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Abstract

The World Wide Web (WWW) has become a rapidly grow-
ing platform consisting of numerous sources which provide
supporting or contradictory information about claims (e.g.,
“Chicken meat is healthy”). In order to decide whether a
claim is true or false, one needs to analyze content of dif-
ferent sources of information on the Web, measure credibility
of information sources, and aggregate all these information.
This is a tedious process and the Web search engines address
only part of the overall problem, viz., producing only a list of
relevant sources. In this paper, we present ClaimEval, a novel
and integrated approach which given a set of claims to vali-
date, extracts a set of pro and con arguments from the Web in-
formation sources, and jointly estimates credibility of sources
and correctness of claims. ClaimEval uses Probabilistic Soft
Logic (PSL), resulting in a flexible and principled framework
which makes it easy to state and incorporate different forms
of prior-knowledge. Through extensive experiments on real-
world datasets, we demonstrate ClaimEval’s capability in de-
termining validity of a set of claims, resulting in improved
accuracy compared to state-of-the-art baselines.

Introduction

The World Wide Web (WWW) and the Web search engines,
such as Google, Bing, etc., that operate over millions of
documents have made information readily available to ev-
eryone. Over the last few years, several large knowledge
bases (KBs), such as Freebase, Yago, Google Knowledge
Graph, etc., have also been developed which makes it pos-
sible to readily evaluate factoid claims (e.g., “Paris is the
capital of France”). In spite of this democratization of infor-
mation, evaluating correctness of non-factoid claims (e.g.,
“Turkey meat is healthy”), is still an open challenge. This
is particularly challenging as two different webpages may
contain conflicting evidences even related to a single claim.
For example, while an animal rights website might not sup-
port meat-eating and thus term turkey meat as unhealthy, the
website of a grocery store might claim otherwise. Addition-
ally, a scientific paper focusing on this question might pro-
vide the most authoritative answer. So ideally, one would
want to trust evidences contained in the credible source (the
scientific paper) and ignore the other two. Hence, given a
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Figure 1: The Credibility Assessment (CA) Graph con-
structed to evaluate C2, while the user has already speci-
fied the other claim C1 to be true (green concentric rectan-
gle). In addition to the claims, the CA graph also consists of
nodes corresponding to Domains, Webpages and Evidences.
While some evidences are supportive of the claims (solid
green lines), others are not (red dotted line) (see Section for
details). ClaimEval, the proposed system, estimates credi-
bility of the domains based on the assessment available on
claim C1, and combines that with the level of support from
evidences originating from those domains to evaluate claim
C2 (see Section for more details).

set of claims, one needs to identify relevant sources on the
Web, extract supporting and contradictory evidences from
those sources, estimate source credibility, and finally aggre-
gate all these information to evaluate the given set of claims.
This is a tedious and time consuming process, and current
Web search engines only address the first aspect of this big-
ger problem, viz., identifying relevant sources. Thus, there
is a growing need for an integrated approach for automatic
extraction of relevant evidences and sources, estimation of
information source credibility and utilizing those credibility
estimates in claim evaluation.

Moreover, estimating information source credibility may
be subjective (Bhattacharya, Devinney, and Pillutla 1998;



Gambetta 1990). In other words, we may have to take
user preferences and context into account when estimat-
ing source credibility and evaluating claims. Let us moti-
vate this through an example shown in Figure 1. In this
example, there are two claims: “Turkey is healthy” (C1)
and “Chicken is healthy” (C2). These claims are either sup-
ported (SupportsClaim) or refuted (DoesNotSupportClaim)
by evidences originating from webpages of two domains,
peta.org, website of an animal rights activists’ group, and
whfoods.com, a non-profit promoting healthy food. Addi-
tionally, the user has also indicated that she believes C1 is in
fact true (shown by a green double-line rectangular). Given
this initial information, we would like to evaluate whether
claim C2 is true or false. In this case, we find that all the
evidences originating from the domain peta.org are in con-
tradiction with the user’s assessment of claim C1. Hence,
we would like to decrease the credibility of peta.org and
reduce influence of all evidences originating from it while
evaluating C2. We note that the evidences from domain wh-
foods.com are in agreement with the user’s assessment of
C1, and hence we should increase its credibility. We note
that these credibility adjustments are claim (and user) spe-
cific. If instead of claims involving healthy meat options,
they were focused on animal cruelty, then peta.org might
have been a very credible source.

The above example shows that the correctness estimates
of claims in the Credibility Assessment (CA) graph and the
credibility of non-claim nodes can be calculated by prop-
agating any available information about the correctness of
claims or the credibility information of other nodes over the
CA graph. Our intuition is that humans naturally do this type
of credibility and correctness propagation based on prior-
knowledge using a set of rules. The prior-knowledge speci-
fies how the credibility inference should be performed across
the CA graph. Ideally, in order to automatically calculate the
credibility of a set of claims and sources, a credibility assess-
ment approach should be able to take the prior-knowledge as
an input and incorporate it in its credibility calculation.

Relevant prior work (Pasternack and Roth 2013; 2010) in
this area have addressed only parts of this overall problem,
and often with restricted forms of prior-knowledge. We ad-
dress this gap in this paper, and make the following contri-
butions:

1. We propose a novel and fully-integrated technique called
ClaimEval. Input to ClaimEval is the prior credibility as-
sessment knowledge, and a set of claims, where the truth
values of a few of them is known. ClaimEval then evalu-
ates the truth of a set of unlabeled claims by automatically
crawling the relevant information from the Web, building
the CA graph, calculating the credibility of sources, and
incorporating the calculated credibility scores to validate
the truth of the claims.

2. ClaimEval uses Probabilistic Soft Logic (PSL) (Kimmig
et al. 2012; Broecheler, Mihalkova, and Getoor 2010), re-
sulting in a flexible and principled framework for joint
credibility estimation and claim evaluation. In contrast to
prior approaches, ClaimEval has the following three prop-
erties: (a) ease of incorporation of prior knowledge, (b)
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guaranteed convergence, and (c) interpretable credibility
scores. To the best of our knowledge, ClaimEval is the
first such integrated system of its kind.

3. We present experimental results on real-world data
demonstrating effectiveness of ClaimEval compared to
the state-of-the-art approaches.

Related Work

Given a few labeled nodes and a graph where the edge
weight represents the degree of similarity between the two
connected nodes, Graph-based Semi-Supervised Learning
(GSSL) algorithms classify the initially unlabeled nodes in
the graph (Subramanya and Talukdar 2014). Since GSSL al-
gorithms can handle only a specific edge type (i.e., node sim-
ilarity), they are not applicable to the CA graph (Figure 1)
and the setting of this paper as a CA graph consists of mul-
tiple edge types with differing semantics.

To overcome the limitations of GSSL algorithms,
several fact-finding algorithms have been developed
which consider a bipartite version of a graph simi-
lar to that of CA, and propagate information between
nodes in a non-symmetric way. Algorithms such as
Sums (Kleinberg 1999), TruthFinder (Yin, Han, and Yu
2007), Generalized-Investment (Pasternack and Roth 2011),
Pooled-Investment (Pasternack and Roth 2010), Accu-
Vote (Dong, Berti-Equille, and Srivastava 2009), Aver-
age.Log (Pasternack and Roth 2010), and 3-Estimates (Gal-
land et al. 2010) have been developed that use different prop-
agation update functions which specify how the information
flows between the nodes in such a graph. Each of these fact-
finding algorithms suffers from at least one of the following
main disadvantages. First, the score assigned to claims are
biased toward favoring potentially (non-credible) sources
that assert many evidences. Second, the scores assigned to
the nodes are not interpretable. Third, the convergence of
these iterative algorithms are not guaranteed. Finally, and
most importantly, incorporating additional prior-knowledge
to guide how the credibility information should flow over
the CA-like graph is not intuitive and easy. Prior assump-
tions usually are incorporated through a set of cumbersome
and usually non-intuitive update functions.

Some of these limitations are partially addressed by some
other previous work. Pasternack and Roth (Pasternack and
Roth 2010) introduced a pipelined approach which takes
beliefs output by a fact-finder as an input, and “corrects”
those beliefs based on some prior-knowledge defined by the
user. Unlike ClaimEval, (Pasternack and Roth 2010) cannot
incorporate additional prior-knowledge such as how cred-
ibility should propagate over the graph. Additionally, and
in contrast to ClaimEval, the semantics of belief scores in
(Pasternack and Roth 2010) is specific to the external fact-
finder that is iteratively used to assign scores to the nodes
in the graph, and convergence of the algorithm is also not
guaranteed. To address bias and interpretability limitations
of fact-finders, probabilistic fact-finding approaches are in-
troduced that model the joint probability of the sources and
the claims (Pasternack and Roth 2013; Zhao et al. 2012;
Wang et al. 2011). Although these approaches provide a



transparent and interpretable model, the prior knowledge can
be provided only in a node-centric manner. Incorporating
more sophisticated types of prior-knowledge, such as adding
different types of nodes or how information should propa-
gate over the graph, requires non-trivial modeling changes.
In contrast, ClaimEval offers a flexible framework which
makes it possible to add such prior-knowledge using first-
order logic rules and without requiring any changes in the
model.

Moreover, the above approaches do not provide an inte-
grated system that asserts the truthfulness of claims by ex-
tracting evidences from the unstructured sources of infor-
mation on the Web. OpenEval (Samadi, Veloso, and Blum
2013) addresses this issue but it doesn’t take source credi-
bility into account. Similarly, Defacto (Lehmann et al. 2012)
only uses PageRank as an estimation for the credibility of
source. In contrast, ClaimEval identifies relevant sources,
extracts evidences from them, estimates source credibility
and uses those credibility scores for improved claim evalua-
tion, all in an integrated system.

The notion of trust has been also addressed in other ar-
eas. Reputation-based systems are based on the notion
of transitive trust and are used to measure credibility of
entities such as webpages (Page et al. ), people (Levien
et al. 1998), and peers in network (Kamvar, Schlosser,
and Garcia-Molina 2003). In computational trust, varia-
tions of probabilistic logic frameworks have been used
to present a formal definition of trust and trust propaga-
tion, which can potentially be used in artificial agents to
make trust-based decisions (Marsh 1994; Manchala 1998;
Jgsang, Marsh, and Pope 2006). For data integration, dif-
ferent approaches are built to integrate the most complete
and accurate records from diverse set of sources where the
data sources are extremely heterogeneous (Zhao et al. 2012;
Dong and Srivastava 2013; Li et al. 2014). In crowdsourc-
ing, various techniques have been developed to automati-
cally validate the quality of crowd answers, by identifying
the faulty workers (Venanzi, Rogers, and Jennings ; Richard-
son and Domingos ; Wang et al. 2013; Nguyen et al. 2015).
In social networks, Probabilistic Soft Logic (PSL) is used to
model the trust in the social interactions (Huang et al. 2012;
2013). The truthfulness of deep web data has been stud-
ied by (Li et al. 2013), which surprisingly shows a large
amount of inconsistency between the data provided by dif-
ferent sources. We point out that, while relevant, none of
these prior work directly address the problem of claim eval-
uation in its full complexity as considered in this paper.

Our Approach: ClaimEval

ClaimEval performs joint estimation of source credibility
and claim evaluation in one single model using Probabilistic
Soft Logic (PSL). ClaimEval consists of the following two
steps: (i) Credibility Assessment(CA) Graph Construc-
tion (Section ), and (ii) Joint Source Credibility Estima-
tion and Claim Evaluation (Section ). In the next two sec-
tions, we describe each one of these two steps in greater
detail. Algorithm 1 summarizes the process that ClaimEval
follows for evaluating a claim.
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Algorithm 1 ClaimEval - Evaluating Correctness of a Claim

Imput: (U, L,r, K) /* U is a set of unlabeled claims that should
be evaluated, L is a set of labeled claims (label is either true or
false), r is the category that U and L belong to, and K is a set
of first-order logic rules defining the prior credibility knowl-
edge. */

Output: (label (True or False), confidence) for claims in U

1: W <Search the Web using Bing and extract webpages for
claimsin LU U

2: CAG < Construct layers of CA graph by parsing content of
webpages in W

3: Connect nodes between different layers of CAG

4: Label edges that are connecting Evidence and Claim layers,
using the evidence classifier trained for category r.

5: Label nodes in the Claim layer for which we know the truth
label (i.e., claims that exist in L).

6: R < For all the nodes and edges in CAG, instantiate variables
of the rules that are defined in prior knowledge K, Equation 4,
and Equation 5.

7. R + Relax logical operators in R using Luka-siewicz real-
values operators

8: (label,confidence) < Convert R to an optimization problem
using Probabilistic Soft Logic (PSL) and find the label (True
or False) and confidence value of claims in U

Credibility Assessment (CA) Graph Construction

Let us consider the two claims: “Turkey is healthy” (C1)
and “Chicken is healthy” (C2) as shown in Figure 1. In
practice, in order to evaluate these claims, one would prob-
ably first try to identify sources (e.g., webpages) which
are likely to contain evidence either in favor or against
such claims. An evidence may be considered as a text
snippet (e.g., a sentence or paragraph in a webpage) ex-
pressing opinion about the claim in a webpage. Overall, a
claim is substantiated by one or more evidences which are
contained in webpages, with webpages in turn contained
within domains. We can put all this together in a multi-
relational graph which we shall call a Credibility Assess-
ment (CA) graph. A CA graph has four types of nodes: Do-
main, Webpage, Evidence, and Claim. Nodes are connected
by the following types of edges: (1) HasWebPage(Domain,
WebPage), (2) ContainsEvidence(WebPage, Evidence), (3)
DoesNotSupportClaim(Evidence, Claim), and (4) Support-
sClaim(Evidence, Claim). For example, in Figure 1, evi-
dence node “All meats are the same...” (E1) DoesNotSup-
portClaim C1. Evidence E1 is found in webpage represented
by webpage node W1. This particular webpage is from the
peta.org domain which is represented by node D1 in the CA
graph.

As an input, we assume that a set of categories of claims is
given to our system. For each category, a set of frue and false
claims are provided (i.e., category instances). For example,
healthy food is an example of a category, and {apple, broc-
coli} and {mayonnaise, soda} are, respectively, frue and
false claims provided for this category. For each category,
we assume that a set of labeled and unlabeled claims are
provided (e.g., a set of frue and false claims). Our goal is
to classify the set of unlabeled claims to either true or false
classes, with a confidence value attached to the label.



Training Evidence Classifier: To build the CA graph,
ClaimEval first learns an evidence classifier for each cate-
gory of claims, which is later used to classifying evidences,
for a given claim, as either SupportsClaim (pro) or Does-
NotSupportClaim (con) classes. This step is performed only
once during training for each category. The trained classi-
fier is then used during the test time. To build the training
data for the classifier, ClaimEval first iterates over all the
claims for which the label is known. ClaimEval then con-
verts each claim to a search query, where the search query is
built from the claim and the name of the category. ClaimEval
then searches the query on the Web (e.g., using Bing) and
downloads the set of the highest ranked webpages. In each
of the returned webpages, ClaimEval extracts all the para-
graphs that contain the claim phrase. All the words in each
paragraph is saved as an evidence. The extracted evidences
get the same labels as the labels of claims. By assuming that
the training data extracted from the search query are ground-
truth, ClaimEval trains a classifier (e.g., SVM) for each cat-
egory of claims. For the input to the classifier, each evidence
is represented using standard bag-of-words model (bigrams
and unigrams).

Constructing CA Graph: After training the evidence
classifier, ClaimEval iterates over all the labeled and unla-
beled claims, similar to the training process, and extracts a
set of evidences for each claim. Using the trained evidence
classifier, each of the extracted evidences is then assigned to
either the pro or the con classes. The evidence layer in the
CA graph is built using all the evidences extracted from the
Web. Each evidence is connected to the claim for which it is
extracted. The edge that connects an evidence to a claim, is
classified as SupportsClaim (solid green line in Figure 1), if
the evidence is supporting the claim, and otherwise is classi-
fied as DoesNotSupportClaim (red dotted line). The web-
page layer is constructed from the webpages that are re-
turned by the search engine. Each webpage is connected to
the set of evidences extracted from the webpage. For each
webpage, we extract the domain name (e.g., whfoods.org)
and create a corresponding node in the domain layer. Each
domain node is connected to its webpages in the webpage
layer.

Initially, all the nodes in the graph do not have any value,
except for the nodes whose true labels (i.e., user assess-
ments) are known. Each node in the CA graph takes a value
in the range [0,1]. The semantic of the values assigned to
the nodes varies across the layers in the graph. For example,
the value of a node in the webpage layer is interpreted as
the degree of the credibility of the webpage, and the value
of a node in the claim layer is interpreted as the confidence
in the truth of a claim. Edges in the graph can be seen as
transforming the meaning of values of nodes between the
layers.

Joint Source Credibility Estimation & Claim
Evaluation

When computing the credibility scores in the CA graph,
we propagate the credibility and the correctness information
across the different layers based on some prior knowledge,
which is defined as a set of rules. We first list a set of such
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rules that specify how the credibility inference should be
performed across the CA graph. We later explain how these
rules are incorporated in our credibility assessment model.

Prior Knowledge for Credibility Assessment

e Evidence = Claim: Inferring correctness of a claim
based on the credibility of an evidence:

— ECI: Evidence is credible & evidence supports claim =
claim is true.

— EC2: Evidence is credible & evidence doesn’t support claim
= claim is false.

— EC3: Evidence is not credible, then the evidence has no effect
on the correctness of the claim.

e Claim = Evidence: Inferring credibility of an evidence
based on the correctness of a claim:

— CE1: Claim is true & evidence supports claim = evidence is
credible.

— CE2: Claim is true & evidence doesn’t support claim = evi-
dence is not credible.

— CE3: Claim is false & evidence supports claim = evidence
is not credible.

— CE4: Claim is false & evidence doesn’t support claim = ev-
idence is credible.

e Webpage < Evidence: Inferring credibility of an evi-
dence based on the credibility of a webpage, and vice
versa:

— WEI1: Webpage is credible <> evidence is credible.
— WE2: Webpage is not credible < evidence is not credible.

e Domain < Webpage: Inferring credibility of a webpage
from the credibility of a domain, and vice versa:

— DWI1: Domain is credible < webpage is credible.
— DW2: Domain is not credible < webpage is not credible.

Encoding Prior Knowledge using First-Order Logic
We use first-order logic (FOL) to formally define a set of
rules, based on the prior knowledge that we defined in the
previous section. Each layer of the CA graph is represented
by a logical predicate, and each node in the graph is an
instance of the predicate. For example, the predicate Do-
main(x) is used to define nodes in the domain layer. In this
case, predicate instance Domain(peta.org) has value 1, since
peta.org is a domain in the domains layer, otherwise it would
have taken the value 0. Similarly, predicates Webpage(x),
Evidence(x), and Claim(x) are defined to represent nodes in
the other layers of the graph.

In addition to the predicates that represent different types
of the nodes in the graph, we use the following predicates
to define edges: HasWebpage(Domain, Webpage), Contain-
sEvidence(Webpage, Evidence), SupportsClaim(Evidence,
Claim), DoesNotSupportClaim(Evidence, Claim). Values of
the two predicates connecting an Evidence with a Claim is
computed by the evidence classifier as described in the pre-
vious section.

We represent each of the rules that are defined as part of
the prior knowledge in first-order logic. For example, the
EC1 prior knowledge rule from above may be represented
using the following rule:

Evidence(e) A Claim(c) A Credible(e)

: (1
A SupportsClaim(e, c) = Correct(c)



In this case, if the evidence is credible (Credible(e) has value
‘true’ or 1.0), e supports claim c (i.e., SupportsClaim(e, c) =
1), then c is labeled true (i.e., Correct(c) = 1). Other rules
are defined similarly.

Although the logical rules precisely define the flow of in-
formation in the graph, their applicability is limited on real
world examples, as the nodes in the graph can only take val-
ues 1 (true) or O (false). For example, assume that a claim
¢ is supported by two evidences a and b, both of which are
credible. If a is in favor of ¢ and b is against ¢, then we can
neither say c is true nor that c is false. Ideally, the value of
claim c is between 0 and 1 depending on the relative credi-
bility of evidences a and b. In the next section, we explain
how to address this issue.

Going Beyond Binary Logical Operators using Proba-
bilistic Soft Logic (PSL) Probabilistic Soft Logic (PSL) is
a general purpose logical system that uses First-Order Logic
(FOL) as its underlying logical language. We overview the
PSL technique briefly in this section; for a more detailed ex-
position of PSL, we refer the reader to (Bach et al. 2012;
Broecheler, Mihalkova, and Getoor 2010; Kimmig et al.
2012).

In PSL, the value of each ground atom is relaxed to take
a soft truth-value in the interval [0,1], where O is interpreted
as absolute false and 1.0 as absolute true. The soft-truth as-
signment allows us to define the degree of correctness and
credibility for the nodes in the graph. For example, if we
have two sources s; and s2, where Credible(s1) > Credi-
ble(s2), then we can infer that s; is more credible compared
to so.

To handle the continuous truth values in the variables,
PSL relaxes conjunction, disjunction, and negation logical
operators by using Luka-siewicz real-valued logic operators,
which are defined as follows:

aAb = max{0,a+b—1}
aVb = max{l,a+ b}
“a = 1l—-a

Lukasiewicz t-norm operators, compared to other non-
classical logic operators such as product t-norm, are suit-
able for our credibility assessment model since they linearly
combine the values that they take. For example, consider this
rule:

Credible(e) A SupportsClaim(e,c) = Correct(c)

Using the Lukasiewicz disjunction operation, we can write
the body of this rule as:

max {0, Credible(e) + SupportsClaim(e, c) - 1}

which evaluates to true when the resulting value is greater
than certain threshold, say 0.5. We can roughly interpret it
as: claim c is correct only when e is credible and supports
claim ¢, each at least by a degree of 0.5 (sum should be
greater than 1.5).

Given a set of rules, we first instantiate all the variables
in the rules with respect to the CA graph that is constructed.
Given these instantiated rules, our goal is to find values of
the different nodes in the graph such that the total number of
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satisfied rules is maximized. For solving this optimization
problem, PSL defines the satisfaction distance for each rule
in the domain. Given a ground rule r, such as r := P = (@,
r is satisfied if and only if V(Q) > V(P), where V(X)
is defined as the value of the ground logical expression X
using Lukasiewicz operators (i.e., () is at least as truthful
as P). The rule’s distance to satisfaction (denoted by d(r))
measures the satisfaction degree of each rule r := P = ():

d(r) = max{0,V(P) - V(Q)} 2)

Given the distance function in Equation 2 and a set of
ground rules, PSL finds values for all the ground predicate
instances in order to minimize the total satisfaction degrees
of all the ground rules. To do this, assume that I is the as-
signment of values to predicate instances, and dy(r) is the
satisfaction degree of rule r given assignment /. Thus, given
the set of ground rules R, the optimal assignment /* may be
obtained as follows,

. 1 2
I « argmax - GXP[_;?/\T(dI(T)) J

3)

where Z is the normalization factor, and )\, is the weight
for each ground rule r. Most Probable Explanation (MPE)
inference algorithm may be used to optimize Equation 3.

When optimizing Equation 3, we allow only the values of
Credible and Correct predicate instances to change, and the
values of the rest of predicate instances remain fixed. Also,
in order to make sure that the labeled claims will preserve
their values during the optimization (i.e., constraints), we
define the following rules:

V labeled claims ¢, PosClaim(c) — Correct(c)

“4)
&)

Predicates PosClaims and NegClaims respectively define
the positive and negative set of labeled claims. Ideally, the
above rules should have higher weight compared to the other
rules defined as part of the prior knowledge, in order to make
sure that during the optimization, the correct labels are as-
signed to the labeled data. The weight of rules can be tuned
manually or can be learnt by using using the Maximum
Likelihood Estimation (MLE) (Broecheler, Mihalkova, and
Getoor 2010).

V labeled claims ¢, NegClaim(c) — — Correct(c)

Experimental Evaluation

Setup: ClaimEval is tested on nine different sets of cate-
gories. Table 1 lists all the categories in the leftmost col-
umn. For each category, about 40 seed examples are used to
train a SVM-based evidence classifier (used to annotate ev-
idences with pro or con labels), and about 40 examples are
used as test data. All the data sets, including the exact num-
ber of training examples for each category, and the method-
ology used to obtain the train and test data for each category
are available at: www.ClaimEval.com. To train the evidence
classifier, we use the top ten pages returned by Bing, and all
the evidences extracted from the returned search pages. 0.5
is used as the confidence threshold for all experiments.
Baselines: We compare the accuracy of ClaimEval to
the following Fact-Finding approaches: Majority Vote



Category MV|GS | TF | AL | GI | PI | CE
Healthy Food | 0.89] 0.89] 0.69] 0.86] 0.89| 0.89| 0.91
Company with

Gampiy Wl | 062] 0.65| 0.65| 062] 0.62| 0.60| 0.72
High Ranked | o0 | 851 0.73| 0.85| 0.80| 0.80 0.85
Universities

Top CS 0.74| 0.71] 0.82] 0.67| 0.71| 0.71] 0.79
Journals

o O 0.53| 0.55| 0.58| 0.57| 0.53| 0.53| 0.68
Conferences

High GDP 0.60| 0.70| 0.50| 0.70| 0.6 | 0.50| 0.60
Growth

el 0.81| 053] 0.65| 0.63| 0.81| 0.86| 0.76
Growth

High Crime 0.67| 0.63| 0.67| 0.60| 0.80| 0.80| 0.80
Rate Cities

W05 0.65| 0.62| 065 0.65 0.69| 0.62 0.69
Club Teams

[ Average [0.71] 0.68] 0.66] 0.69] 0.72] 0.71] 0.76

Table 1: The accuracy of Majority Vote (MV), Gener-
alized Sums (GS), TruthFinder (TF), Average-Log (AL),
Generalized Investment (GI), Pooled-Investment (PI), and
ClaimEval (CE) techniques in predicting the truth values for
different categories of claims. Maximum value of each row
shown in bold. ClaimEval, the proposed system, achieves
the best overall performance.

(MYV), Generalized Sums (GS) which is based on
Hubs and Authorities algorithm (Kleinberg 1999), Truth
Finder (TF) (Yin, Han, and Yu 2007), Average-Log
(AL) (Pasternack and Roth 2011), Generalized Invest-
ment (GI) (Pasternack and Roth 2011), Pooled-Investment
(PI) (Pasternack and Roth 2010). All these baseline ap-
proaches operate over a bipartite graph construction (two
layers: sources and claims) instead of CA graph. In order
to compare ClaimEval with these approaches, we construct
the equivalent bipartite graph from a CA graph by marginal-
izing over evidence nodes and dropping the domain nodes.
Apart from MV, all other baselines make use of the available
labeled claims.

Main Result: Table 1 shows the accuracy of baselines and
ClaimEval for nine different categories. The experiments are
obtained when 60 evidences are randomly extracted for each
claim from the first 10 pages returned by Bing.

From Table 1 we observe that the performance of fact-
finding algorithms may be category-specific, which is con-
sistent with similar observations in (Pasternack and Roth
2011). Overall, ClaimEval, the proposed system, achieves
best performance in 6 out of the 9 categories, and on aver-
age outperforming all other state-of-the-art baselines.

Change in Performance with Increasing Evidence
Size: Figure 2 shows accuracy of different methods when in-
creasing number of evidences are used. As we increase the
number of evidences, ClaimEval consistently outperforms
all other methods. Among the baselines, Generalized Invest-
ment is more successful in making use of the increased evi-
dence size, and this is consistent with prior research (Paster-
nack and Roth 2011). TruthFinder’s performance peaks with
30 evidences, but its performance degrades with more evi-
dences due to over-fitting.

227

Generalized Sums
Averagelog

Majority Vote
< TruthFinder

08 O Generalized Investment < Pooled Investment
ClaimEval

0.75
> -=Qm
: M o
5 02 A
3 2 <
<C

-
= N
o
0.650/

0.6

10 20 30 40 50 60
Number of Evidences

Figure 2: Performance of different systems when increasing
amounts of evidence is available. ClaimEval, the proposed
system (top-most plot), is best able to exploit additional ev-
idence achieving best overall performance.

Qualitative Example: As described in the introduction,
one of the main disadvantages of most of the fact-finding
algorithms (including the baselines considered in this paper)
is their bias towards increased credibility for sources that
assert many claims.

Figure 3 shows an example of a CA graph, where
a domain node 1 (through webpage node 3) is as-
serting overwhelmingly many evidences against claim
node 93 (negative evidence is
marked by dotted red line in
the figure, as in Figure 1).
Claim node 92 with concen-
tric circles is known to be cor-
rect a-priori. Correctness of
the other claim node 93 needs
to be evaluated. Based on
these input information, judg-
ments of a human annotator is
shown on top of each node.
Most of the fact-finding al-
gorithms (including MV, AL,
and GS) are biased towards
favoring domain nodes with
many evidences. In this exam-
ple, these algorithms overesti-
mate the credibility of nodes 1
and 3, and incorrectly classify
claim 93 as incorrect (as all
evidences from source node 3
oppose claim 93). In contrast,
ClaimEval is able to infer that
nodes 1 and 3 have low cred-
ibility since they provide con-
tradictory information regard-
ing claim 92. ClaimEval then
uses this reduced credibility to
correctly classify claim 93 as
true. This examples provides qualitative evidence of how
ClaimEval is able to overcome bias of many existing fact-
finding algorithms.

Figure 3: An exam-
ple CA graph, with
annotator judgments
marked on top of each
node. While baselines
such as MV, GS and
AL overfit by over-
trusting domains with
many evidences (e.g.,
nodes 1 and 3 here),
ClaimEval is able
to match annotator
judgments.



Conclusion

In this paper, we proposed ClaimEval, an integrated, flexi-
ble, and principled system for claim evaluation. In contrast
to previous approaches for claim evaluation, given a set of
claims, ClaimEval identifies a set of relevant sources and
evidences within them which might support or refute the
claims, estimates credibility of those sources, and uses those
credibility estimates to evaluate correctness of the claims —
all in a single integrated system. ClaimEval uses Probabilis-
tic Soft Logic (PSL) to flexibly incorporate various types of
prior-knowledge from the user. Through extensive experi-
ments on real-world datasets, we demonstrated ClaimEval’s
effectiveness over other state-of-the-art baselines. As part of
future work, we hope to exploit the flexibility offered by
ClaimEval and incorporate other types of prior-knowledge
and user preferences and evaluate their effect on claim eval-
uation.
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