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Abstract

We present a new perspective on the classical shortest
path routing (SPR) problem in graphs. We show that the
SPR problem can be recast to that of probabilistic infer-
ence in a mixture of simple Bayesian networks. Maxi-
mizing the likelihood in this mixture becomes equiva-
lent to solving the SPR problem. We develop the well
known Expectation-Maximization (EM) algorithm for
the SPR problem that maximizes the likelihood, and
show that it does not get stuck in a locally optimal solu-
tion. Using the same probabilistic framework, we then
address an NP-Hard network design problem where the
goal is to repair a network of roads post some disas-
ter within a fixed budget such that the connectivity be-
tween a set of nodes is optimized. We show that our
likelihood maximization approach using the EM algo-
rithm scales well for this problem taking the form of
message-passing among nodes of the graph, and pro-
vides significantly better quality solutions than a stan-
dard mixed-integer programming solver.

1 Introduction

The shortest path routing (SPR) problem entails finding the
shortest path between two given vertices of the graph that
minimizes the total sum of weights of the involved edges
in the path (Dijkstra 1959; Cormen et al. 2001). Shortest
path based approaches have found several applications in
diverse fields such as transportation models (Pallottino and
Scutella 1998), telecommunication network design (Pioro et
al. 2002) and in ecology for analyzing landscape connectiv-
ity for conservation planning (Bunn, Urban, and Keitt 2012;
Minor and Urban 2008). The classical shortest path prob-
lem, which is tractable, is typically solved using dynamic
programming based approaches such as Dijkstra’s or Floyd–
Warshall’s algorithm (Cormen et al. 2001) and their variants.

In our work, we take a different approach by develop-
ing a novel graphical models based probabilistic perspective
on the SPR problem. Recently, there has been tremendous
progress in variational approaches for inference in graphi-
cal models (Yanover et al. 2006; Sontag et al. 2008; Son-
tag and Jaakkola 2007; Wainwright and Jordan 2008). Our
goal is to show how the SPR problem (more importantly, its
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NP-Hard variants) can be reformulated as a likelihood max-
imization inference problem in an appropriately constructed
mixture of simple Bayesian networks. We can then use sev-
eral existing approaches for likelihood maximization (LM)
such as the well known expectation-maximization (EM) al-
gorithm (Dempster, Laird, and Rubin 1977) and other varia-
tional inference approaches (Liu and Ihler 2013) for solving
shortest path based decision making (SPDM) problems. We
also address the crucial issue of extracting the integral so-
lution for SPDM problems from their LM-based continuous
solution. We propose an entropy-based penalty term that en-
courages deterministic solutions within the LM framework
and eliminates the need for ad-hoc approaches for rounding
the continuous solution. We show that the resulting entropy-
augmented LM can be solved using the difference-of-convex
functions (DC) programming approach (Yuille and Rangara-
jan 2001). To summarize, our work introduces a promising
new framework which combines SPDM with probabilistic
inference, and opens the door to the application of rich in-
ference and optimization-based techniques to solve SPDM
problems.

Recently, there is an increasing interest in solving se-
quential decision making problems under uncertainty, such
as Markov decision processes (MDPs), partially observ-
able MDPs (POMDPs) and its multiagent variants using
the probabilistic inference based viewpoint (Toussaint and
Storkey 2006; Toussaint, Charlin, and Poupart 2008; Ku-
mar and Zilberstein 2010; Ghosh, Kumar, and Varakan-
tham 2015; Kumar, Zilberstein, and Toussaint 2015). Our
approach for SPDM is different from such previous appli-
cations of the LM framework for planning. Most of the
previous planning-as-inference approaches work for infinite
horizon problems with reward discounting, whereas in the
SPDM problem, there is no future cost discounting. Pre-
vious inference-based approaches do computation (in the
form of message-passing) on a time-indexed representation
of the problem to take into account the sequential nature of
(PO)MDP models (Toussaint, Charlin, and Poupart 2008).
However, explicitly taking into account the number of plan-
ning steps in SPDM problems would make the underlying
graph extremely large leading to computational intractability
as SPDM problems have indefinite-horizon (i.e., the length
of the shortest path is not known a priori). The network flow
constraints that arise in SPDM problems also require differ-
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ent set of techniques than previous approaches.
As a concrete instance of an NP-Hard SPDM problem,

we address a road network design problem (RNDP) where
the goal is to repair a network of roads post some disas-
ter within a fixed budget such that the connectivity between
a given set of nodes is optimized. Several different vari-
ants of this problem have received attention recently (Aksu
and Ozdamar 2014; Ozdamar, Aksu, and Ergunes 2014;
Liberatore et al. 2014; Duque and Sorensen 2011). Aksu
and Ozdamar [2014] address the road restoration problem
by identifying a set of critical edges from the predefined
set of paths that need to be restored with limited resources.
Similarly, Liberatore et al. address the road repair prob-
lem with the aim of optimizing humanitarian relief distri-
bution. Duque and Sorensen address a similar problem of
repairing a rural road network post some disaster. Our work
differs from previous approaches in several ways. We do not
predefine the set of paths that need to cleared (as in (Aksu
and Ozdamar 2014)), instead we simultaneously optimize
the road repair decisions and shortest paths that depend on
road repair decisions to optimize connectivity. Most previ-
ous approaches for RNDP are based on mixed-integer pro-
gramming (MIP) (Aksu and Ozdamar 2014; Liberatore et al.
2014) or local search based heuristics (Duque and Sorensen
2011; Ozdamar, Aksu, and Ergunes 2014). In contrast, we
directly solve a nonlinear formulation of the problem based
on our LM framework that is highly competitive with MIP
solvers for small/moderate sized problems, and significantly
outperforms them w.r.t. solution quality for larger instances.

2 Shortest Path As Probabilistic Inference

Consider a directed graph G= (V,E). Nodes in this graph
are denoted using i ∈ V , and directed edges (i, j) ∈E. As-
sociated with each edge is a weight wij ∈ �+. We are in-
terested in finding the shortest path (as per the weights wij)
from source node s to destination node t. We write below
the standard LP formulation for the shortest path:

min
x

∑
(i,j)∈E

wijxij (1)

∑
j∈Nbi

xij −
∑
j∈Nbi

xji =

⎧⎨
⎩
1 if i = s;

−1 if i = t;

0 otherwise
∀i ∈ V (2)

xij ∈ [0, 1] ∀(i, j) ∈ V (3)

where Nbi denotes the neighbors of a node i. Constraints (2)
are referred to as flow constraints.

We now reformulate the problem of finding the shortest
path between source s and destination t as LM in a mixture
of simple Bayesian networks (BN). We create one BN for
each directed edge (i, j). It has two binary random variables
lij ∈ {0, 1} and r ∈ {0, 1}. The variable lij is the parent
of the variable r. Figure 1(a) shows a graph with 5 nodes
and 10 directed edges, figure 1(b) shows Bayes nets for dif-
ferent edges. The mixture variable is L, whose domain is
the set of all edges E, and has a fixed uniform distribution
Pr(L=(i, j))= 1

|E| . For brevity, the assignment L=(i, j) is
denoted as Lij . Let w� =wmax+1 where wmax denotes the
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Figure 1: Mixture model corresponding to a graph

maximum weight of any edge in the graph. The CPT of the
variable r for the Bayes net corresponding to Lij is set as:

Pr(r = 1 | lij = 1) =
w� − wij

w�
(4)

Pr(r = 1 | lij = 0) = 1 (5)

Let the prior for variables lij be denoted by x̃ij=Pr(lij=0)
and xij =Pr(lij =1). We therefore also have a relation that
xij + x̃ij = 1. Intuitively, parameters xij=Pr(lij=1) have
the same interpretation as the x variables in the constraint (2)
of the shortest path LP.

Theorem 1. Let the CPT of binary variable r in the mix-
ture model be set as per (4) and (5), and parameters x =
{xij , x̃ij∀(i, j)} satisfy the flow constraints (2), then maxi-
mizing the likelihood P (r= 1;x) of observing r= 1 in the
mixture model is equivalent to solving the SPR problem.

Proof. The full joint for the BN mixture is given as:

P (r=1;x) =
∑
(i,j)

P (r=1, L=(i, j)) (6)

=
∑
(i,j)

[
P (r=1, lij=0, Lij)+P (r=1, lij=1, Lij)

]
(7)

∝
∑
(i,j)

[
1 · x̃ij +

w� − wij

w�
xij

]
(8)

=
∑
(i,j)

w�x̃ij + w�xij − wijxij

w�
(9)

=
∑
(i,j)

w� − wijxij

w�
= |E| − 1

w�

∑
(i,j)

wijxij (10)

Therefore, we have the following relation:

max
x

P (r=1;x) ∝ |E| −min
x

1

w�

∑
(i,j)

wijxij (11)

Thus maximizing the likelihood is equivalent to minimizing
the objective of the shortest path LP in (1).

3 Finding Shortest Path Using EM

The EM algorithm is a general approach to the problem of
maximum likelihood parameter estimation in models with
latent variables (Dempster, Laird, and Rubin 1977). Thm. 1
provides a clear connection for applying the EM algorithm
for SPR. In our mixture model, all the variables (l, L) are
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hidden. Only the variable r = 1 is observed. Our goal
is to find the best parameters xopt that maximize the log-
likelihood below:

xopt = argmax
x

log
(|E| − 1

w�

∑
(i,j)

wijxij

)
(12)

subject to the flow constraints (2) on parameters xij and
the normalization constraints xij + x̃ij = 1. The EM al-
gorithm is an iterative approach that performs coordinate
ascent in the parameter space. In each iteration, EM max-
imizes the following function, also called expected complete
log-likelihood Q(x,x�):

∝
∑

(i,j),lij∈{0,1}
P (r=1, lij , Lij ;x) logP (r=1, lij , Lij ;x

�) (13)

where x denote last iteration’s parameters and x� denote
the parameters to be optimized. We can further simplify the
function Q as below:∑

(i,j)∈E

[
P (r=1, lij=0, Lij ;x) logP (r=1, lij=0, Lij ;x

�)

+P (r=1, lij=1, Lij ;x) logP (r=1, lij=1, Lij ;x
�)

]
(14)

∝
∑

(i,j)∈E

[
x̃ij log x̃

�
ij +

w� − wij

w�
xij log x

�
ij

]
(15)

∝
∑

(i,j)∈E

[
x̃ij log x̃

�
ij + ŵijxij log x

�
ij

]
(16)

where we used ŵij =
w�−wij

w� to denote normalized edge
weights. In the above expressions, we have also ignored
terms that are independent of parameters x� as they do not
affect the optimization w.r.t. x�. We next show that EM
would converge to the global optimum of the SPR problem
and will not get stuck in a local optima.
Theorem 2. The EM algorithm for maximizing the likeli-
hood of r=1 in the SPR mixture model would converge to a
global optimum of the log-likelihood.

Proof. EM algorithm converges to a stationary point of the
log-likelihood function if the expected log-likelihood Q is
continuous in both the parameters x and x� (Wu 1983).
The Q function for our case in (16) satisfies this condition.
Therefore, EM algorithm would converge to the stationary
point of log-likelihood. As our log-likelihood function (12)
is concave (and flow constraints (2) linear), the stationary
point is also a global optima (Bertsekas 1999).

3.1 Maximizing the Expected Log-Likelihood Q
We now detail the procedure to maximize the expected log-
likelihood function Q in (16) (note the sign change below).

min
x�
ij ,x̃

�
ij

−
∑
(i,j)

x̃ij log x̃
�
ij −

∑
(i,j)

ŵijxij log x
�
ij (17)

s.t.
∑
j∈Nbi

x�
ji −

∑
j∈Nbi

x�
ij + ki = 0 ∀i ∈ V (18)

x̃�
ij + x�

ij = 1 ∀(i, j) ∈ E; x̃�
ij , x

�
ij ∈ [0, 1] (19)

where the value of the constant ki ∈ {−1, 0, 1} depends
upon whether the node is source s, destination t or any other
node. The above problem does not admit a closed form solu-
tion. Therefore, we use several tools from convex optimiza-
tion and algebra to develop a graph-based scalable message-
passing algorithm. Our high level approach is as follows:
• We write the Lagrangian dual of problem (17). The dual

has simpler structure making optimization easier. Further-
more, as (17) is a convex optimization problem, there is
no duality gap implying optimal dual quality equals opti-
mal of (17) (Bertsekas 1999).

• To optimize the dual, we use results from convex opti-
mization (Bertsekas 1999) that guarantee that a block co-
ordinate ascent (BCA) strategy wherein we fix all the dual
variables except one, and then optimize the dual over the
one variable is guaranteed to converge to the optimal dual
solution.

Dual of (17) We first define the Lagrangian function as:

L(x�,λ)=−
∑
(i,j)

x̃ij log x̃
�
ij−

∑
(i,j)

ŵijxij log x
�
ij+

∑
i

λi

[ ∑
j∈Nbi

x�
ji−

∑
j∈Nbi

x�
ij+ki

]
+
∑
ij

λij

[
x̃�
ij+x�

ij−1
]

where λ = {λi∀i, λij∀(i, j)} include dual variables λi for
the flow conservation constraint for a node i, and λij for
the normalization constraint. The dual function is given as
q(λ) = minx� L(x�,λ). This function is found by setting
the partial derivative of L(x�,λ) w.r.t. x�

ij and x̃�
ij to zero.

Upon simplifying, we get the dual function as:

q(λ) =
∑
(i,j)

x̃ij log λij +
∑
(i,j)

ŵijxij log
(
λj + λij − λi

)
+

∑
i

kiλi+
∑
ij

ŵijxij+
∑
ij

x̃ij−
∑
ij

λij+const. terms (20)

Maximizing the Dual (20) It is a standard result in con-
vex optimization that for any value of dual variables λ,
q(λ) ≤ Qopt, where Qopt denotes the optimal value of (17).
Therefore, we now detail how to maximize the dual q(λ).
We use the block-coordinate ascent (BCA) strategy to opti-
mize the dual. We choose an arbitrary dual variable, say λi,
fix all the other dual variables and optimize the function q(·)
w.r.t. the chosen variable λi. In general, this strategy is not
guaranteed to converge to the optimal solution. However, the
function q(λ) satisfies additional properties which guarantee
that the BCA approach will converge to the optimal dual so-
lution. These conditions are 1) q(·) is continuously differen-
tiable over its domain; 2) q(·) is strictly concave w.r.t. each
dual variable λi and λij due to the presence of log terms
in (20), resulting in a unique solution for each BCA itera-
tion (Bertsekas 1999).

Maximizing the Dual (20) w.r.t. λi The optimization prob-
lem to solve is maxλi

q(λ). We set the partial derivative ∂q
∂λi

to zero and get the condition:

f(λi)=
∑
j∈Nbi

ŵjixji

λi+(λji−λj)
−
∑
j∈Nbi

ŵijxij

(λj+λij)−λi
+ki=0 (21)
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The above equation has many solutions as it is a linear com-
bination of rational functions in λi. This appears problem-
atic as we need a unique solution for λi as required by the
BCA approach. Fortunately, we present the analysis below
that shows us that there is precisely one root of the above
equation that will satisfy our requirements. First notice the
log terms in the dual (20). As log argument must always be
positive (so that dual is not−∞), we require the root of (21)
that satisfies the following conditions simultaneously:

λi>λj−λji ∀j ∈ Nbi ⇒ λi>max
j∈Nbi

(
λj−λji

)
(22)

λj+λij−λi>0 ∀j ∈ Nbi ⇒ λi< min
j∈Nbi

(
λj+λij

)
(23)

Conditions (22) and (23) are the required conditions. Es-
sentially, the value maxj∈Nbi

(
λj − λji

)
denotes the lower

bound for λi and minj∈Nbi

(
λj + λij

)
denotes the upper

bound. We denote these values as:

λmin
i =max

j∈Nbi

(
λj−λji

)
and λmax

i = min
j∈Nbi

(
λj+λij

)
(24)

We also observe that discontinuities in the function
f(λi) (21) occur at λi = (λj − λji)∀j ∈ Nbi and λi =
λj+λij∀j∈Nbi. We now state the following proposition.

Proposition 1. Assuming that λmin
i < λmax

i , the func-
tion f(λi) in (21) has exactly one root in the open interval(
λmin
i , λmax

i

)
.

Proof. Notice that the first summation in (21),∑
j∈Nbi

ŵjixji

λi+(λji−λj)
, does not cause any discontinuity

for any λi > λmin
i as denominators would never be zero

for any such λi. Similarly, the second summation term,∑
j∈Nbi

ŵijxij

(λj+λij)−λi
, does not cause any discontinuity

for any λi < λmax
i . Therefore, given that λmin

i < λmax
i ,

we can deduce that f(λi) is continuous in the interval(
λmin
i , λmax

i

)
. We also observe that the function f(λi) is

monotonically decreasing in the interval
(
λmin
i , λmax

i

)
. This

can be verified by checking the first derivative of f(λi),
which is always negative in this interval (all numerators in
f(λi) are positive).

Consider interval
[
λmin
i +ε, λmax

i −ε
]

for any ε > 0. We
have

f(λmin
i +ε) =

ka
ε
+. . . and f(λmax

i −ε) =
−kb
ε

+. . .

where ka and kb are positive numbers. Therefore, we have
the condition that as ε→0, f(λmin

i +ε)→∞ and f(λmax
i −

ε) → −∞. Since, we know that f(λi) is also continuous
and monotonically decreasing in the interval

(
λmin
i , λmax

i

)
,

it must cross the horizontal axis y = 0 exactly once. This
completes our proof.

The above proposition provides the solution to our prob-
lem. We know from conditions (22) and (23) that λi must lie
in the interval

(
λmin
i , λmax

i

)
, and prop. 1 shows that there is

exactly one root in this interval. Therefore, this root must be
the solution to be used for the BCA iteration. We can find
this root by using one of the many root finding techniques,
such as the Brent’s method (Brent 1971).

Algorithm 1: pathEM(G = (V,E), s, t)

1 Initialize: xij ← 0.5; x̃ij ← 0.5 ∀(i, j) ∈ E
2 repeat
3 Set λi ← 0 ∀i ∈ V ; λij ← 1 ∀(i, j) ∈ E
4 repeat
5 for each edge (i, j) ∈ E do
6 Find unique largest root λ′

ij for g(λ′
ij)=0:

7 g(λ′
ij) =

x̃ij

λ′
ij
+

ŵijxij

λj+λ′
ij−λi

− 1

8 λij ← λ′
ij

9 for each node i ∈ V do

10 Find unique root λ′
i∈(λmin

i , λmax
i ) for

f(λ′
i)=0:

11 f(λ′
i)=∑

j∈Nbi
ŵjixji

λ′
i+(λji−λj)

−∑j∈Nbi
ŵijxij

(λj+λij)−λ′
i
+ki

12 λi ← λ′
i

13 until convergence
14 x�

ij ← ŵijxij

λj+λij−λi
, x̃�

ij ← x̃ij

λij
∀(i, j) ∈ E

15 xij ← x�
ij , x̃ij ← x̃�

ij ∀(i, j) ∈ E

16 until convergence
17 return Extracted path (from s to t) from x variables

The only remaining thing to show is that after every up-
date of λi, our invariant condition λmin

j < λmax
j is main-

tained for each λj ∀j ∈ Nbi as the update of λi only af-
fects the invariant conditions of its immediate neighbors.
The proposition next shows this result.
Proposition 2. Let the current estimate of the dual variables
be denoted as λi, λj and λij . Once λi gets updated to λ′

i
using equation (21), we have for every j ∈ Nbi:

max

(
λ′
i−λij , max

k∈Nbj\i
(
λk−λkj

))
<

min

(
λ′
i+λji, min

k∈Nbj\i
(
λk+λjk

))

Proof is provided in the supplement.

Maximizing the Dual (20) w.r.t. λij The optimization
problem to solve is maxλij

q(λ). Its analysis is similar to
the one presented for variable λi. We can also prove an ana-
logue of the proposition 2 by showing that variables λi and
λj (which are the only ones affected by the update of λij)
satisfy their respective invariant conditions after the update
of λij variable.

We summarize all the steps in the algorithm 1. The EM
algorithm takes the form of a double-loop algorithm. The
outer loop corresponds to EM’s iterations, and inner loop
corresponds to BCA approach’s iterations to maximize the
dual. Upon convergence, the variables x are close to inte-
gral, and a path from source to destination can be extracted
from it. The convergence of the inner loop is detected via
measuring the violations of the flow constraints and the
probability normalization constraints. The convergence of
the outer loop is detected if the increase in quality is less
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min
y,{xm∀m}

M∑
m=1

∑
(i,j)∈E

∑
aij

yaijwaijx
m
ij (25)

∑
aij

yaij = 1 ∀(i, j) (26)

∑
(i,j)

∑
aij

caijyaij ≤ B (27)

∑
j∈Nbi

xm
ij −

∑
j∈Nbi

xm
ji =

⎧⎨
⎩
1 if i = om;

−1 if i = dm;

0 otherwise
∀i ∈ V , ∀m

(28)
xm
ij ∈ [0, 1] ∀(i, j) ∈ V, ∀m (29)

yaij
∈ {0, 1} ∀(i, j) (30)

Table 1: Mixed-integer quadratic program for RNDP

than a particular threshold. Notice that all the updates EM
requires can be implemented using message-passing on the
graph G in a distributed manner, which is useful for appli-
cations such as multiagent path finding. The complexity of
each inner loop iteration is linear in the number of edges of
the graph, thus, EM can be scaled to large graph sizes.

4 Network Design Using LM

One main benefit of developing a graphical models and like-
lihood maximization based perspective on the SPR problem
is that this reasoning easily extends to cases when the ob-
jective function to optimize is nonlinear and nonconvex, and
the problem NP-Hard. Such problems may be hard to han-
dle using classical algorithms such as Dijkstra’s, but as we
show later, the EM algorithm still applies with relatively lit-
tle modifications. We next discuss a road network design
problem (RNDP) where the goal is to repair a network of
roads post some disaster within a fixed budget such that the
connectivity between a given set of nodes is optimized.

The RNDP problem is specified by the tuple
〈G, odList,A,W ,C, B〉. We have a road network as
a directed graph G= (V,E). The set odList = {(om, dm)}
consists of M different origin-destination pairs (om, dm).
We assume that different roads are damaged to different
extents. To repair a segment (i, j), possible actions are de-
noted using the set Aij . The joint-set of all possible actions
is A. If a repair action aij ∈Aij is performed, then the edge
weight of the link (i, j) is given using Wij(aij). The cost
of a repair action aij is given using Cij(aij). Intuitively,
a higher cost action would lead to lower edge weight. We
assume that a default action noop is included for each edge
which has a zero cost and some default edge weight. We
are also given a budget B that limits the quality of repair
actions for different edges. Let y= {yaij

∀aij ∈Aij∀(i, j)}
denote a binary decision vector; yaij

=1 implies action aij
is taken for edge (i, j). Let SP(om, dm;y) denote the total

r

aij

lmij

Figure 2: Single mixture component Bayes net correspond-
ing to edge (i, j) and od pair m

edge weight of the shortest directed path from om to dm as
per the decision y, then our goal is to find the best decision
y� to minimize

∑
(om,dm)∈odList SP(om, dm;y) such that

the total cost of decision y� is less than the budget B. This
problem is NP-Hard, which can be shown by reducing the
Knapsack problem to it (proof omitted).

Table 1 shows a mixed-integer quadratic program (MIQP)
for this problem. The main difference of this program from
the shortest path LP in (1) is that the edge weight is vari-
able (depends on the decision yaij ) and denoted using∑

aij
yaijwaij . Therefore, the objective becomes quadratic.

Constraints of this MIQP include flow constraints (28) for
each o-d pair m and the budget constraint (27). We used a
shorthand of caij to denote the cost of the decision aij , and
waij denotes the corresponding edge weight. To solve this
MIQP, we first reformulate it as an MIP. We use the stan-
dard technique to linearize each term yaij · xm

ij by replacing
it with zmaij

, and adding three linear constraints as zmaij
≤xm

ij ,
zmaij

≤yaij
and zmaij

≥xm
ij+yaij

−1. Only the variables {yaij
}

are binary, the rest are continuous (∈ [0, 1]).
In our work, we propose a scalable alternative to MIP by

solving a relaxed version of this MIQP using the LM frame-
work and the EM algorithm. Our strategy is following: 1) We
construct a mixture graphical model such that maximizing
the likelihood of observing the variable r = 1 is equivalent
to solving the relaxed QP in table 1 with decision variable
y becoming continuous, 2) We develop the EM algorithm to
maximize the likelihood in this mixture, 3) We incorporate
an entropy-based term in the EM algorithm that encourages
deterministic solutions resulting in integral final decision y.

We start by creating a number of simple Bayes nets (as in
figure 1) for each edge (i, j) and od pair m. Figure 2 shows
the structure of a single Bayes net. Binary variable lmij has
same interpretation as in figure 1, its prior distribution is de-
noted using xm

ij . In addition, we have another variable aij
whose domain is the set of all available repair actions Aij for
the edge (i, j). For any aij ∈ Aij , we have Pr(aij) = yaij .
Defining priors in this way establishes the connection of LM
to the QP variables x and y in table 1. We define the CPT of
different variables in the BN as:

P (r = 1|lmij = 1, aij) = ŵaij
=

w� − waij

w�
∀aij (31)

P (r = 1|lmij = 0, aij) = 1 ∀aij (32)

where w� = wmax + 1; wmax denotes the maximum edge
weight for any edge and any action.
Theorem 3. Let the CPT of binary variable r in the mixture
model be set as per (31) and (32), parameters x={xm∀m}
satisfy the flow constraints (28), and parameters y satisfy
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the budget constraint (27), then maximizing the likelihood
P (r = 1;x,y) of observing r = 1 in the mixture model is
equivalent to solving the relaxed QP in table 1.

We omit the proof as it is similar to the proof of Thm. 1.
The expected log-likelihood Q(x, y,x�,y�) that EM max-
imizes is given below (proof provided in appendix):

∝
∑
(i,j)

[∑
aij

log y�aij

(∑
m

yaij
x̃m
ij +

∑
m

ŵaij
yaij

xm
ij

)]

+
∑
m

∑
(i,j)

[
x̃m
ij log x̃

�m
ij + xm

ij

(∑
aij

ŵaij
yaij

)
log x�m

ij

]
︸ ︷︷ ︸

(33)
Notice the similarity of the expression under brace in the

above equation with that of the expected log-likelihood (16)
for the SPR problem. If we replace ŵij in (16) by(∑

aij
ŵaij

yaij

)
, then we can independently maximize the

expression under brace for each od pair m by using algo-
rithm 1, thereby also increasing the scalability w.r.t. the total
number of od pairs. This is possible as the flow constraints
are independent for each variable set xm. Thus, the SPR
message-passing becomes a subroutine to solve our RNDP
problem. The only remaining thing is to maximize the first
expression in Q(x, y,x�,y�) w.r.t. y� and the budget con-
straint (27). The steps to maximize it are shown in appendix.

Extracting Integral Solution Our goal is to compute an in-
tegral y upon convergence of the EM algorithm. Solving the
relaxed QP for the RNDP often results in fractional decision
y. To avoid ad-hoc rounding of the fractional solution, we
present an optimization based approach that encourages in-
tegral solutions. Observe that for any integral decision y, its
entropy −∑

aij
yaij

ln yaij
must be zero. For any fractional

yaij , we are guaranteed that the entropy must be positive. We
exploit this fact while maximizing Q(x, y,x�,y�) w.r.t. y�

by changing the objective as:

min
y�
−
∑
(i,j)

∑
aij

log y�aij
δaij

−
∑
(i,j)

ρij
∑
aij

y�aij
ln y�aij

(34)

where δaij
=
∑

m yaij
x̃m
ij +

∑
m ŵaij

yaij
xm
ij is the constant

term in (33). We also changed the sign of the objective to
negative. The penalty weight ρij > 0 encourages determin-
istic solutions as their entropy is lower. The above optimiza-
tion problem is an instance of difference-of-convex func-
tions (DC) programming. The objective function is a dif-
ferent of two convex functions −∑

(i,j)

∑
aij

log y�aij
δaij

and
∑

(i,j) ρij
∑

aij
y�aij

ln y�aij
. It can be solved using the

concave-convex procedure (CCCP) described in (Yuille and
Rangarajan 2001). We show details in the appendix. The re-
sulting approach nicely integrates with EM as it can also be
implemented using message-passing. We highlight that this
approach is fairly general and also applicable to other types
of SPDM problems.

5 Experiments
We present results comparing EM against the MIP solver
Cplex v12.6 for the RNDP problem. We used grid shaped

graphs to simulate realistic road networks, with sizes rang-
ing from 5×5 grid to 20×20 grid. Smallest 5×5 graph has
80 directed edges, and 20×20 graph has 1520 edges. Each
edge has three repair action. Action 0 is the default (or noop)
with zero cost, action 1 has cost randomly chosen between
[40, 400] and action 2 has cost twice that of action one’s cost.
Intuitively, higher cost action leads to lower edge weight.
The default weight wa0

of an edge (corresponding to default
action a0) is chosen randomly between [60, 600]. The edge
weight for action 1 is set as wa0

/2 and the edge weight for
action 2 is wa0/4 to simulate the higher quality of an expen-
sive repair action. All our experiments are performed on a 16
core linux machine (with 32 parallel threads). Both EM and
Cplex were allowed to use 20 parallel threads with 10GB
RAM limit. The time cutoff was 3 hours for each algorithm
per instance.

Figures 3 and 4 show the quality comparisons between
EM and Cplex for a range of budgets. Let Bmax denote the
budget just sufficient to take the most expensive repair action
2 for each edge in the network. In figures 3(a)-(d), x-axis
denotes the fraction of Bmax that is allotted (‘0.01’ means
budget for the instance is 0.01·Bmax). For reference, ‘0’ im-
plies zero budget, and ‘1’ implies full budget. For each grid
size n×n, we generated n pairs of origin, destination nodes
randomly. To make the problem challenging which would
require repairing a large number of roads and also, careful
sharing of road segments among shortest paths for different
o-d pairs, the origin and destination nodes always lie on the
opposing boundaries of the grid. Each data point is an aver-
age over 5 randomly generated instances.

From figures 3 and 4 it is quite clear that Cplex provides
competitive results with EM only for grid sizes ranging from
5×5 to 10×10. EM’s solution is only marginally worse (<
10% additional cost) than Cplex’s quality (which was near-
optimal for most instances) for these moderate size graphs.
These results show that EM was able to provide near-optimal
solutions for these problems despite solving a non-convex
problem.

Figures 4(b) and (c) show that for the larger instances,
EM significantly outperforms Cplex over a range of budget
settings, sometimes providing cost savings as high as 70%
for 20×20 grid and ‘0.08’ budget setting. The main reason for
Cplex’s degraded performance is that due to large problem
size (number of variables and constraints) for 15×15 and 20×
20 grids, the branch-and-bound strategy of Cplex is unable
to explore sufficient number of nodes within the three hour
time limit. EM, on-an-average, converges within 1 hour for
15×15 grid and within 5000 seconds for 20×20 grid.

Figure 4(d) shows the efficiency of our entropy-based
penalty approach (y-axis in log-scale). We used a fixed
penalty weight ρ = 0.005 for each edge and started
applying penalty from iteration 1000 onwards. In fig-
ure 4(d) we show how the total entropy of the network,∑

(i,j)

∑
aij

yaij
ln yaij

, evolves with increasing EM itera-
tions for two budget settings (‘0.01’ and ‘0.04’). For both
these settings, EM steadily decreases the entropy (which is
beneficial to extract a deterministic solution) until iteration
1000. The entropy for setting ‘0.01’ is lower than ‘0.04’ as
in the former, higher number of repair actions have close to
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Figure 3: Quality comparisons between EM and MIP solver Cplex for a range of budget and problem sizes. Lower cost is better.
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Figure 4: Quality comparisons between EM and MIP solver Cplex for a range of budget and problem sizes. Lower cost is better.

zero probability due to tighter budget. When entropy-based
penalty kicks in at iteration 1000, we see that within the next
200 iterations, the entropy gradually goes to zero, which
then permits us to extract a deterministic solution. For ‘0.04’
budget setting, the entropy goes down from 27.4 at iteration
1000 to 0.42 at iteration 1200, showing the significant im-
pact of our approach to get good quality deterministic solu-
tions. Indeed, for every instance in figures 4(a)-(c), we were
able to recover an integral solution using our entropy based
method. This supports the application of EM and the LM
framework to settings where an integral solution is desired.

6 Conclusion

In our work, we have presented a new probabilistic inference
and graphical models based perspective on the SPR prob-
lem. We have shown how the likelihood maximization (LM)
framework and associated solution approaches such as the
EM algorithm can be applied to shortest path based decision
making (SPDM) problems. The main benefit of such prob-
abilistic viewpoint lies in its ability to generalize to SPDM
problems that may be nonlinear, nonconvex and in general,
NP-Hard. We addressed one such road network design prob-
lem. Empirically, our LM and EM based approach signifi-
cantly outperformed the standard MIP solver w.r.t. solution
quality. Thus, our work introduced a promising new frame-
work which combines SPDM with probabilistic inference,
and opens the door to the application of rich inference and
optimization-based techniques to solve SPDM problems.
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