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Abstract

Statistical modeling of local precipitation involves under-
standing local, regional and global factors informative of pre-
cipitation variability in a region. Modern machine learning
methods for feature selection can potentially be explored for
identifying statistically significant features from pool of po-
tential predictors of precipitation. In this work, we consider
sparse regression, which simultaneously performs feature se-
lection and regression, followed by random permutation tests
for selecting dominant factors. We consider average win-
ter precipitation over Great Lakes Region in order to iden-
tify its dominant influencing factors. Experiments show that
global climate indices, computed at different temporal lags,
offer predictive information for winter precipitation. Further,
among the dominant factors identified using randomized per-
mutation tests, multiple climate indices indicate the influence
of geopotential height patterns on winter precipitation. Us-
ing composite analysis, we illustrate that certain patterns are
indeed typical in high and low precipitation years, and of-
fer plausible scientific reasons for variations in precipitation.
Thus, feature selection methods can be useful in identifying
influential climate processes and variables, and thereby pro-
vide useful hypotheses over physical mechanisms affecting
local precipitation.

1 Introduction

Understanding climate change and its impacts on policy
and infrastructure involves prediction of state of earth’s cli-
mate under different forcing scenarios (Moss et al. 2010).
One of the most important variables of interest in mod-
eling climate is precipitation, particularly at regional or
local scales. Earth System Models (ESM) (Randall and
others 2007) that model the physics and dynamics of cli-
mate, are known to have deficiencies in modeling local pre-
cipitation (Kang and others 2002; Gao and others 2008;
Piani, Haerter, and Coppola 2010). This shortcoming is
mainly due to the spatial resolution of the models, which
is often too coarse to accurately model local and regional
precipitation (Gao and others 2008). Therefore there exists
a gap in understanding of the factors affecting precipitation
over small scale regions on the globe.

Increasingly, statistical models are being considered to in-
form climate science research on factors which may affect
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Figure 1: U.S. Standard Climatological Regions (Karl and
Koss 1984). Great Lakes consist of three marked regions.

precipitation (Das 2015). The goal is to discover statistical
dependencies between precipitation and covariates of inter-
est, and then try to gain a mechanistic physical understand-
ing of how the covariates affect precipitation. The covari-
ates or predictors are often multi-scale climate variables and
processes, which may manifest their effect with some tem-
poral lags, or in conjunction with each other (Steinhaeuser,
Chawla, and Ganguly 2011). For a given region of interest,
there is a plethora of possible influencing factors for precipi-
tation, such as ocean oscillations, atmospheric variables, and
long-term ocean-atmosphere coupled processes (Cunderlik
and Simonovic 2007). Therefore, it is of interest to the cli-
mate research and modeling community to understand the
most influential factors in this pool of predictors, and derive
climatological insights from such a discovery process.

In this work, we consider prediction of precipitation over
the Great Lakes region of the US (Fig. 1), using pre-
dictor variables at multiple spatial scales with temporal
lags. The predictors include atmospheric variables at lo-
cal and regional scales, as well as multiple global climate
indices (Stenseth and others 2003) that capture climate pro-
cesses and oscillations. The global climate indices are time
series, derived from oceanic and atmospheric fields over
different regions on the earth, that are known to capture
certain periodic climate events such as oscillations (Allan
and others 1996), and/or correlate with variations in atmo-
spheric fields controlling global climate (Chambers, Tapley,
and Stewart 1999; Stenseth and others 2003). We consider
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Figure 2: Monthly temporal autocorrelations in climate in-
dices computed from monthly values over 1979-2011. Some
indices, such as Tropical/Southern Atlantic Index (TSA)
have significant correlations for up to 11 months.

the December-January-February (DJF) or winter mean pre-
cipitation at a given weather station in the region as the re-
sponse. The goal, therefore, is to understand the dominant
factors for precipitation from among the large pool of possi-
ble predictors.

Sparse regression methods, such as LASSO (Tibshirani
1996), are useful in this scenario. Such methods allow si-
multaneous feature selection and regression, and are often
supported by theoretical guarantees (Negahban et al. 2012;
Banerjee et al. 2014). LASSO has been found to per-
form well empirically in multiple other domains, and also
provides fast solvers for efficient implementation (Liu and
Ye 2010). However, often predictors have temporal auto-
correlations (Fig. 2), and since stations located in a region
have geographical proximity, the data samples are also spa-
tially correlated. Further, different climate indices related to
the same climate phenomenon may be mutually correlated
(Figs. 3(b) and 3(a)). In presence of such correlations, the
set of features selected by LASSO may exhibit instability,
and may include spurious predictors. In order to address
this issue, we consider significance testing of selected set of
predictors, to obtain stable and statistically significant co-
variates as dominant predictors. We use a random permuta-
tion test (Pendse et al. 2012), to test the significance of each
selected predictor, followed by composite analysis to gain a
physical understanding of the effect of covariates on precip-
itation.

The rest of the paper is arranged as follows. We briefly
review related work in Section 2. In Section 3, we overview
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Figure 3: Climate Indices over Pacific which capture the El-
Nino Southern Oscillation (ENSO)

the sparse regression methodology, and the random permu-
tation testing framework. We describe the dataset used and
pre-processing techniques in Section 4. In Section 5, we
present experimental results, and discussions. Finally, we
conclude in Section 6

2 Related Work

In recent years statistical modeling is receiving attention
from the climate science community for improving predic-
tive performance of traditional physical models (Peña and
van den Dool 2008), as well as for statistical downscal-
ing (Hessami et al. 2008). Ridge regression, particularly,
has been widely used for multi-model ensemble forecast-
ing with Earth System Models (ESM) (DelSole 2007), and
for modeling transformation functions for computing sur-
face temperature from satellite data (McMillin, Crone, and
Crosby 1989). However, regression with dimensionality
reduction or feature selection has often been used in the
context of statistical downscaling (Corte-Real, Zhang, and
Wang ). Most commonly, regression methodologies involve
application of principal component analysis (PCA) to co-
variates to reduce dimensionality, followed by multivariate
linear or non-parametric regression models on the principal
component scores (Ghosh and Mujumdar 2008). Such meth-
ods are unsuitable for hypothesis generation since they do
not allow feature selection. Recently, (Das 2015) has ap-
plied sparse regression for understanding factors for annual
precipitation extremes over continental U.S. However, since
precipitation mechanisms vary widely over seasons, and in-
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dividual climatological regions within the U.S., such an ap-
proach cannot capture seasonal factors for precipitation.

3 Sparse Regression for Feature Selection

Sparse regression allows one to simultaneously conduct fea-
ture selection and regression, thus enabling selection of the
most predictive set of features. We consider a linear model

y = Xβ∗ + ε , (1)

where y ∈ R
n,X ∈ R

n×p are samples and β∗ is a p-
dimensional coefficient vector. The LASSO (Tibshirani
1996) method estimates a sparse β̂, by solving the following
estimation problem:

β̂ = argmin
β

1

2n
‖y −Xβ‖22 + λ‖β‖1 , (2)

where λ > 0 is a regularization parameter. In the context
of discovering the dominant factors, often there is no prior
bias on the sparsity imposed on the coefficients, although
some of the covariates considered in the model may have
strong correlations among each other, and temporal auto-
correlation within itself over monthly or seasonal values.
For example, consider the Nino4 index (Fig. 3(b)), which
is computed from sea surface temperature, and the SOI in-
dex (Fig. 3(a)), which is derived from sea level pressure.
Both indices carry information regarding the El-Nino South-
ern Oscillation (ENSO) (Allan and others 1996), albeit from
different climate variables. Hence they exhibit a high nega-
tive correlation (about −0.6). Some of the indices also show
high temporal autocorrelations (Fig 2).

In presence of such correlations in covariates and sam-
ples, the set of features selected by LASSO often have in-
stability (Meinshausen and Bühlmann 2010). Further, for fi-
nite samples, there is a non-zero probability that for a given
training set and a chosen penalty parameter LASSO selects
a non-zero coefficient for a non-informative predictor by
random chance. Therefore, we require a significance test-
ing method to test each non-zero coefficient estimated by
LASSO on training data, and compute a p-value for signifi-
cance of each feature.

Testing significance of covariates has been considered in
various problems of applied statistics, and the most com-
monly used testing methodology is random permutation
test (Nichols and Holmes 2002; Manly 2006; Ojala and Gar-
riga 2010). Such a test is a nonparametric hypothesis test-
ing framework, which measures the significance of every
non-zero coefficient value by constructing a random distri-
bution over the coefficient using random permutations of the
data. We adopted a variation of the methodology developed
in (Pendse et al. 2012) that we discuss next.

Permutation Test

We fix λ at a particular value. On the training data, we first
compute the LASSO estimate β̂ by solving (2). Next, keep-
ing X constant, we randomly permute the response y to ob-
tain a vector ỹ. The random permutation of the response
destroys any statistical relationship existing between the co-
variates in X and the response ỹ. Thereafter, we run LASSO

All Dominant Climatology
0

50

100

150

50.76 50.38
66.26

East-North-Central

All Dominant Climatology
0

50

100

150

53.29 52.12
61.66

Central

All Dominant Climatology
0

50

100

150

200

67.04 67.51
86.95North-East

Figure 4: Root Mean Square Error (RMSE) on precipita-
tion prediction (in hundredths of an inch) of Ordinary Least
Squares regression using only dominant factors and using all
covariates. Prediction errors from long-term climatology is
also plotted. The error bars denote one standard deviation.

with X and ỹ in order to obtain a random coefficient vec-
tor β̃, which represents random causal relationships between
the covariates and the response. Executing this strategy mul-
tiple (ν ≥ 1000) times, for the i-th non-zero coefficient in
β̂, we compute the probability that a random value |β̃i| ex-
ceeds the estimated value |β̂i| given by

pi =
count(|β̃i| ≥ |β̂i|)

ν + 1
. (3)

It represents the p-value associated with the corresponding
coefficient β̂i.

4 Dataset

We compiled datasets from two sources: (1) United States
Historical Climatological Network (USHCN) (Menne,
Williams Jr, and Vose 2010), and (2) North American Re-
gional Reanalysis (NARR) (Mesinger, DiMego, and others
2006). We considered the three climate regions that sur-
round the Great Lakes, as shown in Fig. 1. Precipitation
data was obtained from station records in USHCN in the
above states that lie near (< 200km) of the lakes. These sta-
tions are located in one of the following 8 states of U.S.:(i)
Minnesota (MN), (ii) Wisconsin (WI), (iii) Illinois (IL), (iv)
Indiana (IN), (v) Michigan (MI), (vi) Ohio (OH), (vii) Penn-
sylvania (PA) and (viii) New York (NY). For each station,
data for daily maximum/minimum temperature, and precipi-
tation are directly available. We considered the average win-
ter (DJF) precipitation for each station as a response, where
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Figure 5: Geographical Spread of RMSE (in hundredths of
an inch) over Great Lakes. The North-East has higher errors
than other regions.

the average is over 3 months’ daily data. Therefore, for ev-
ery region, we had winter precipitation data for stations for
1979-2011.

The covariates consisted of local, regional and global cli-
mate variables (listed in Table 1 in (Chatterjee et al. )). The
surface temperature data was obtained by taking the seasonal
maximum and minimum from the daily USHCN data. Fur-
ther, we obtained seasonal average pressure and convective
available potential energy (CAPE) over winter (DJF) and au-
tumn (SON) as covariates by interpolating the NARR data to
the local stations available from USHCN. The regional av-
erage for local covariate listed above was obtained by com-
puting the area weighted average from the local station val-
ues. For each global climate index, we considered all 12
preceding values (from Jan to Dec. of a year) as covariates.
We discarded the lower and upper one percentile of the data
since these correspond to very low and very high precipita-
tion, and therefore are “extreme events” (Das 2015), which
often have very different mechanisms than normal precip-
itation (Liu et al. 2009). In total, the dataset had ∼ 2200
samples over 32 years, where we discarded samples which
contained missing values. We divided the data into two sets.
The first, comprising of 22 years’ data, was used for find-
ing dominant factors. The second set, with the remaining
10 years’ data, was used to test predictive performance. Fi-
nally, we standardized the covariates in the two datasets by
computing the mean and variance of each predictor in the
training set of 22 years described above, and using them for
the standardization procedure.

5 Results and Discussion

We used a randomly selected 22 years’ data for obtaining
the dominant features. Further, we conducted leave-one-out
cross-validation on the remaining 10 years’ data to test the
predictive performance of the dominant predictors.

5.1 Predictive Performance

It is important to assess the predictive performance of the
dominant factors found by the proposed method against the

0 5 10 15 20 25
-40

-20

0

20

40

60

80

100

D
JF

TR
eg

m
ax

D
JF

_S
LP

R
eg

N
AO

_5
EA

_3
W

P_
1

W
P_

11
EA

W
R

_3
SC

A_
4

SC
A_

11
TN

H
_2

PO
L_

3
PO

L_
4

PO
L_

8
N

in
o1

+2
_1

2
PD

O
_1

1
N

P_
3

N
P_

5
N

P_
10

D
JF

_T
m

ax
D

JF
_T

m
in

SO
N

_T
m

in
D

JF
_S

LP
D

JF
_A

IR
_5

00

Region
Local

Pacific

(a) East-North-Central

0 5 10 15 20 25
-60

-50

-40

-30

-20

-10

0

10

20

30

SO
N

TR
eg

m
ax

SO
N

TR
eg

m
in

N
AO

_2
N

AO
_6

N
AO

_7
EA

_2
EA

_5
EA

_6
W

P_
12

PN
A_

9
EA

W
R

_2
EA

W
R

_5
EA

W
R

_6
SC

A_
12

PD
O

_4
N

P_
7

N
P_

11
TN

A_
3

D
JF

_T
m

in
SO

N
_T

m
ax

D
JF

_S
LP

D
JF

_C
AP

E

Region

LocalPacificAtlantic

(b) Central

1 2 3 4 5 6 7 8 9 10
-60

-40

-20

0

20

40

60

80

N
AO

_4

N
AO

_1
2

EA
_1

W
P_

12

EA
W

R
_1

PO
L_

4

N
P_

8

N
P_

11

N
P_

12

D
JF

_T
m

ax

Atlantic

Pacific

(c) North-East

Figure 6: Dominant factors for precipitation in each region.
The standard abbreviation for each index has been used,
along with the month represented as a number. Influences
from Atlantic and Pacific are evident in all three regions,
mainly from tropical and east pacific, and north atlantic.
Multiple summer index values are deemed significant. Fur-
ther local atmospheric influences are deemed more predic-
tive for regions further inland, while oceanic indices are the
sole dominant factors in the North-East.
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climatology of each region. The climatology denotes the
long-term average of precipitation over the region. Predic-
tive covariates need to show improvement upon the predic-
tion from long-term climatology, in order to be considered
for further hypothesis generation on the mechanism of pre-
cipitation.

We conducted leave-one-year-out cross-validation on
held out test set described earlier. Fig. 4 shows the root mean
square error (RMSE) from ordinary least squares regression
using dominant factors (less than 25 factors in each region)
vs. the entire pool of 232 predictors. The performance is
identical (2-sample t-test p-value more than 0.8 on all three
cases), and much better than simply predicting the climato-
logical mean. This illustrates that the dominant predictors
carry almost all predictive information available in the set
of covariates. Note that the dominant factors are discovered
using a statistical estimation procedure from data, and are
not guided by any physical constraints.

Further, for each station, we computed the MSE in the
test set during cross-validation. In Fig. 5, we have plotted
MSE at each geographic location of the stations. MSE in
the inland locations (Central and East-North-Central region)
are lower than in the North-East region. Higher MSE in the
North-East is understandable due to the complex processes
which affect variation of precipitation in this region. The
north pacific jet stream and the Lake Effect often causes
large variation, along with influences of winds from At-
lantic, since the area is near the coast.

5.2 Dominant Factors

For each climatological region, we obtained a subset of fea-
tures as the dominant factors, which are plotted in Fig. 6. For
choosing the regularization parameter λ, we selected 2% of
the training set as a validation set and selected λ that pro-
vides the smallest prediction mean square error (MSE) on
this validation test. In Fig. 6, for each selected factor, we
also plot the mean and standard deviation (as error bars)
of the coefficient obtained during the leave-one-out cross-
validation. Some interesting patterns emerge from these fig-
ures. Surface air temperature in winter plays a prominent
role in precipitation during the winter season. It is well
known that high snowfall years typically experience lower
than normal minimum temperature. Moreover this effect is
more pronounced in inland regions (East-North-Central and
Central). However, note that since heavy precipitation may
itself lower the surface temperature, the relationship may de-
pict correlation rather than causation.

Sea level pressure (SLP), which is a dominant factor in
the ENC and Central regions, has influence on the surface
level winds that carry moisture from the Pacific across the
continent to the Great Lakes. Lower SLP over the region is
often associated with higher moisture flow and thus higher
precipitation. However, since variations of SLP is a sur-
face phenomenon, it is more noisy as a predictor in sea-
sonal scales than higher atmospheric variables. Therefore,
we obtain higher variance in the weights for SLP over cross-
validation runs.

The North-East region behaves differently in that only a
single local atmospheric variable is selected as dominant

(a) High precipitation

(b) Low precipitation

Figure 7: Average 700mb Geopotential height anomalies in
December over (a) 10 highest precipitation years, and (b)
10 lowest precipitation years. There exists strong negative
anomaly (low pressure) over mainland U.S. in high precipi-
tation years thus increasing moisture flow from Pacific.

factor. This may be indicative of the fact that the North-
East region, due to its proximity to the ocean, is influenced
heavily by oceanic effects. As noted earlier, it is known that
there are multiple factors for variation of precipitation over
this region. For example, the Lake Effect (Niziol, Snyder,
and Waldstreicher 1995) has substantial impact on snowfall
during winter, which is influenced by the Pacific jet stream.
Due to this phenomenon, often the region experiences very
heavy snowfall over only a few days or hours.

Atlantic and Pacific influences are prominent across the
entire Great Lakes region. Moreover, comparison of the
three panels of Fig. 6 shows that Atlantic influences be-
come more prominent on the eastern part of the Great Lakes,
while most stable indices in the ENC region are computed
over Pacific. Particularly, consider the dominant factors of
precipitation over the ENC region. The dominant climate
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indices are mainly EA (East Atlantic Pattern), WP (West
Pacific Pattern), SCA (Scandinavian Pattern), TNH (Trop-
ical/Northern Hemisphere Pattern), POL (Polar/Eurasia Pat-
tern), PDO (Pacific Decadal Oscillation) and NP (Northern
Pacific Oscillation). All of these indices are computed from
or have high correlation with 700mb – 500 mb geopotential
height anomalies. Therefore, we construct composites for
geopotential height anomalies in order to further investigate
the processes leading to precip variations across the ENC
region.

5.3 Composites over Geopotential Height
Anomalies

In Fig. 7, we plot average December 700mb geopotential
height anomalies over the northern hemisphere, where the
average is taken over the 10 highest and 10 lowest precipita-
tion years. Fig. 7(a) shows a strong negative anomaly over
Canada and north-central U.S. denoting existence of a low
pressure system. The strong low pressure system is con-
ducive for increased wind flow from northern Pacific, which
picks up moisture from the Pacific ocean and thus favors
higher moisture content in the air. In the presence of colder
temperatures over much of the region, this may lead to in-
creased precipitation.

In stark contrast, Fig. 7(b) illustrates that a positive
anomaly exists over the entire U.S. for seasons with low pre-
cipitation. Such anomalies are associated with higher than
average pressure system over the region, and may adversely
affect precipitation in two ways. First, since the Pacific has
negative anomalies (Fig. 7(b)), the system is not conducive
for wind flowing into the continent from the Pacific. Thus
it leads to less moisture flow into the region. Second, the
positive anomalies at higher levels (700mb) may also lead
to down drafts from the upper atmosphere, thus decreasing
convective precipitation.

The two panels in Fig. 7 represent typical patterns for
geopotential height anomalies over the northern hemisphere
for high and low precipitation seasons. Although such influ-
ences are known in climate science, it is reassuring that the
statistical estimation procedure is able to discover such in-
fluences in a purely data driven manner. The typical patterns
seem to be captured by climate indices, and have predictive
information about local precipitation. Otherwise, in Fig. 4,
the performance of the predictive model would not be bet-
ter than the climatology of the region. Further such patterns
are often persistent over months leading to winter. Fig. 8 il-
lustrates the geopotential height anomalies averaged over 10
highest precipitation years over ENC region. The low pres-
sure region moves East from over Pacific in September to
over U.S. in December, which is consistent with the move-
ment of the Westerlies.

6 Conclusions

In this paper, we proposed a method for discovery of dom-
inant factors for precipitation over the Great Lakes region
using a sparse regression method, in conjunction with per-
mutation test for significance. Dominant factors discovered
through this process showed high predictive power and pro-

Figure 8: Geopotential height anomalies averaged over 10
highest precipitation years over ENC region in months lead-
ing to winter. The low pressure region shifts from Pacific to
over the U.S. over the Fall months along the westerlies.

duced lower error than obtained from climatology. Further,
composite analysis of some of the discovered factors shows
that certain seasonal atmospheric patterns may affect precip-
itation over the region, and is consistent with understanding
from climate science. Thus, the proposed method may be
useful for deriving hypotheses over how stable atmospheric
patterns, such as variations in geopotential heights, may pro-
duce scenarios which influence wind and moisture flow, and
thus precipitation. In general, the method will be useful for
constructing such hypothesis in various statistical modeling
scenarios in climate, which can then be further investigated
for statistical and physical significance.
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