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Abstract
Participatory sensing is a promising new low-cost ap-
proach for collecting environmental data. However,
current large-scale environmental participatory sensing
campaigns typically do not coordinate the measure-
ments of participants, which can lead to gaps or re-
dundancy in the collected data. While some work has
considered this problem, it has made several unrealis-
tic assumptions. In particular, it assumes that complete
and accurate knowledge about the participants future
movements is available and it does not consider con-
straints on the number of measurements a user is will-
ing to take. To address these shortcomings, we develop a
computationally-efficient coordination algorithm (Best-
match) to suggest to users where and when to take mea-
surements. Our algorithm exploits human mobility pat-
terns, but explicitly considers the inherent uncertainty
of these patterns. We empirically evaluate our algorithm
on a real-world human mobility and air quality dataset
and show that it outperforms the state-of-the-art greedy
and pull-based proximity algorithms in dynamic envi-
ronments.

Introduction
Participatory sensing has gained a lot of attention in the re-
search community in recent years. It has been established
as a de facto research methodology, engaging citizens in the
collection of information using mobile devices they carry on
them. Specifically, this concept has been successfully used
in environmental monitoring, as people are able to provide
information to help in urban planning and public health.
For instance, Noisetube (Maisonneuve, Stevens, and Ochab
2010) and Citisense (Nikzad et al. 2012) are projects that
monitor noise and air pollution in cities involving citizens
using their GPS-enabled mobile phones.

Monitoring environmental phenomena is crucial because
of their potentially detrimental effect on human health. Con-
cretely, noise pollution is associated among others with hear-
ing impairment, and ischematic heart disease (Passchier-
Vermeer W 2000). Air pollution is responsible for a range
of heart-related and respiratory diseases that lead to millions
of annual deaths (Seaton et al. 1995; World Health Organi-
zation and others 2014).

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, monitoring environmental phenomena using
the participatory sensing paradigm is challenging as users
are typically willing to take only a limited number of mea-
surements per day (Chon et al. 2013). Furthermore, people
have limited information about the environment and are un-
aware about how their measurements contribute to the over-
all campaign. Thus, multiple participants may take measure-
ments at the same locations and times, rather than at those
locations that are most informative. Consequently, some ar-
eas of interest remain unexplored, which might lead to a
false or partial understanding of the environmental phe-
nomenon, or people end up doing duplicate work.

In order to address these challenges, an intelligent system
for coordinating the measurements taken by participants in
participatory sensing campaigns is needed. Such a system
can guide participants by suggesting who should take mea-
surements where and when in order to maximize the infor-
mation collected and thus improve the understanding of the
dynamic phenomenon. In doing so, it can exploit probabilis-
tic information about the participants’ future mobility pat-
terns, as these are often highly predictable (McInerney et al.
2013; Baratchi et al. 2014). At the same time, the system
must consider the limited number of measurements that in-
dividuals are willing to take.

Previous work has addressed these problems only par-
tially. For instance, TRACCS (Chen et al. 2014; 2015) at-
tempted to coordinate participants in a different domain. The
aim of that paper is to assign humans to tasks based on their
mobility patterns to maximize the payoff of tasks in a given
time period. However, there is no limit on how many tasks
people can do and the tasks are completely independent from
each other. Once executed, they are also no longer available.
In environmental monitoring, measurements are dependent
on each other and since the phenomenon is dynamic, there
is a need to re-visit locations to take more measurements.
Other work (Zenonos, Stein, and Jennings 2015), attempted
to tackle coordination of measurements for environmental
monitoring but they only did so partially. In particular, there
was no constraint on the number of measurements an indi-
vidual can take and it was also assumed that there was com-
plete knowledge of human mobility patterns, which is not
true in practice. Also, they showed results for up to 250 indi-
viduals, which is somewhat limited for a large-scale partici-
patory sensing application. A large-scale participatory sens-

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

3936



ing campaign can expect many hundreds or even thousands
of people depending on the city and the nature of the phe-
nomenon being monitored. The need for a coordination sys-
tem is also highlighted in the work of (Zaman et al. 2014;
D’Hondt et al. 2014), but they focus on receiving feed-
back from participants rather than actively coordinating their
measurements.

In this paper, we address these shortcomings by proposing
a novel coordination algorithm for large-scale monitoring of
dynamic environmental phenomena using the participatory
sensing paradigm. The algorithm adaptively selects obser-
vations to be taken at each timestep and maps individuals
to measurements both in space and time in order to maxi-
mize the information learned about the environment over a
given time period. The algorithm is able to deal with thou-
sands of participants, incorporates probabilistic knowledge
of the mobility patterns of humans and assumes that people
have a daily limit/budget on the number of measurements
they are willing to take. Our algorithm makes use of cluster-
ing techniques, heuristic search and random simulations. In
particular, the contributions of this paper are:

• We develop a novel stochastic coordination algorithm that
is able to scale up to thousands of participants. The algo-
rithm considers each individual’s budget which is realis-
tically determined based on large empirical studies (Chon
et al. 2013) and incorporates probabilistic knowledge
about human mobility patterns.

• We empirically evaluate our algorithms on real human
mobility and air quality sensor data and show that our al-
gorithm significantly outperforms the state-of-the-art al-
gorithms in dynamic scenarios.

Problem Definition
This section formally introduces the problem of coordinat-
ing measurements in participatory sensing for environmental
monitoring, which is based on (Zenonos, Stein, and Jennings
2015) and extends it to include the limited measurements
that users can take per day. An environmental campaign is
a campaign initiated by the taskmaster, to collect as much
information about a particular phenomenon in an environ-
ment as possible. An environment E is a continuous set of
spatio-temporal locations (L, T ) that the taskmaster is inter-
ested in. This includes the spatial and temporal boundaries
of the area of interest and time interval. A set of humans
A= {A1, . . . ,AM} can take a set of discrete measurements1

within the spatial boundaries of this environment and within
the time period of the campaign (O = L × T ). The set of
observations made before or at time t is denoted as Ot ⊆ O
while the set of observations made at time t is denoted as
Ot ⊆ Ot.

A utility function u : 2O → R
+ assigns a utility value

to a set of observations. The value assigned by this function
is based on the entropy given by the Bayesian D-optimality
criterion (Krause, Singh, and Guestrin 2008) and it is fur-
ther discussed in the next section. Here, it is sufficient to
say that the goal is to maximize the sum of utilities over

1Also called observations.

the time period of the environmental campaign. Chon et al.
2013, show that people tend to contribute a specific amount
of information in participatory sensing campaigns. Indeed,
we cannot assume that people can take an unlimited number
of measurements but they rather have a budget. Thus, each
individual has a specific budget, i.e., Bi ∈ N, which is the
maximum number of measurements they can take within a
day.

Finally the utility can be expressed as:

U(OE) =

E∑
t=1

u(Ot) (1)

where u(Ot) considers the observations made by citizens at
the right locations and timesteps. The problem is to decide
where and when the citizens should make these observations
to maximize this function given a probability distribution
over people’s possible locations at each timestep. Hence, the
optimization problem can be formulated as follows: map a
set of humans to a set of spatio-temporal coordinates to max-
imize the utility over the period of the campaign, subject to
the individual budget constraints of participants. Formally,
S∗ = arg maxs U(OE) where OE are the measurements
taken according to the mappings s : A × T → L.

Modelling the Phenomenon
This section explains how we model the environmental phe-
nomenon using a non-linear and non-parametric regression
model called Gaussian processes (GPs). First, we discretized
the environment in a way such that we create a grid of
1000 × 1000 meters per square and time to 24 timesteps
so that each timestep represents an hour. Consequently, we
say that locations L ⊂ L are the intersections of the grid
and T ⊂ T are the timesteps. Each location l ∈ L and
time t ∈ T is associated with a random variable Xl,t, that
describes an environmental phenomenon, such as noise or
air pollution. We use Xl,t = xl,t to refer to the realiza-
tion of a random variable at a particular spatio-temporal
coordinate, which becomes known after an observation is
made. In order to describe the phenomenon at time t over
the set of locations (L), given that some observations have
been made in the past (Ot−1), we use XL,t|Ot−1

. Similarly,
we denote by the random variable XL,t|Ot

, the environ-
mental phenomenon over the set of locations L at time t
given that a set of observations are made at time t. For sim-
plicity in the notation, and unless stated otherwise we use
Xy = XL,t|Ot−1

, XA = XL,t|Ot
and the realization of the

measurements over the set of locations L given a set of ob-
servations XA = xA. Given the nomenclature above, we can
now model the phenomenon. As shown in (Krause, Singh,
and Guestrin 2008), the measurements of an environmental
phenomenon can have a multivariate Gaussian joint distri-
bution over all of their locations L and timesteps T . It is an
effective way to capture the spatio-temporal relationship of
different coordinates which enables the use of advanced re-
gression techniques. Since we are interested in monitoring a
dynamic environmental phenomenon over some spatial co-
ordinates and a time period we use GPs. GPs can generalize
the multivariate Gaussians to an infinite number of random
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variables and thus generalize over the entire set of locations
and timesteps (Rasmussen and Williams 2006). The main
advantages of GPs are that they can capture structural corre-
lations of a spatio-temporal phenomenon as well as provide
a value of certainty on the predictions, i.e., predictive uncer-
tainty. Crucially, it is sufficient to know the locations of the
observations but not the actual value of the measurement, to
get the variance over the predictions.

The GP can be fully specified by a mean m(x) and a co-
variance function (also known as kernel) k(x,x′). It can be
interpreted as a distribution over functions, where every ran-
dom variable represents a value of a function f at a spe-
cific point. Formally, f(x) ∼ GP(m(x), k(x,x′)). In order
to simplify our notation we denote the mean vector of some
set of random variables XA as μA. By providing some mea-
surements xA at some spatio-temporal coordinates, it can
predict the value at other spatio-temporal coordinates where
no measurement was taken. Most importantly, it provides
the corresponding predictive uncertainty which is associated
with the values in both the observed and unobserved loca-
tions. The distribution P (Xy|xA), i.e., Xy given these ob-
servations xA, is also Gaussian with mean μy|A and variance
Σy|A, which are formally given by:

μy|A = μy +ΣyAΣ
−1
AA(xA − μA)

Σy|A = Σyy − ΣyAΣ
−1
AAΣAy

(2)

There is a lot of discussion around which kernel to use for
each problem. In particular, air pollution could be mod-
elled using a composite non-stationary space-time covari-
ance function that would be able to better capture the change
of smoothness of the function depending on the location
and time (Garg, Singh, and Ramos 2012). However, in or-
der to preserve time efficiency, a common choice of covari-
ance function is Matérn (Jutzeler, Li, and Faltings 2014;
Ouyang et al. 2014), which we adopt in this work. For-
mally, k(x,x′) = σ2

f (1 +
√
3r) exp(−

√
3r) + σ2

nδx,x′ where

r =
√

(x − x′)T P−1(x − x′), P =

[
l1 0 0
0 l2 0
0 0 l3

]
and

θ = {l1, l2, l3, σ2
f , σ

2
n} are the parameters of the covariance

function (also known as hyperparameters) that need to be
learned. We are mostly interested in l1, l2, l3 that are crucial
to the representation of the dynamism of the phenomenon
in both spatial and temporal dimension. We refer to l1, l2 as
length-scales and l3 as time-scale.

This formalism allows the GP to update both the spatial,
as well as the temporal aspect of the phenomenon. Also, σ2

f

and σ2
n are parameters that control the sensitivity of the ker-

nel to both measurements and noise while δx,x′ is the Kro-
necker delta, which is 1 if x = x′, and 0 if x �= x′.

In this work, hyperparameters are initially unknown.
However, we exploit historic fine-grained data provided
from a number of static air quality stations in Bei-
jing (Zheng, Liu, and Hsieh 2013) to train the model. To do
so, we use a common technique called maximum likelihood
estimation (MLE). That is finding the parameters θ that max-
imize the log marginal likelihood (ML) log p(xA|θ), which

is given by − 1
2 (xA−μA)

TΣ−1
AA(xA−μA)− 1

2 log |ΣAA|−
n
2 log 2π.

Gaussian processes provide the mathematics of the util-
ity function we need to maximize. As mentioned in the
previous section, the utility is based on the Bayesian D-
optimality criterion, which in terms of our problem measures
the reduction of entropy at all locations of the environment
(global metric) by making a set of observations. It provides
the mutual information between observations made at previ-
ous timesteps and observations made at present. Given the
knowledge about GPs, it can be seen as proportional to the
uncertainty without making any observations minus the un-
certainty when observations are made, which is given by:
I(Xy;XA) = H(Xy) −H(Xy|XA). Using a GP to model
the environment, we develop an algorithm to exploit predic-
tive uncertainty and the information metric we designed.

Algorithm Design
Our algorithm is designed to work with thousands of partic-
ipants with stochastic information about their mobility pat-
terns. As shown in (Krause, Singh, and Guestrin 2008), find-
ing the optimal solution is computationally infeasible. In this
work we focus on designing an efficient algorithm that out-
performs the state of the art. The challenges are the proba-
bilistic nature of human mobility patterns as well as the large
number of participants. Thus, our algorithm must be robust
under stochastic information and scalable. In this section, we
formally and intuitively explain how our algorithm works.
Our approach consists of two main components, the offline
component, i.e., the SiScaS algorithm (Algorithm 1), and
the online component, i.e., the Best-Match algorithm (Al-
gorithm 3). SiScaS solves the problem of finding the best
mapping from observations to agents in space and time in
a number of simulations and Best-match deals with finding
those mappings in real-time.

Simulations for Scalable Searching (SiScaS)
The Simulations for Scalable Searching (SiScaS) algorithm
is a critical component in our work as it is responsible for a
number of functions including calling the Stochastic Local
Greedy Search (SLGS) algorithm. The algorithm is shown
in Algorithm 1. In particular, this algorithm is responsible
for sampling from the human mobility patterns distributions
(line 4), in order to get possible future locations for each
of the participants. It also clusters people in spatially corre-
lated groups for all the timesteps using a well-known clus-
tering technique called DBSCAN (Ester et al. 1996) (line
5). DBSCAN enables the grouping of people based on the
distances between each other. Consequently, people close to
each other are said to belong to the same cluster and thus
can be treated as a single entity, which is crucial in scal-
ing up the number of participants in the campaigns. Since at
each timestep people can be in different locations, the algo-
rithm produces a different set of clusters for each timestep.
Formally, C is a set of spatio-temporal clusters that include
information about each participant’s location and budget as
well as the centroid of each cluster. Finally, SLGS is called
(line 6) and the human mobility patterns as well as the
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spatio-temporal clusters are passed to it. For each iteration
of the algorithm, SLGS will produce a different mapping
of participants to measurements since it will keep sampling
from the mobility patterns and forming clusters clusters for
a number of times N .

Algorithm 1 Simulations for Scalable Searching (SiScaS)
Algorithm

1: input: E (timesteps), current (current timestep), B1,...,M

(budget)
2: Simulations = N
3: for s = 1 to Simulations do
4: A, L ← SAMPLEHMPs {Sample from human

mobility patterns distribution}
5: Cs ← DBSCAN(A, L,E − current)
6: S∗s ← SLGS(E,C, current, B1,...,M )
7: end for
8: return: S∗1,...,N , C1,...,N

The Stochastic Local Greedy Search Algorithm (SLGS)
algorithm is the core component of SiScaS. It is an anytime
stochastic variation of LGS presented in (Zenonos, Stein,
and Jennings 2015). The idea is to stochastically evaluate
a number policies, according to the utility function defined,
and greedily proceed to a neighbouring policy by applying
local changes in order to maximize that function. In other
words, SLGS is given a set of spatio-temporal clusters, the
budget of people and a number of timesteps and finds a
mapping between clusters and possible measurements such
that the information about the environment is maximized.
Each cluster can take a single measurement at a time which
is assumed to be taken from its centroid. The reason is to
avoid using individuals’ locations to make our algorithm
more efficient. Since the number of spatio-temporal clus-
ters can be large (up to a maximum of the number of par-
ticipants times the number of timesteps, i.e., M · E) we
sample again through space and time. Consequently, we are
left with a smaller number of spatio-temporal clusters. We
greedily select measurements that maximize the total infor-
mation. However, in order to save computation time, we stop
the process when the increase of information, when taking a
specific measurement is below a predefined threshold.

Now, the SLGS algorithm, shown in Algorithm 2, is de-
scribed in more detail. The algorithm accepts the locations
of people spatially clustered per timestep, as well as the bud-
get of each individual, the total number of timesteps and the
timestep the campaign is currently up to (line 1). Given that
there is sufficient budget left for at least one person in the
cluster, it randomly selects a cluster per timestep (line 7). It
then checks what the utility would be when adding a mea-
surement from the centroid of each cluster and forwarding
the campaign in time to check what the final utility would
be (line 9-14). This enables the simulations to run fast since
not every single position in the cluster is considered by the
Gaussian Process.

Then, the algorithm finds the cluster that produced the
highest marginal increase (δ) in utility and selects it (line
15). This measurement can no longer be removed or recon-

sidered in the following iterations. At the same time, the
budgets of people in the cluster selected are adjusted ac-
cordingly, i.e., the budget of all the people in the cluster is
reduced by one since all of them are requested to take a mea-
surement (line 16). The algorithm iterates until the marginal
increase is below a percentage threshold or people’s budget
is depleted (line 19 and line 4 respectively).

Algorithm 2 Stochastic Local Greedy Search (SLGS)

1: input: E (timesteps), C (clusters), current (current
timestep), B1,...,M (budget)

2: maxU ′ = 0, S∗ ← null matrix(|C|)
3: for k = 1 to |C| do
4: if max(Bi) == 0 then
5: return: S∗
6: end if
7: z ← RANDOMSAMPLE{take a random sample

per timestep from clusters where people have some
budget left such that z ⊆ C}

8: sz ← |z|
9: for l = 1 to sz do

10: for r = current to E do
11: U(Or) ← u(Or) {For each l we have a different

spatio-temporal cluster}
12: end for
13: sl ← getMappings(U(OE)){Get the single best

mapping from a user to spatio-temporal location }
14: end for
15: Keep maximum U(OE) of sl in maxU variable
16: Reduce budget from humans in cluster containing sl
17: Set S∗ to be the best configuration in sl
18: δ = (maxU −maxU ′)/maxU
19: if δ < threshold then
20: return: S∗
21: end if
22: maxU ′ ← maxU
23: end for
24: return: S∗

Best-Match Algorithm
SiScaS will produce a number of mappings (N ) of par-
ticipants to measurements depending on the samples taken
from human mobility patterns as well as the clusters that
are formed. However, in real-time, participants can actually
be in a different location or they may not available at all.
The idea of Best-Match algorithm is to decide what mea-
surements to request in real-time, given the output of SiScaS
(S1,...,N ) as well as the state of the world at each timestep.

Concretely, the Best-Match algorithm (Algorithm 3) gets
human locations (line 2) in real-time and clusters them using
the DBSCAN algorithm (line 3). Then, the algorithm finds
the best match between measurements that are most infor-
mative, as calculated in advance, and the actual positions
of participants in real-time. Specifically, we find the nearest
neighbours from the real-time clusters to the clusters pro-
duced in SiScaS (line 5) and then the Euclidean distance be-
tween them is calculated (line 6). The smaller the distance,
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the more similar the clusters are. The index of the clusters
with the smallest distance among each other is used to select
the simulation that best matches the current clusters (line 8).
Given what measurements were selected in the simulations
in advanced, the corresponding clusters are said to take those
measurements (line 9).

Algorithm 3 Best-match

1: input: E (timesteps), current (current timestep), B (bud-
get), S1,...,N , C1,...,N

2: A, L ← Get human locations{Get GPS coordinates of
users}

3: C ′current ← DBSCAN(A, L, current){C ′current are
the clusters formed at the current timestep in real-time}

4: for s = 1 to N do
5: Find nearest neighbour from C ′current to Cs

current
6: Ds ←Calculate Euclidean distance of C ′current near-

est neighbours
7: end for
8: ind ← Find minimum D{Get the index of the minimum

distance.}
9: Select measurements that match S∗ind{S∗ind is the best

match between clusters formed in simulations in ad-
vance and real-time clusters}

In order to speed up our algorithms we reuse some of the
results already calculated by partially evaluating policies in
SLGS algorithm. In particular, at each iteration of policy
evaluation in time, i.e., when forwarding the campaign in
time, we store the utility earned from that part of the pol-
icy. When this part of the policy appears again, we reuse the
utility without the need to re-evaluate it.

Empirical Evaluation
In this section, we evaluate the algorithm developed using
real human mobility patterns and air quality sensor data. In
the first part, we introduce our benchmarks and give a de-
scription of the experiments performed. Finally, we discuss
our findings.

Benchmarks
The algorithm developed was benchmarked against the
state-of-the-art algorithms which are introduced below:
• Naive Greedy: This algorithm is based on (Krause,

Singh, and Guestrin 2008). It iterates through possible
measurements available at each timestep, finding the one
that produces the highest utility. It keeps adding measure-
ments until a budget k is met. In our setting k is de-
rived based on the total budget of people available at each
timestep. In particular, we divide the total budget that is
available with the number of timesteps left.

• Proximity-driven (Pull-Based): This algorithm is
mostly used in practice to let people execute tasks based
on their spatial location. In environmental monitoring
this can be interpreted as taking measurements when
people are in an area of high uncertainty or when the
measurement they take has a high utility. This approach

is used by the state-of-the-art mobile crowdsourcing
applications such as FieldAgent2 and GigWalk3 and it is
outlined in (Chen et al. 2014).

• Random: This algorithm assumes that measurements are
randomly taken by people until no budget is left.

• Patrol: This algorithm assumes people take measure-
ments at all timesteps until their budget is depleted.

Also, since the optimal algorithm is computationally infea-
sible we developed an upper bound to the algorithm that can
be easily calculated. The upper bound is described below:

• Upperbound: We relax the assumption that people have
a limited budget. Thus, all participants can take measure-
ments at every timestep, and the total utility of this can be
trivially calculated.

Experimental Setup
Our experiments are based on the setup described
in (Zenonos, Stein, and Jennings 2015). In particular,
we evaluate our algorithm on real air quality (Zheng,
Liu, and Hsieh 2013) and human mobility data (Geolife
dataset) (Zheng et al. 2009). Air quality data are collected
in terms of particulate matter (PM2.5) over a year in Bei-
jing and mobility data in a period of 5 years in the same
city. The air quality dataset was used to train our Gaus-
sian process model, i.e., estimate its hyperparameters, as this
phenomenon exhibits different behaviour at different spatio-
temporal coordinates. In other words, air pollution varies de-
pending on the time of the day and the location. The human
mobility patterns dataset contains the trajectories of 182 hu-
mans as reported by portable GPS devices. We preprocess
the dataset, and take the location of each user every ten min-
utes. We also take patterns of different weeks or months
from the same pool of participants’ trajectories. In order to
make the system more realistic, we provide a probability dis-
tribution of the locations the user could be. This is to simu-
late the behaviour of a real human mobility prediction sys-
tem that is able to provide us with probabilities over a num-
ber of locations that each user could be at each timestep. In
particular, in this work, we assume that the correct locations
have a high probability (80%) of being assigned a higher
probability than the rest of the locations. Next, we randomly
distribute the probability left to a number of historic or fu-
ture locations. These locations are based on the ground truth
provided from the Geolife dataset. Furthermore, people have
a limited budget of measurements they are willing to take
per day. Specifically, a large-scale empirical mobile crowd-
sourcing study showed that each individual had on average
a contribution of two to eleven measurements per day with-
out any monetary incentives (Chon et al. 2013). So, we are
assuming a random budget within that range for each indi-
vidual. The next section presents the results of our exper-
iments. Our experiment involves comparing the execution
time of the algorithms and the performance in terms of util-
ity gained in campaigns with different numbers of partici-

2http://www.fieldagent.co.uk/
3http://www.gigwalk.com/
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Figure 1: Total utility gained for 24 timesteps when (a) run with 250, (b) 500, (c) 750 and (d) 1000 participants. The error bars
indicate the 95% confidence interval.

pants and different time-scale which affects the dynamism
of the phenomenon.

Results
Figure 1 shows results of the performance of the algorithms
coordinating a varying number of participants when vary-
ing the time-scale which controls the dynamism of the phe-
nomenon. The smaller the time-scale, the more dynamic the
phenomenon is. Consequently, as the time-scale approaches
zero, each timestep is more independent from the other. In
this dynamic environment best-match algorithm is better in
terms of total utility gained than the rest of the algorithms.
However, when the time-scale is more than 3, simple algo-
rithms perform better and the naive greedy algorithm per-
forms the best. The advantage of the naive greedy algorithm
is that it is able to choose individuals who could potentially
be in different clusters to take measurements that increase
the total utility. However, this comes at a great computa-
tional expense as the algorithm needs to consider all the par-
ticipants one by one until the k best observations are found
at each timestep. In particular, we did not calculate the to-
tal utility gained for 1000 participants as it was very com-
putationally intense to do so. Also, when the environment
is dynamic, more measurements are taken in the beginning
of the campaign as it cannot look ahead in time. It is pos-
sible that some future measurement is more informative if
no measurement was taken at that location in the past. On
the other hand, the Best-match algorithm is designed to pro-
duce reasonable outcomes in dynamic environments and it
is shown to outperform all the benchmarks in these environ-
ments. When the phenomenon is not very dynamic, a few
measurements, taken either randomly or at the beginning of
the campaign (patrol algorithm) can reflect the big picture of
the environment without any intelligent algorithm involved.
The reason is that a single measurement at the beginning
of the campaign can provide the information necessary to
understand the phenomenon without the need for more mea-
surements. The Proximity algorithm chooses measurements
that are informative, but it does not perform well. The reason
is that in some cases the individual measurements are not so
informative but if a lot of measurements were taken, the util-
ity would be much greater overall. Moreover, it is difficult to
define which measurements are informative as it needs to be
empirically determined.
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Figure 2: Total utility gained for 24 timesteps and a vary-
ing number of participants at a constant time-scale of 1. The
error bars indicate the 95% confidence interval.

Figure 2 shows the results of the performance of the algo-
rithms in terms of utility gained when we vary the number
of participants M in the campaign. The dynamism in this
experiment is fixed at 1, i.e., highly dynamic phenomenon.
We can observe that Best-Match is 75.34% better than the
second Greedy algorithm for 250 participants, 49.13% bet-
ter for 500 participants, and 12.71% for 750 participants.
This is because Best-match can look ahead in time, and thus
make choices that will increase the total utility by the end of
the participatory sensing campaign.

Figure 3 shows results of the performance of the algo-
rithms in terms of the total runtime by varying the dynamism
of the phenomenon. The results show that the Best-match
algorithm is faster than the Greedy algorithm. This is be-
cause Best-match stochastically selects measurements taken
by groups of people, i.e., people are not considered individ-
ually. Also, we can observe the Best-match algorithm has
a reasonable runtime performance (approximately 2 hours)
with thousands of participants.

Conclusion and Future Work
This paper presents a novel stochastic algorithm for map-
ping humans to observations based on their daily mobility
patterns. We formulate the optimization problem of maxi-
mizing an entropy-based objective function over a period of
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Figure 3: Average runtime for 24 timesteps and a varying
number of participants. The error bars indicate the 95% con-
fidence interval.

time given budget constraints. In particular, we develop the
Best-Match algorithm, which is benchmarked against the-
state-of-the-art Greedy and Pull-based algorithms. We show
that our algorithm outperforms those algorithms in terms of
utility for dynamic phenomena while it has a reasonable run-
time. There are several future possible avenues for our work.
We would like to embed a real human mobility patterns pre-
diction system in our approach and try our algorithm in the
field. Also, we could take into account adversarial people
that benefit from false or inaccurate measurements as well
as provide robustness against sensor failures. In addition,
we could evaluate our algorithm in a different domain. Con-
cretely, it can be useful in active learning approaches where a
different complex utility function needs to be optimised. For
example, in a crowdsourcing classification system, where
users are asked to verify objects classified from a machine
vision algorithm, the utility could capture how valuable hu-
man input is. Our algorithm could be then used to decide
which users to ask to increase the overall system’s efficiency.
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