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Abstract

We study the problem of analyzing a large volume of bioa-
coustic data collected in-situ with the goal of assessing the
biodiversity of bird species at the data collection site. We
are interested in the class discovery problem for this setting.
Specifically, given a large collection of audio recordings con-
taining bird and other sounds, we aim to automatically select
a fixed size subset of the recordings for human expert label-
ing such that the maximum number of species/classes is dis-
covered. We employ a multi-instance multi-label representa-
tion to address multiple simultaneously vocalizing birds with
sounds that overlap in time, and propose new algorithms for
species/class discovery using this representation. In a com-
parative study, we show that the proposed methods discover
more species/classes than current state-of-the-art in a real
world dataset of 92,095 ten-second recordings collected in
field conditions.

Introduction

Bioacoustic monitoring is a rapidly growing field, where the
goal is to learn about organisms such as birds and marine
mammals, by applying signal processing and machine learn-
ing to audio recordings. In this paper, we consider the prob-
lem of class discovery from bird bioacoustics data. Given
a large collection of audio recordings of birds (and other
sounds in the environment), our goal is to automatically se-
lect a subset of recordings to be manually labeled by hu-
man expert such that we can find the maximum number of
species/classes with a fixed labeling budget.

Acquiring critical knowledge about the response of
species to global change necessitates the development ef-
ficient and accurate estimates of species abundance and di-
versity. Birds have been used widely as biological indicators
because they respond rapidly to change, are relatively easy
to detect, and may reflect changes at lower trophic levels
(e.g., insects, plants) (Şekercioğlu, Daily, and Ehrlich 2004).
Recently, Wimmer et al. (2013) compared in-field manual
point counts, a traditional way for assessing bird biodiver-
sity, to acoustic sampling for discovering bird species. They
found that acoustic sampling detected more species for an
equivalent amount of human effort. In that study, the record-
ings are chosen randomly from a particular interval of time
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(e.g., 3 hours after dawn), and the audio signal itself was
not used to make the selection. In this work, we propose
methods for analyzing the audio recordings and for select-
ing a species-diverse set of recordings for human expert la-
beling. We apply our proposed methods, and baseline meth-
ods, to a real-world dataset of 92,095 ten-second recordings,
collected at 13 sites over a period of two months, in a re-
search forest. These recordings pose many challenges for
automatic species discovery, including multiple simultane-
ously vocalizing birds of different species, non-bird sounds
such as motor sound, and environmental noises, e.g., wind,
rain, streams, and thunder. Our results show that the pro-
posed methods discover more species/classes than previous
methods.

Background

Bird bioacoustic data has been considered by the machine
learning community primarily for supervised classification
tasks. Briggs et al. (2012b) proposed to represent audio
recordings of bird sound in the multi-instance multi-label
(MIML) framework (Zhou et al. 2012). In this formula-
tion, an audio recording is transformed to a spectrogram,
then automatically segmented into a collection of regions
believed to be distinct utterances of bird sound. Each seg-
ment is then described by a feature vector that characterizes
its shape, texture, and time/frequency profiles. A recording
is represented as a set of segment feature vectors (instances).
Because recordings collected in natural environments often
contain sounds from multiple species, each recording is as-
sociated with a set of class labels. This multi-instance multi-
label representation has previously been successfully used
for predicting the bird species present in a recording (Briggs
et al. 2012b) and also to predict the single species respon-
sible for a specific utterance (Briggs et al. 2012a) in the
recording. In our work, we employ the same representation
but the recordings are not labeled. Only after the species
discovery algorithm makes its selection, then the selected
recordings are given to experts to be labeled.

Bird species discovery from acoustic data has only re-
cently been studied, and prior methods do not make use
of the audio data directly, but instead rely on meta data
such as the time of day (Wimmer et al. 2013). The class-
discovery problem has been studied in the machine learning
and data-mining communities, although prior work has fo-
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cused on discovering rare classes in single-instance single
label data (Pelleg and Moore 2004; He and Carbonell 2007;
Vatturi and Wong 2009).

Problem Statement

We consider the species discovery problem in the context of
a multi-instance multi-label dataset. Our input is a collection
of audio recordings, each represented as a bag of instances.
Each recording/bag is associated with a set of species, which
are initially unknown, but can be queried.

Formally, the dataset is (B1, Y1), . . . , (Bn, Yn) where Bi

is a bag of ni instances: Bi = {xi1, . . . ,xini}, xij ∈ R
d is a

feature vector representing an instance, and Yi ⊆ {1, . . . , s}
is a subset of s classes (species or other sounds). We focus on
the batch setting where we are given a fixed budget for hu-
man effort to label m bags and all m bags must be selected at
once. The problem is to select m bags in the absence of any
bag label information based only on the information given
by the feature value of their instances. A class discovery al-
gorithm picks a set of bag indices R, and is evaluated based
on the number of classes discovered | ∪i∈R Yi|.

Species Discovery Methods

In this section, we describe prior methods and introduce
some simple yet intuitive baselines, followed by our pro-
posed methods for automatic species discovery.

Prior methods

Wimmer et al. (Wimmer et al. 2013) recently explored tem-
porally stratified methods for species discovery from acous-
tic monitoring data. In this work, recordings are selected
for labeling randomly from within stratified time intervals,
without using the recording content to inform the decision.
Nonetheless, this work represents the current state-of-the-
art in bird species discovery. Different sampling strategies
considered in (Wimmer et al. 2013) include random from a
full 24-hour period, random from dawn, random from dusk,
random from dawn and dusk, and regular intervals. Of these
methods, the most effective one is the dawn method, which
picks random 1-minute recordings from the period from
dawn until 3 hours after dawn (often the most active period
for birds). In our work, we implement the dawn method by
selecting m random recordings from 5:00 am to 8:00 am.

Baseline methods

A simple baseline method that has been applied for class dis-
covery (in non multi-instance data) is to cluster all instances,
then select one instance from each cluster (e.g., the one clos-
est to the cluster center) (Chen et al. 2013). We take a similar
approach for multi-instance data. First, all instances from all
bags are clustered with k-means++ (Arthur and Vassilvitskii
2007), where the number of clusters k is equal to the number
of bags to be selected m. Then, we select the bag containing
the instance closest to each cluster center. The clusters are
queried in order from most instances to least instances.

Multi-Instance Farthest First (MIFF)

Farthest-first traversal (Gonzalez 1985) is a greedy method
that has been successfully applied for class discovery in
single-instance single-label data (Chen et al. 2013). It re-
peatedly selects the instance farthest from the set of cur-
rently selected instances to maximize the diversity among
the selections. We propose multi-instance farthest first
(MIFF) (Algorithm 1), which extends this idea to multi-
instance data.

We first describe a basic version of our algorithm, which
is a straight forward extension of farthest-first to multi-
instance data. It first select a bag randomly from the set of
non-empty bags (line 2). Whenever a bag is selected, all of
the instances it contains are “covered” (lines 3 and 18). Af-
ter the first random bag, it repeatedly selects the bag that
contains the instance that is farthest from the set of covered
instances.

The above basic extension selects the bag based on a sin-
gle (farthest) instance. It is important to note that for multi-
instance multi-label data, querying a bag results in obtaining
its full set of labels, rather than a single label. Hence it is ad-
vantageous to evaluate a bag by considering more instances
and choose a bag with multiple instances that are far from
the currently covered instances, and far from each other.

Based on this intuition, we present MIFF with a parame-
ter p that controls the number of instances in each bag that
are considered. When p = 1, MIFF reduces to the basic
version described above. For p > 1, a bag is chosen to max-
imizes a sum of p distances that are computed greedily. In
each greedy step, we choose the single uncovered instance
in the bag that is farthest from the set of covered instances
and record this distance. Once an instance is chosen, it is
added to the covered set and used to select the next instance
in the bag. This process repeats until p instances are chosen
and the score of the bag is the sum of the p distances (see
lines 10-14).

Cluster Coverage with MIFF (CCMIFF)

To compare the efficiency of different temporally-stratified
sampling methods, Wimmer et al. (2013) considered a the-
oretical estimate of the minimum number of recordings re-
quired to detect all species. Assuming all the data are la-
beled, they applied a greedy algorithm for the classic NP-
hard set cover problem to obtain this estimate. We take inspi-
ration from this idea to devise a species discovery method.

Instead of the set cover problem, we consider the related,
max cover problem: given a number m, a universe U , and
subsets Si ⊂ U, i = 1, . . . , n, choose m subsets so the size
of their union is maximized:

argmax
R⊂{1,...,n}

|
⋃

i∈R

Si| such that |R| = m (1)

This problem is also NP-hard, but can be approximated by
a greedy algorithm that repeatedly selects the Si that covers
the most uncovered elements of U . Feige (1998) proved that
this algorithm achieves a 1 − 1

e approximation ratio, which
is the best possible approximation ratio unless P = NP .

If the recording are labeled, we can define Si as the set of
species present in recording i. In this case species/classes are
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Algorithm 1 Multi-Instance Farthest First (MIFF)
1: Input: multi-instance dataset {B1, . . . , Bn}, number of

bags to select m, number of instances per bag to use p
2: S = {r} — Initialize S with a random non-empty bag

r
3: C = Br — C stores all covered instances
4: for i = 2 to m do
5: — select the i’th bag
6: for j = 1 to n, j /∈ S, |Bj | �= 0 do
7: — consider bag j as a candidate for selection
8: vj = 0 — a score for bag j
9: Cj = {} — the set of instances covered in this bag

10: for l = 1 to p do
11: x∗ = argmax

x∈Bj and x/∈Cj

minDnn(x, C ∪Cj), where

Dnn(x, S) = min
x′∈S

d(x,x′)

12: vj = vj +Dnn(x
∗, C ∪Cj) — update the score

13: Cj = Cj ∪ {x∗} — x∗ is now covered
14: end for
15: end for
16: q = argmaxj vj — pick the highest scoring bag
17: S = S ∪ {q} — add it to the set of selected bags
18: C = C ∪Bq — update covered instances
19: end for

the items in U being covered. However, unlike the retroac-
tive analysis by Wimmer et al., the set of species contained
in each recording are unknown to us when we must select
the set R. Therefore, we use clusters as a proxy for classes.
U = {1, . . . , k} is the k clusters obtained by k-means++,
and Si is the set of clusters contained in bag i. We refer to
this method as cluster coverage, because clusters are the el-
ements being covered.

Naı̈vely applying the greedy algorithm, we observe that
often many bags are tied for covering the most new clusters.
We would prefer to break these ties based on some princi-
ple, rather than arbitrarily. Furthermore, before we have se-
lected m bags, we may cover all of the clusters (in which
case, all remaining unselected bags are tied with a cover-
age improvement of 0). We address both of these issues by
breaking ties in coverage according the same criteria used in
MIFF. Specifically, instead of evaluating all remaining bags
that are non-empty as in MIFF, we only evaluate the bags
that are tied for covering the most new clusters and select the
bag that has the highest score. This approach is thus referred
to as cluster coverage with MIFF tie breaking (CCMIFF).

Experiments

Dataset

In this study, we collected audio data at 13 different sites
in the H. J. Andrews Long Term Experimental Research
Forest over a two-month period during the 2009 breeding
season. The recording devices were programmed to record
the first 20 minutes of each hour of the day. A total of
589.75 GB, roughly 2559 hours, of audio recordings was
collected, divided into 7,688 WAV files (most are 20 minutes
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Figure 1: An example of a spectrogram manually annotated
with ground-truth segmentation (used to train the automatic
segmentation algorithm). Red indicates bird sound, and blue
indicates rain or other loud non-bird sound.
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(a) Rain Example
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(b) Non-Rain Example

Figure 2: Two randomly chosen recordings of rain and non-
rain categories, used to train the rain filter. The red outline
shows the automatic segmentation.

long). Because it is convenient and efficient to work with
smaller intervals of audio, e.g., ten seconds, we divided the
full dataset into 920,956 ten-second intervals, then randomly
subsampled 10% of this data, to obtain a total of 92,095
tens-second recordings for our experiments. We follow the
approach described in (Briggs et al. 2012b) to generate the
multi-instance representation of our data. In particular, each
recording is first segmented using the algorithm described in
(Briggs et al. 2013). Segments/instances are then described
by a 38-d feature vector.

Rain Filter

We noted that the spectrogram segmentation algorithm
(Briggs et al. 2013) is trained with rain as negative examples,
but there are still cases where it fails (particularly when an-
alyzing a large number of recordings). In such cases, the re-
sulting segmentation often consists of many small segments
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with a wide variety of shapes (Fig. 2a). These segments tend
to confound the species discovery algorithm. To alleviate
this problem and avoid selecting rain recordings, we perform
recording-level rain filtering using a random forest classifier
(Breiman 2001) trained on 1000 ten-second recordings se-
lected randomly from the full dataset and manually labeled
as rain/non-rain training examples. Figure 2 shows examples
of rain and non-rain recording spectrograms. The input to
the classifier is a recording-level feature vector that is com-
puted based on the segments it contains and consists of a his-
togram of segments, and the mean and standard deviation of
the segment-level features. Given a recording, the Random
Forest classifier (with 1000 trees) is used to predict the prob-
ability of rain. If greater than a threshold T , the recording is
removed from consideration. The rain filter can be combined
with any of the proposed species discovery methods.

Training Data

Although the proposed methods are primarily unsupervised,
some training data were used for segmentation and rain
filtering. We annotated 150 randomly chosen ten-second
recording spectrograms as examples for segmentation. Fig-
ure 1 shows an example of an annotated spectrogram for
training the segmentation algorithm. A further 1000 ran-
domly chosen recordings are labeled as rain or non-rain to
train the rain filter. The human effort for this labeling task
was roughly one hour.

Evaluating Species Discovery Efficiency

To compare the efficiency of our proposed methods, and
baseline methods, we conducted the following experiments.
From the pool of 92,095 recordings, we apply each of the
methods (dawn, cluster centers, MIFF, CCMIFF) to select
m = 100 recordings to be labeled. We wish to emphasize
that the species labels in these recordings are all initially un-
known to us. We only discover the labels after the algorithm
selects a set to be labeled by an expert. Hence, the expert
labeled 1000 ten-second recordings in total for all experi-
ments. Labeling these 1000 recordings required roughly 23
hours of labor. The species discovery algorithms evaluate all
92,095 recordings, however.

We compare the species discovered by cluster cen-
ters, MIFF, and CCMIFF with rain filter threshold T ∈
{0.1, 0.01} or no rain filter. For MIFF and CCMIFF, we set
the parameter p = 2 because we expect on average to have
2 classes per bag. For CCMIFF, we set the number of clus-
ters k = 1000, based on the observation that with a smaller
number of clusters (e.g., 100), the algorithm covers all clus-
ters very early on, before selecting m = 100 bags. Once all
clusters are covered, CCMIFF behaves identically to MIFF,
so it is only interesting to compare the two with parameters
that cause CCMIFF not to cover all clusters right away.

Results

The results of the experiment are viewed in terms of a
graph of number of species or classes discovered vs. num-
ber of recordings labeled. We construct separate graphs for
the count of species (bird species only), and all classes of
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Figure 3: Species/class discovery curves with the best pa-
rameters.

sound (e.g., airplanes, thunder, walking, beeps, sticks break-
ing, etc). Figure 3 shows the number of species and classes
discovered by each method with its best parameter setting.

For both species or classes, MIFF with p = 2 instances
per bag considered, and rain threshold T = 0.1 achieved
the best result after selecting 100 recordings. However, up
to selecting 50 recordings, CCMIFF discovers more species
than MIFF, and also achieves the second best results in terms
of classes discovered.

Most significantly, all of the methods that use the multi-
instance representation of the data (cluster centers, MIFF,
and CCMIFF) find more species and classes than the dawn
time-based method (Fig. 3). Hence, these results demon-
strate progress toward what has been assessed as a very chal-
lenging task in (Wimmer et al. 2013).

Figure 4 shows the number of recordings with each label
selected by each method. The species/classes are sorted in
descending order of their frequency with the dawn method.
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Figure 4: The number of recordings of each class selected by each method.
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(c) Species — CCMIFF
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Figure 5: Sensitivity of species and class discovery curves to varying rain probability threshold T .

Table 1: Class codes and descriptions for non-bird sounds.
Code Description
RAIN rain drops
ARPL airplane motor
MOTOR other motor vehicle
DOSQ Douglas Squirrel
THUNDER thunder
INCT insect buzzing
WALK a person walking near the Songmeter
WATER water flowing
TAPP woodpecker tapping sound
SMGLITCH Songmeter glitch
OTHR unkown
MICBUMP microphone being bumped
HAMMER hammer strike
BEEP the Songmeter or a watch beeping
BREAK a stick snapping

The first group of labels are bird species only, identi-
fied by a standard 4-letter code (Union 1910). The second
group of labels is for non-bird sounds (Table 1). This chart
shows that for cluster centers, MIFF, and CCMIFF with-
out the rain filter, many of the selected recordings include

the RAIN label. We hypothesized that the number of other
species/classes discovered could be improved by selecting
fewer rain recordings. Table 1 also shows that as the rain
threshold parameter T decreases, so does the number of rain
recordings selected by all methods.

Figure 5 shows the sensitivity of cluster centers, MIFF,
and CCMIFF to the rain threshold parameter T . The clus-
ter centers method finds the most classes after labeling 100
recordings with no rain filter, although for lower numbers
of labeled recordings, the most restrictive rain filter param-
eter T = 0.01 gives better results. MIFF and CCMIFF
achieve best results in terms of both species and classes with
T = 0.1. Hence, we see that the rain filter generally pro-
vides some benefit for these two algorithms (by preventing
too many queries from being wasted on rain).

Discussion

In this paper, we addressed the problem of selecting a sub-
set of audio recordings from a large dataset to be labeled
by an expert, to maximize the number of species discov-
ered for a fixed amount of human effort. Previous state-of-
the-art methods in this application used only the time meta
data to select recordings. In contrast, our proposed meth-
ods analyze the audio content of the recordings to improve
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the selection, and successfully handle many of the complex-
ities of real world data such as multiple simultaneous birds,
rain, and other non-bird sounds. Experiments suggest that
our proposed methods discover species more efficiently than
time stratified acoustic sampling (which has previously been
shown to be more efficient than traditional point counts).

Biodiversity is a critical indicator of ecosystem health and
an important factor to consider in conservation management.
Traditional biodiversity surveys requires experienced birders
to conduct in-field point counts, which are time consuming,
challenging or impractical in remote areas, and often miss
rare species. The key advantages of our method are that it
makes more efficient use of human effort to measure bio-
diversity, and can provide better temporal coverage, which
improves detection of rare species.

In future work, we will use the labeled recordings ob-
tained in this study as a training set for a supervised clas-
sifier. This classifier will then be applied to the full 2009
dataset to predict the species for all sounds in the dataset.
With these predictions, we expect to be able to identify eco-
logically interesting patterns in activity and phenology.
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