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Abstract

With renewable energy becoming more common, energy
prices fluctuate more depending on environmental factors such
as the weather. Consuming energy without taking volatile
prices into consideration can not only become expensive,
but may also increase the peak load, which requires energy
providers to generate additional energy using less environment-
friendly methods. In the Netherlands, pumping stations that
maintain the water levels of polder canals are large energy
consumers, but the controller software currently used in the in-
dustry does not take real-time energy availability into account.
We investigate if existing AI planning techniques have the po-
tential to improve upon the current solutions. In particular, we
propose a light weight but realistic simulator and investigate
if an online planning method (UCT) can utilise this simula-
tor to improve the cost-efficiency of pumping station control
policies. An empirical comparison with the current control
algorithms indicates that substantial cost, and thus peak load,
reduction can be attained.

Introduction
The Netherlands contains many areas that lie below sea level.
To prevent these areas, called polders, from flooding, they
are surrounded by dikes and allow their water levels to be
controlled. This is done through mechanical devices such
as windmills or, nowadays usually, pumping stations. When
rain falls and the water levels in the polders rise too high, the
water is pumped out into canals that act as a drainage system.
The operation of the pumps in these systems falls under the
responsibility of water boards and has evolved from manual
control to the use of automatic controllers.

The design of pumping station controllers can be com-
plex due to the need to reason about probabilities of rainfall
and energy prices, and the way that the actions of different
pumping stations will interact. While current state-of-the-
art controllers of our industrial partner, Nelen & Schuur-
mans (N&S), do reason about projected amounts of rain,
they do not explicitly consider the interaction of actions
taken at different pumping stations, nor do they reason about
energy prices and their uncertainty. This latter point is ex-
pected to be particularly problematic for the affordability

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of maintaining desired water levels in the future; operation
of pumping stations is energy intensive and, with the ad-
vent of more renewable energy sources such as wind and
solar, the amount of available energy and thus its price is ex-
pected to vary more (Würzburg, Labandeira, and Linares
2013). As with other applications that rely greatly upon
energy availability (De Nijs, Spaan, and De Weerdt 2015;
Rogers, Ramchurn, and Jennings 2012), controlling pump-
ing stations without taking the availability into account will
become very expensive and challenging. On the other hand,
this yields an opportunity: optimising when to pump can save
costs. Moreover, better scheduling may lead to reduced peak
load and thus a positive effect on the entire energy network
by reducing the amount of additional energy required to be
generated (Ketter, Peters, and Collins 2013).

While there has been considerable research into the con-
ceptually related topic of controllers for irrigation networks
(Cantoni et al. 2007), these networks rely on gravity rather
than pumps, meaning that the energy efficiency question is
much less pressing in this domain. In this paper, we present
an initial investigation into whether AI planning techniques
can be used to improve coordination and energy use in pump-
ing station control. In particular, we present a detailed yet
lightweight simulation of an existing polder system in The
Netherlands, and discuss how a state-of-the-art AI planning
technique, UCT (Kocsis and Szepesvári 2006), can be ap-
plied to it. We validate the proposed simulation model by
comparing it with more detailed industrial models, discuss
domain-specific modifications of UCT, and report on an em-
pirical evaluation that demonstrates that the resulting tech-
nique has the potential to significantly reduce costs when
compared to the solutions currently used in practice.

The Problem Domain

The pumping station control problem is a sequential decision
problem under uncertainty. The main difficulty is the require-
ment to coordinate between multiple pumping stations, while
taking into account the uncertainty of how circumstances
(such as rain and energy prices) will develop. In this paper,
we focus on the polder system called Vereenigde Raaksmaats-
en Niedorperkoggeboezem (VRNK) (Figure 1), which is lo-
cated in The Netherlands and administered by the water board
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Figure 1: Illustrations of the VRNK polder system: on the left
an overview with main (controllable) polders indicated by
darkened areas and on the right the modelled VRNK polder
system with lines as canal parts, circles as controllable pump-
ing stations, triangles as uncontrollable pumping stations and
a square as end drain.

Hoogheemraadschap Hollands Noorderkwartier (HHNK).
HHNK and N&S have identified this system as suitable for
experimentation in the form of testing new controllers and
having a large potential for energy cost savings (Nelen &
Schuurmans 2013).

The VRNK polder system has a water surface of 163 ha
and discharges in the north. It contains 20 polders with a
typical surface between 300 ha and 700 ha. We consider the
pumping stations of seven polders to be controllable by our
method, which have been selected for real-world pilots as
they have the largest pumping capacity and thus the highest
expected cost reduction.

Currently, the inlet to and discharge from the VRNK
canals is fully automated using the controller software Con-
trol NEXT (CN) (Deltares 2015a). CN is based on expert-
knowledge and the results of a repeatedly running hydro-
logical simulation model, and has proven itself in practice
through its utilisation by various companies. CN bases its
pumping actions on the current water levels and the expected
amount of excess water in the future. This gives a good in-
dication of how much pumping capacity is needed and over
what time span. However, CN does not reason about energy
prices or interactions between pumping stations, which of-
fers great potential for improvement. Pseudocode for CN is
described by Kanters [2015].

To produce the energy required by the pumping stations,
water boards rely on purchasing energy through one of the
available markets. Like many European electricity markets,
the Dutch electricity market is held in three eponymous
stages: the Day-Ahead Auction Ea, the Intraday market Er

and the imbalance market Ei (Triple 2015). The Day-Ahead
Auction is held one day before delivery. The Intraday market
allows purchases at hourly intervals as well as freely defin-
able block orders up to 5 minutes prior to delivery. While
these two markets are two-sided and settle demand and supply
between different electricity traders, the imbalance market
typically employs a one-sided auction where up- or down-
ward regulation power (or reserve capacity) is offered to the
transmission system operator as single buyer.

All of these markets are characterised by stochastic price
developments, with decreasing transaction volume v, in-
creasing average prices μ and increasing price volatility
σ, such that vEa

> vEr
> vEi

, μEa
≤ μEr

≤ μEi
and

σEa
< σEr

< σEi
. We have selected the imbalance mar-

ket as a challenging test environment. As it is notoriously
difficult to predict, we expect results to generalise to other
market price signals, given that they may be more predictable
and thus less challenging to plan for. The experiments in this
article thus use historical data of imbalance prices (TenneT
2015).

Online AI planning

Since current pumping station controllers do not take en-
ergy prices into account, the expected cost for maintaining
water levels within desired limits is going to increase if en-
ergy is obtained from volatile short term markets with higher
average prices. In this paper we investigate the ability of on-
line planning methods, and particularly Monte Carlo Tree
Search (MCTS) (Browne et al. 2012), to exploit the flexi-
bility in when to pump to benefit from the changing prices.
Like model predictive control (MPC) (Qin and Badgwell
2003), such methods employ models of the environment to
determine which action to take while interacting with the en-
vironment. However, in contrast to typical MPC approaches,
MCTS methods reason about different possible execution
paths that might occur (due to stochastic noise, unpredictable
events, etc.), as well as the optimal actions to take if those
paths occur.

Conceptually, these methods work by treating their envi-
ronment as a Markov decision process (MDP) (Puterman
1994); at every time step, or decision epoch, the environment
is in a particular state s, which is affected by the action a
of the controller, or agent, leading to a next state s′. A full
MDP model specifies both the probabilities of transitions
P (s′|s, a), as well as the corresponding immediate rewards
R(s, a, s′) that specify the task. The agent’s goal is (typically)
to maximise the expected sum of rewards.

MCTS methods, however, are sample-based planning
methods that do not need access to a full MDP model. In-
stead they only need a generative model, or simulator, G from
which transitions and rewards can be sampled s′, r ∼ G(s, a).
They work by sampling the effects of actions and creating a
tree structure based on the results. While building the tree,
MCTS uses a rollout policy to select actions in states that are
not part of the tree yet, to swiftly sample the quality of the
state. This quality is then used to update the tree, allowing it
to estimate the quality of each state in it. MCTS navigates
through its existing tree structure by selecting actions that it
believes are worth sampling. This selection greatly affects
the performance of MCTS. One of the most successful ways
of doing this is through Upper Confidence Bounds for Trees
(UCT) (Kocsis and Szepesvári 2006). Using the algorithm
UCB1 (Auer, Cesa-Bianchi, and Fischer 2002), actions are
selected based on their optimistic potential value.

When MCTS is applied in the real world, it uses the sim-
ulator for planning. In this paper, however, we evaluate the
proposed method in simulation. This gives rise to two differ-
ent simulators: the real simulator Ms as stand-in for the real
world, and the planning simulator Mp as generative model
given to the agent for planning purposes. In many cases, these
two simulators can be identical, but we will need to treat them
differently in some aspects as discussed later.
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Polder System Simulation

This section proposes a generative model for the pumping
station domain. As sample-based techniques often require a
large number of samples that indicate effects of actions, it is
important that the simulation runs fast enough to facilitate
this. Water level simulators currently used in practice, such
as SOBEK (Deltares 2015b), focus on accuracy more than
speed and thus are not fit for our purposes. In this section
we propose our own simulator which has a more suitable
trade-off between speed and accuracy.

The model we use for the polder system represents its
canals as a graph with canal parts as nodes. Each canal part
can have a polder or an end drain connected to it, where
polders can pump water into the canal part and end drains
pump water out of the canal part. Though our controller
only selects actions for a number of pumping stations, as
mentioned earlier, all pumping stations are modelled in our
simulation, and by default controlled through CN. Canal parts
and polders both have a number of fixed properties:
• a target (or goal) water level margin Lg in mNAP1;
• a bottom water level margin Lb in mNAP;
• a top water level margin Lt in mNAP;
• a maximum water level Lm in mNAP (exceeding this

causes flooding);
• a surface area A in m2.
Polders and end drains have one additional fixed property:
• a pumping station capacity Sc in m3/s.

State Definition Apart from fixed properties, canal parts
and polders also have variable properties, which are defined
in the state. The state also contains variable properties for the
energy prices and weather. We formally define the state as
s = 〈Lc, HCe

(t), HRf
(t)〉 where Lc is a vector containing

the current water level for each canal part and polder in
mNAP, HCe

is the history of energy prices Ce in euros up
to decision epoch t and HRf

is the history of rainfall Rf

in m up to decision epoch t. The histories are used by our
simulator for transitioning states. In practice, we found that,
in order to prevent histories from indefinitely increasing in
size over time in practice, limiting them so that only the
ten most recent observations are stored (i.e., 2.5 hours) is
sufficient for planning.

Action Definition The controller selects an action a =
〈a1, ..., aNa〉 where an is the selected action value for con-
trollable pumping station n and Na is the amount of control-
lable pumping stations. The value of an linearly scales the
pumping station’s capacity to determine the pumping capac-
ity used for the transition. The possible values for an may
differ per controller. For our proposed controller, we found
the available action values per pumping station an ∈ {0, 1}
to be suitable. This discrete action space gives us a size of
2Na . If in practice it proves useful to have additional options,
this action space can easily be extended to include intermedi-
ate values. Control NEXT does require more actions than on
or off, and as such has access to action values an ∈ [0, 1].

1mNAP stands for ’meter boven Normaal Amsterdams Peil’, or
’metres above Amsterdam Ordnance Datum’, and is used as a unit
for water level height.

Effects of Actions Pumping stations with an action value
an > 0 will alter the water levels. In case the pumping station
is connected to a polder, the polder water level lowers and
the water level in the connected canal part rises. In case the
pumping station is an end drain and therefore not connected
to a polder, the water level in the connected canal part lowers.
The water levels are adjusted by Dl = anScT/A where Dl

is the water level difference in m and T is the time spent
pumping in s (the decision epoch length).

Water Flow After water levels change due to pumping,
water from one canal part can flow to its neighbours. A stan-
dard way to model this is via the Gauckler–Manning formula
(GMF) (Manning et al. 1891) which estimates the velocity of
liquid in an open channel, the details of which are described
by Kanters [2015]. As the pumping stations can process an
action every 15 minutes, we use this as our decision epoch.
Between each decision epoch, we must calculate the new
water levels. However, 15 minutes is a too coarse granularity
to apply GMF in our model. To remedy this, each decision
epoch is subdivided into multiple GMF steps that each calcu-
late intermediate water levels. This allows water movement to
span multiple canal parts in one decision epoch. As additional
GMF steps do come at the cost of additional computation,
we aim for a good balance between realism and performance.
In our experiments, we found ten GMF steps per decision
epoch to be suitable.

Rainfall and Energy Price Transitions Apart from the
deterministic effects of water flow and pumping station ac-
tions, the state transition is influenced by rainfall and energy
price development. It is imaginable that there could be cor-
relations between these (Panagopoulos, Chalkiadakis, and
Jennings 2015), which an analysis of 10 years of historical
data confirms (Kanters 2015). We therefore propose a method
of simulation that preserves these correlations. However, we
must make a discrimination between the real simulator Ms

and the planning simulator Mp as defined earlier.
For the real simulator we propose to take a historical data

approach to simulation. In particular, we use synchronised
historical data in the form of time series. When the initial
state of the real simulator is generated, a random time point
in this data is selected as the first rainfall level and energy
price (i.e., this time point is the same in both data sets). At
each state transition, the next time point in the data is used
to determine the rainfall and energy price for the next state.
While this limits the simulation of rain and energy price to
be the same as those observed in our data set, the advantage
is that it respects their correlation. This could be important;
ignoring the correlation may lead to our estimations being
too positive since high prices and rain are likely correlated.

For the planning simulator it is not possible to use such an
approach. As real transitions bear uncertainty, it is important
that the controller’s planning reflects this. Here, we take
different approaches for rainfall and energy price simulation.

For the model of rainfall, we propose the utilisation of
external tools to circumvent this prediction problem. When a
UCT-based controller would be deployed in practice, it could
have access to commercially available weather forecasts that
predict the amount of rain that will fall in the area of interest
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Figure 2: The mean and standard deviation of all
water level differences between Ms and Mb with
Gc = 0.015 (left) and Gc = 0.03 (right).
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Figure 3: Example water levels from different canal parts in simulation Ms

(solid line) and Mb (dashed line).

in the coming hours. We expect that these forecasts are much
more accurate than any learned model of rainfall transitions
up to the point that we can argue that the agent knows what
the future rainfall will be. Therefore, in our planning simula-
tor, the basis for the sampled rain levels is the forecast. In the
current simulations, we use historical data from Meteobase
(STOWA 2015), but for real world usage, forecast services
like Buienradar (Buienradar 2015) may be used. Of course,
forecasts are not flawless. Taking this into into account, we
add Gaussian noise with a standard deviation of a third of the
value predicted by the forecast.

For energy price data, however, no such prediction is avail-
able. Instead, we use a technique for inferring beliefs over
scenarios (Walraven and Spaan 2014). This technique at-
tempts to find the best fits of the last few observed energy
prices in the available historical data. The scenarios in the
historical data that match the observed data best are then used
for the energy price transition, where a scenario is randomly
selected based on their probability. To prevent this technique
from being reduced to a look-up of an exact match, we sup-
ply it with a different data set than the one that the actual
simulation uses. We build upon this technique by utilising
the correlation between rainfall and energy prices to improve
its performance in our problem; we select scenarios not only
based on the energy price fit, but on the best fit of both the
energy costs and rainfall.

Evaluation of Simulation Realism

Further into this paper, we report on experiments regarding
the performance of our proposed techniques. In order to as-
sess the implications for real-world deployment, however,
it is important to evaluate the accuracy of the real simula-
tor. This evaluation focuses on the water transitions only.
Though we also simulate energy price transitions, in the real
simulator only historical data is used, which is realistic by
definition. Energy price transitions in the planning simulator
affect UCT performance, but not the representation of our
results for real-world deployment. Its accuracy is described
by Kanters [2015].

Sufficient historical data for water flow is not available,
and thus in order to evaluate the realism of our real simu-
lator Ms, we use one of the state-of-the-art simulators as
baseline Mb: SOBEK (Deltares 2015b). SOBEK is a physics-
based modelling suite used by water authorities and water
management consultancies for water flow simulation, and is
sufficiently accurate to be considered ground truth. As it does
not handle pumping station control, the user must specify

when pumping stations activate and the amount of rainfall.
With the VRNK model that is used by HHNK to determine
suitable control policies, we can compare the water behaviour
of Ms and Mb. In our experiment, we run a typical simula-
tion in SOBEK where the water levels start at their target and
are raised by heavy rain. Once the water levels reach a certain
point, pumping stations activate and water flows through the
canals. Using the same rainfall and pumping station actions,
we mimic this simulation in our own simulator.

We determine the accuracy at each decision epoch t by
using the difference of water levels Me(t) = Ms(t)−Mb(t)
as predicted by simulators Ms and Mb. Figure 2 shows the
mean and standard deviation of the water level differences
of the different canal parts. The first 16 hours do not involve
pumping and only contain a slight rain build-up. After this
first period, pumps activate, which allows differences in water
levels between the simulations to become apparent.

Typical Gauckler-Manning coefficient Gc references sug-
gest Gc ≈ 0.03 for natural canals (Mott and Wagenaar 2009;
Te Chow 1959; Edwards 2000). However, we find that
Gc = 0.015, which is typically used for smoother man-made
canals, gives us a much more realistic water flow. Comparing
the left and right plots of Figure 2, we see that the means of
both coefficients are similar, but Gc = 0.03 gives a much
higher standard deviation than Gc = 0.015, indicating that
there is a lot more simulation error there. As such, we set
Gc = 0.015 in our simulation and experiments.

Examples of water levels in individual canal parts are seen
in Figure 3. The left plot shows water levels close to the end
drain, which activates three times causing the water levels to
drop sharply and rise again. The middle plot relates to water
levels south in the VRNK polder system where pumping
stations of polders activate twice. These first two plots are
examples of areas where Ms has very similar results to Mb.
Figure 2 shows that there are also parts where higher error
in prediction occurs. One of these canal parts is seen in the
right plot. This shows the water levels of a branching canal in
the centre of the VRNK polder system and illustrates that our
model’s accuracy in this area can still be improved. Before
using our simulation in a real world pilot, looking into these
model discrepancies together with N&S or HHNK can likely
reduce these water level differences.

Overall, our simulation Ms is sufficiently accurate and
generally keeps water levels close to those of Mb. The error
seen in Figure 2, which ranges from 0.05 m below the base-
line to 0.1 m above it, could be considered a risk. We can
minimise this risk in practice by simply adjusting the targets;
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placing the top target 0.05 m lower and the bottom target
0.1 m higher will cause the controller to select safer actions
when water levels are near their target boundaries, preventing
damages from simulation error.

Controlling Pumping Stations through UCT

Having specified our simulator, we look into the controller
itself. In this section we describe how UCT can be applied
to the pumping station domain. We use a slightly modified
version of UCT that fits our model and consider the effects
of different parameters and rollout policies.

Action Quality and Rewards

The immediate quality of an action is based on the cost of
the pumping stations that were active and the resulting state.
The penalties for pumping costs, water levels and overflow
combined determine the total reward r = −∑

n Pc(n) −∑
l Pl(l) − Po where r is the reward in euros, Pc(n) is the

pumping cost in euros for pumping station n, Pl(l) is the
water level penalty in euros for canal part or polder l and Po

is the overflow penalty in euros.

Penalty for Pumping Using data from HHNK, we found
a correlation between energy consumption relative to the
polder’s surface and the water level difference between the
polder’s target Lg and the canal’s target. This is shown in Fig-
ure 4 where each point represents a pumping station. The line
represents the fit that we use for the simulation. This gives
us a cost per pumping station of Pc(n) = CcDl(n)A(n)Ce

where Cc is a constant with value 8.1× 10−6, Dl(n) is the
water level difference in m and Ce the energy price per MWh
in euros.

Penalty for Water Levels Water levels deviating from the
target levels incur costs. Each polder and canal part have a
bottom and top target water level. When the current water
level is outside of this target, a penalty is given according to

Pl(l) =

⎧⎨
⎩
|Lt(l)− Lc(l)|2A(l)Ct, if Lc(l) > Lt(l)

|Lb(l)− Lc(l)|2A(l)Cb, if Lc(l) < Lb(l)

0, otherwise

where Ct is the cost per squared target level excess per m2

surface in euros and Cb is the cost per squared target level
deficit per m2 surface in euros.

The amount of metres off target is squared in order to pe-
nalise larger deviation. We set Ct = Cb = 1 in consultation
with N&S. This is a rough estimation of the true cost based
on real world scenarios, but fulfils its purpose for our experi-
ments. More in-depth research into these costs can be done
to improve real world performance.

Penalty for Overflow Finally, there is an extra cost in case
of flooding, which adds Po = OCo where O is the amount
of overflowed water in m3 and Co the cost in euros per m3.
As advised by N&S, the damages reported during a flooding
of Texel, a Dutch isle, are roughly representative for those in
the VRNK polder system. We therefore set Co = 3 based on
data from that event (Nationaal Watertraineeship 2015).

Domain-Specific UCT Extensions

In order to effectively apply UCT to the pumping station do-
main, we make a number of domain-specific design choices.

First, we introduce binning of state variables only within
the UCT search tree. I.e., for the purpose of creating nodes
in the search tree, we group the water levels and energy
prices for the UCT tree structure in bins of 1 cm and e 10
respectively based on our experiments (Kanters 2015).

Second, we consider a number of alternative rollout poli-
cies. Without domain knowledge, it is standard practice to
select a rollout policy which selects random actions. The
downside of this is that it causes UCT value actions highly
when they lead to a good outcome if a random policy takes
over later on. I.e., it does not necessarily optimise towards
states that are good when more sensible policies take over.

Using domain knowledge, it may be possible to construct
better rollout policies. One of our considered rollout policies
is CN. Inspired by CN, which looks at future states that follow
after doing nothing, we also consider a do nothing rollout
policy which keeps all pumping stations inactive.

Finally, we consider a rollout policy that learns from
UCT’s sampling to determine if actions look promising in
the future: Predicate-Average Sampling Technique (PAST)
(Finnsson and Björnsson 2010). PAST selects actions based
on the average rewards they received since the start of the
program. The average rewards are stored per predicate, which
is based on certain features of the state that the action was
taken in. The action distribution used in PAST is based on the
predicate with the best value. We find this too optimistic in
our situation however. E.g., a predicate for low energy prices
might be selected rather than a predicate indicating imminent
flooding. Instead of using different predicates for individual
state features, we therefore have predicates defined by all
state features.

Empirical Evaluation

Here, we empirically investigate if our proposed application
of UCT can improve pumping station control over Control
NEXT, which currently controls the VRNK polder system,
and an alternative method commonly used in practice.

Experimental Setup One requirement of a pumping sta-
tion controller is to be able to perform well during a long time
span. To accommodate this, we let the experiment last two
(simulated) weeks such that the horizon h = 1344 decision
epochs. To ensure that the controller’s task is challenging, we
make the experiments difficult in two ways.

First, the initial state is generated such that water levels
are selected uniformly randomly from Lc ∈ [Lt − 0.2, Lt],
causing them to be near their top target. Second, we select
a point in the historical data where rain is just starting. This
results in a scenario where the water levels are high (some-
times dangerously so) and still rising. We generate 8 such
initial states and report the mean average results over those.

UCT has a number of parameters that can be set. Based on
our experiments (Kanters 2015), we found 65, 000 planning
simulations (which takes about about 5 seconds on a typical
work station) and a search depth of 32 decision epochs (which
equates to 8 hours) to be good settings.

3846



Pumping height in mE
ne

rg
y 

in
 W

h/
m

2

0 1 2 3
0

10

Figure 4: The relative energy consumption
per pumping station (points) and the fit we
use (line).

Simulated time in days

C
os

t i
n 

eu
ro

s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

5

× 10
6

Random

CN

Simulated time in days

C
os

t i
n 

eu
ro

s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

2

4

× 10
5

PAST

Do nothing

Figure 5: The mean cost (and standard error) of different UCT rollout policies over
time. All tested policies are shown on the left, and the two best are zoomed in on
the right.

Rollout Policies UCT’s rollout policy uses greatly affects
its performance. As such, we first determine which policy
yields the best results in our problem. We compare all earlier
described rollout policies: random actions, Control NEXT,
doing nothing and PAST. As seen in Figure 5, a random
rollout policy quickly leads to very bad results. The other
rollout policies are more feasible, with PAST and the do
nothing rollout policy performing much better than CN as
rollout policy. Though close, do nothing achieved slightly
lower costs than PAST. As is it also computationally lighter,
we use the do nothing rollout policy during other experiments.

Baseline Comparison Finally, we compare UCT’s perfor-
mance to current industry baselines: Control NEXT and a
two-threshold controller (TTH). TTH is a simple on-off con-
troller with hysteresis (Aström and Murray 2010), which
despite (of because of) its simplicity is frequently used in
practice (Taylor et al. 2000; Driankov, Hellendoorn, and Rein-
frank 2013). In our implementation, we enable pumps when
the water level reaches a certain threshold, and disable them
again when the water level has lowered to another threshold
(Kanters 2015).

As indicated in Figure 6, TTH incurs much higher costs
than CN, which in turn is significantly outperformed by UCT.
Pumping while energy is expensive can have great effects, as
is shown by the large jumps in costs at certain points in the
experiments. Comparing UCT’s behaviour to that CN and
TTH, the latter tend to pump at sudden moments while UCT
spreads this pumping time more broadly. This allows UCT to
select the cheapest moments to pump in advance, preventing
it from having to pump when energy is costly.

The costs mainly consist of pumping costs, as all methods
are able to keep the water levels either within margin or
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Figure 6: The mean cost and standard error of UCT, Control
NEXT and TTH over time.

close to it, even under the harsh experiment conditions. This
is shown in Figure 7, which illustrates how frequent water
levels throughout the experiments rose above certain levels
relative to their top target Lt. In particular, it shows f(x) =

1
Nl×h

∑Nl

l=1

∑h−1
t=0 I{Lc(l, t) > Lt(l)+ x}, where Nl is the

number of canal parts and polders, and I{·} is the indicator
function with value 1 if {·} is true and 0 otherwise. We also
see a behavioural difference between UCT and the baselines;
UCT keeps more water levels near their target, which shows
that it utilises the given bounds to save costs.

Conclusions and Future Work

The control of pumping stations is a critical task that re-
quires large amounts of power. With the expected increase
of price volatility due to an increased mix of renewable en-
ergy sources, current controllers will become costly to op-
erate. This paper investigated the potential of AI planning
techniques to improve cost effectiveness of pumping station
control by allowing the controller to reason about uncertainty
in energy prices, thereby also contributing to lower peak
loads for the energy network. The paper detailed how an on-
line planning algorithm, UCT, can be applied to this domain,
which involves the formulation of a generative model, as
well as a number of domain-specific extensions of UCT. We
performed an empirical evaluation using the VRNK polder
system in the Netherlands. The proposed generative model
was compared to the industry standard and is found to be suf-
ficiently accurate for purposes of online planning. Moreover,
our proposed application of UCT shows a marked improve-
ment over the current industry standard algorithms.

While our evaluation suggests that large savings could be
possible, it is only performed in a simulated environment. In
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Figure 7: Frequency f(x) with which water levels throughout
the experiments exceeded their top target Lt by x m.
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future research we intend to run a field evaluation where our
controller is used for the actual management of the VRNK
polder system. When applying the proposed UCT solution to
a larger number of pumping stations in a polder system, the
action space may become too large to handle properly. In this
case, decentralising the problem to a multiagent setting al-
lows it to be more scalable. An approach such as FV-POMCP
(Amato and Oliehoek 2015) promises favourable results and
can be investigated further (Kanters 2015).
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