure 2 2 2 2 2 2 
0.0052 PEEPSet 1 1 1 1 1 1 
0.0047 PaO2/FiO2 0 2 
0.0040 Airway Resistance 1 1 0 
30-day Mortality 2nd Subgraph Group 
0.1634 BUN/Creatinine 2 2 2 2 2 2 
0.0481 BUN 2 2 2 2 2 2 
0.0155 Albumin -2 -2 -2 -2 -2 -2 
0.0040 Arterial CO2 1 1 1 1 1 1 
0.0040 Heart Rate 0 -1 
0.0038 Na 2 2 2 2 2 2 
0.0034 Na 1 1 1 1 1 
0.0033 Arterial CO2 2 2 2 2 2 
0.0032 Arterial Base Excess 2 1 
0.0029 Delivered Tidal Volume -1 -1 -1 0 

Table 2 Top trend groups associated with high mortality risks. 
Trends are converted into a sequence to save space. For each 
trend such as “0.1000 Glasgow Coma Scale -2 -2 -2 -2 -2 -2”,   
0.1000 is the membership coefficient, Glasgow Coma Scale is the 
measurement label, “-2 -2 -2 -2 -2 -2” is the trend (flat for this 
case). Abbreviations used in the table include: PEEPSet – posi-
tive end-expiratory pressure set on ventilator; PaO2 – arterial 
oxygen tension; FiO2 – fraction of inspired oxygen; BUN – blood 
urea nitrogen; Na – sodium level. Please refer to appendix A-
Table 1 for the detailed description and interpretation of all the 
variables. 

In this work, we use 30-day mortality (including mor-
tality in hospital or within 30 days after discharge) as an 
obtainable ground truth in order to demonstrate the effica-
cy of SANMF as an unsupervised feature learning algo-
rithm. Similar methods may be applicable to improve not 
only mortality predictions but also predictions that indicate 
specific types of patient deterioration (e.g., anticipating 
hypotension, kidney injury, hepatic failure, sepsis) and 
identifying therapeutic opportunities (e.g., ability to wean 
from a ventilator, an intra-aortic balloon pump, vasopres-
sors). Such improved models can provide decision support 
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for treatment planning and informed staffing. A systematic 
comparison of published systems, for both mortality and 
customized outcome prediction, along the directions of 
both FSM and temporal pattern methods (Hug; Szolovits 
2009; McMillan et al. 2012), can be informative to the re-
search community and is part of our future work. 

In our experiment, FSM takes 1.5 min and NMF takes 
12 min on a 2.7GHz CPU 8GB RAM laptop. NMF is most 
time consuming but necessary for better interpretability 
and accuracy, as demonstrated by Fig 4 and Table 2. Note 
that we only included physiologic time series, in order to 
make a fair comparison to the baseline model SAPSII, and 
did not include treatment. However, ICU mortality risk can 
be better stratified by considering the interplay between 
observations and interventions. In addition, we want to 
further model trend-intervention and trend-trend relative 
changes such as “if temperature rose before the change in 
BUN”. Capturing both aspects may require interconnecting 
trend and intervention sequences, thus generating proper 
graphs and subgraphs. The intention to pursue this direc-
tion motivated us to resort to the reasonably fast subgraph 
mining instead of sequence mining in the first place. We 
expect further improved accuracy and interpretability by 
predicting outcomes for patient groups who have similar 
underlying pathophysiologic evolutions and who have un-
dergone similar treatment regimens. This step asks for bet-
ter heuristics in FSM and our subgraph subisomorphism 
check, and perhaps more refined discretization and interpo-
lation, but is a promising direction. 

6. Conclusions 
We proposed a novel unsupervised feature learning algo-
rithm named Subgraph Augmented Non-negative Matrix 
Factorization (SANMF), designed for analyzing temporal 
progression patterns in clinical time series, and showed it 
to improve both the accuracy and the interpretability of the 
learnt model for ICU mortality risk prediction. In sum-
mary, subgraph mining on multivariate time series leads to 
unsupervised extraction of multivariate temporal trends, 
which are more informative than snapshot measurements. 
The ensuing NMF-based step groups correlated temporal 
trends of different physiologic variables. This leads to bet-
ter interpretability and improved accuracy. We compared 
SANMF with four different models using features with 
varying granularities and time spans. SANMF outperforms 
all the comparison models and in particular demonstrates 
an AUC improvement from 0.827 to 0.848 (p < 0.002), 
compared to a similarly motivated state-of-the-art model 
on MIMIC-II dataset that explores manual feature engi-
neering. A detailed feature analysis of the subgraph groups 
that are generated by SANMF offers more clinical insights 
about multiple organ problems associated with high mor-
tality risk, all being automatically identified from the data. 

Acknowledgements 
The work described was supported in part by Grant Num-
ber U54LM008748 from the National Library of Medicine. 
The intensive care data are from a data set distributed un-
der a limited data use agreement, which was approved by 
the Beth Israel Deaconess Hospital’s IRB. 

References 
Bera, D.; Nayak, M.M., 2012. Mortality risk assessment for ICU 
patients using logistic regression. In Computing in Cardiology 
(CinC). 493–496, IEEE. 
Borgelt, C.; Berthold, M.R., 2002. Mining molecular fragments: 
Finding relevant substructures of molecules. In Proceedings. 2002 
IEEE International Conference on Data Mining. 51–58, IEEE. 
Boutsidis, C.; Gallopoulos, E., 2008. SVD based initialization: A 
head start for nonnegative matrix factorization. Pattern Recogni-
tion 41(4): 1350–1362. 
Buist, M.D. et al., 2002. Effects of a medical emergency team on 
reduction of incidence of and mortality from unexpected cardiac 
arrests in hospital: preliminary study. BMJ 324(7334): 387–390. 
Chan, P.S. et al., 2010. Rapid response teams: a systematic re-
view and meta-analysis. Archives of internal medicine 170(1): 
18–26. 
Citi, L.; Barbieri, R., 2012. PhysioNet 2012 Challenge: Predicting 
mortality of ICU patients using a cascaded SVM-GLM paradigm. 
In Computing in Cardiology (CinC). 257–260, IEEE. 
Cohen, M.J. et al., 2010. Research Identification of complex met-
abolic states in critically injured patients using bioinformatic 
cluster analysis. Critical Care 14(1): R10. 
Collisson, E.A. et al., 2011. Subtypes of pancreatic ductal adeno-
carcinoma and their differing responses to therapy. Nature medi-
cine 17(4): 500–503. 
Combi, C.; Pozzi, G.; Rossato, R., 2012. Querying temporal clin-
ical databases on granular trends. Journal of biomedical informat-
ics 45(2): 273–291. 
Dagliati, A. et al., 2014. Temporal data mining and process min-
ing techniques to identify cardiovascular risk-associated clinical 
pathways in Type 2 diabetes patients. In Biomedical and Health 
Informatics (BHI), 2014 IEEE-EMBS International Conference 
on. 240–243, IEEE. 
Le Gall, J.-R.; Lemeshow, S.; Saulnier, F., 1993. A new simpli-
fied acute physiology score (SAPS II) based on a European/North 
American multicenter study. JAMA: the journal of the American 
Medical Association 270(24): 2957–2963. 
Hamilton, S.L.; Hamilton, J.R., 2012. Predicting in-hospital-death 
and mortality percentage using logistic regression. In Computing 
in Cardiology (CinC). 489–492, IEEE. 
Hofree, M. et al., 2013. Network-based stratification of tumor 
mutations. Nature methods 10(11): 1108–1115. 
Hoyer, P.O., 2004. Non-negative matrix factorization with 
sparseness constraints. The Journal of Machine Learning Re-
search 5: 1457–1469. 
Huan, J. et al., 2004. Spin: mining maximal frequent subgraphs 
from graph databases. In Proceedings of the tenth ACM SIGKDD 
international conference on Knowledge discovery and data min-
ing. 581–586, ACM. 

48



Hug, C.W.; Szolovits, P., 2009. ICU acuity: real-time models 
versus daily models. In AMIA Annual Symposium Proceedings. 
260–264, American Medical Informatics Association. 
Johnson, A.E. et al., 2012. Patient specific predictions in the in-
tensive care unit using a Bayesian ensemble. In Computing in 
Cardiology (CinC). 249–252, IEEE. 
Joshi, R.; Szolovits, P., 2012. Prognostic Physiology: Modeling 
Patient Severity in Intensive Care Units Using Radial Domain 
Folding. In AMIA Annual Symposium Proceedings. 1276–1283, 
American Medical Informatics Association. 
Knaus, W.A. et al., 1991. The APACHE III prognostic system. 
Risk prediction of hospital mortality for critically ill hospitalized 
adults. CHEST Journal 100(6): 1619–1636. 
Krajnak, M. et al., 2012. Combining machine learning and clini-
cal rules to build an algorithm for predicting ICU mortality risk. 
In Computing in Cardiology (CinC). 401–404, IEEE. 
Lee, C.H. et al., 2012. An imputation-enhanced algorithm for 
ICU mortality prediction. In Computing in Cardiology (CinC). 
253–256, IEEE. 
Levinson, D.R.; General, I., 2010. Adverse events in hospitals: 
national incidence among Medicare beneficiaries. Department of 
Health and Human Services Office of the Inspector General. 
Lin, C.-J., 2007. Projected gradient methods for nonnegative 
matrix factorization. Neural computation 19(10): 2756–2779. 
Lin, J. et al., 2007. Experiencing SAX: a novel symbolic repre-
sentation of time series. Data Mining and knowledge discovery 
15(2): 107–144. 
Liu, H. et al., 2013. Approximate Subgraph Matching-Based 
Literature Mining for Biomedical Events and Relations. PloS one 
8(4): e60954. 
Luo, Y. et al., 2014. Automatic Lymphoma Classification with 
Sentence Subgraph Mining from Pathology Reports. Journal of 
the American Medical Informatics Association (JAMIA) 2014 
21(5): 824–832. 
Luo, Y. et al., 2015. Subgraph Augmented Non-Negative Tensor 
Factorization (SANTF) for Modeling Clinical Text. Journal of the 
American Medical Informatics Association ocv016. 
McIntosh, N., 2002. Intensive care monitoring: past, present and 
future. Clinical medicine 2(4): 349–355. 
McMillan, S. et al., 2012. ICU mortality prediction using time 
series motifs. In Computing in Cardiology (CinC). 265–268, 
IEEE. 
McNeill, G.; Bryden, D., 2013. Do either early warning systems 
or emergency response teams improve hospital patient survival? 
A systematic review. Resuscitation 84(12): 1652–1667. 

Moskovitch, R.; Shahar, Y., 2014. Classification of multivariate 
time series via temporal abstraction and time intervals mining. 
Knowledge and Information Systems 1–40. 
Müller, F.-J. et al., 2008. Regulatory networks define phenotypic 
classes of human stem cell lines. Nature 455(7211): 401–405. 
Nijssen, S.; Kok, J.N., 2005. The gaston tool for frequent sub-
graph mining. Electronic Notes in Theoretical Computer Science 
127(1): 77–87. 
Noreen, E.W., 1989. Computer-intensive methods for testing 
hypotheses: an introduction, Wiley. 
Pedregosa, F. et al., 2011. Scikit-learn: Machine learning in Py-
thon. The Journal of Machine Learning Research 12: 2825–2830. 
Pollard, T.J. et al., 2012. 2012 PhysioNet Challenge: An artificial 
neural network to predict mortality in ICU patients and applica-
tion of solar physics analysis methods. In Computing in Cardiol-
ogy (CinC). 485–488, IEEE. 
Quinn, J.A.; Williams, C.K.; McIntosh, N., 2009. Factorial 
switching linear dynamical systems applied to physiological con-
dition monitoring. Pattern Analysis and Machine Intelligence, 
IEEE Transactions on 31(9): 1537–1551. 
Sacchi, L.; Dagliati, A.; Bellazzi, R., 2015. Analyzing Complex 
Patients’ Temporal Histories: New Frontiers in Temporal Data 
Mining. In Data Mining in Clinical Medicine. 89–105, Springer. 
Saeed, M. et al., 2011. Multiparameter Intelligent Monitoring in 
Intensive Care II (MIMIC-II): a public-access intensive care unit 
database. Critical care medicine 39(5): 952–960. 
Severeyn, E. et al., 2012. Towards the prediction of mortality in 
Intensive Care Units patients: A Simple Correspondence Analysis 
approach. In Computing in Cardiology (CinC). 469–472, IEEE. 
Silva, I. et al., 2012. Predicting in-hospital mortality of ICU pa-
tients: The physioNet/computing in cardiology challenge 2012. In 
Computing in Cardiology (CinC). 245–248, IEEE. 
Vairavan, S. et al., 2012. Prediction of mortality in an intensive 
care unit using logistic regression and a hidden Markov model. In 
Computing in Cardiology (CinC). 393–396, IEEE. 
Xia, H. et al., 2012. A neural network model for mortality predic-
tion in ICU. In Computing in Cardiology (CinC). 261–264, IEEE. 
Zong, W.; Moody, G.; Mark, R., 2004. Reduction of false arterial 
blood pressure alarms using signal quality assessement and rela-
tionships between the electrocardiogram and arterial blood pres-
sure. Medical and Biological Engineering and Computing 42(5): 
698–706. 

  

49



Appendix 
Variable Description Variable Description 

Age Age of the patient upon admission Hemoglobin Hemoglobin level 

Airway Resistance The resistance of the respiratory tract to airflow dur-
ing inspiration and expiration. INR Prothrombin time international 

normalized ratio 
Albumin Albumin in blood Ion Calcium Ion Calcium level 
ALT Alanine aminotransferase in blood K Potassium level 
Arterial Base Excess Excess in the amount of base present in arterial blood  Lactate Lactate level 
Arterial CO2 Arterial carbon dioxide  MAP Mean arterial pressure 
Arterial PaCO2 Arterial carbon dioxide tension Mg Magnesium level 

Arterial PaO2 Arterial oxygen tension Minute Ventilation Volume of gas exchanged from lung 
per minute 

Arterial pH pH  level in arterial blood Na Sodium level 

AST Aspartate aminotransferase in blood PaO2/FiO2 Partial pressure arterial oxygen / 
Fraction of inspired oxygen 

AST/ALT Aspartate aminotransferase / alanine aminotransferase PTT Partial Thromboplastin Time 

BUN Blood urea nitrogen PEEPSet Positive end-expiratory pressure set 
on ventilator 

BUN/Creatinine Blood urea nitrogen / Creatinine PIP Peak inspiratory pressure 

Ca Calcium level Plateau Pressure 
Pressure applied (in positive pres-
sure ventilation) to the small air-
ways and alveoli 

Cardiac Index Relates the cardiac output (CO) from left ventricle in 
one minute to body surface area Platelets Platelets count 

Central Venous Pres-
sure Blood pressure in the thoracic vena cava Prothrombin Time Time it takes for plasma to clot 

Cl Chloride level RBC Red blood count 
Creatinine Level of creatinine in the blood Respiratory Rate Respiratory rate per minute 
Delivered Tidal Vol-
ume Air volume of lung without extra effort RSBI Rapid shallow breathing index* 

Diastolic blood pres-
sure Minimum blood pressure during heartbeat RSBI Rate Rapid shallow breathing index rate 

change 
Direct bilirubin Level of bilirubin conjugated with glucuronic acid SaO2 Saturation of arterial oxygen 

eGFR Estimated glomerular filtration rate Systolic blood pres-
sure 

Maximum blood pressure during 
heartbeat 

FiO2Set Fraction of inspired oxygen set on ventilator Temperature Body temperature 
GCS Glasgow coma scale Total Bilirubin Level of bilirubin  
Glucose Glucose level tProtein Total protein in the blood plasma 
Heart Rate Heart rate per minute Urine/Hour/Weight Urine per hour per kg body weight 
Hematocrit Hematocrit level WBC White blood count 

A-Table 1 Physiologic time series predictor variables from MIMIC II dataset. Demographic information such as age is also included. 

(a)      (b) 

A-Fig 1 Comparing NMF and PCA under different number of subgraph groups. (a) 5-fold cross-validation AUC. (b) the held-out test AUC. 
Show in panel (a) for corresponding number of groups is a single AUC by merging all the responses from the 5 validation subsets. 
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