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Abstract

Lexical Simplification is the task of replacing com-
plex words with simpler alternatives. We propose a
novel, unsupervised approach for the task. It relies on
two resources: a corpus of subtitles and a new type of
word embeddings model that accounts for the ambigu-
ity of words. We compare the performance of our ap-
proach and many others over a new evaluation dataset,
which accounts for the simplification needs of 400 non-
native English speakers. The experiments show that our
approach outperforms state-of-the-art work in Lexical
Simplification.

1 Introduction

Vocabulary acquisition is a process inherent to human lan-
guage learning that determines the rate at which an individ-
ual becomes familiarised with the lexicon of a given lan-
guage. Word recognition, however, is described as a series
of linguistic sub-processes that establishes one’s capabil-
ity of identifying and comprehending individual words in
a text. It has been shown that individuals with low-literacy
levels or who suffer from certain clinical conditions, such
as Dyslexia (Ellis 2014), Aphasia (Devlin and Tait 1998)
and some forms of Autism (Barbu et al. 2015), can face im-
pairments in either or both processes, often hindering them
incapable of recognising and/or understanding the meaning
of texts. Impairments that cause the narrowing of one’s vo-
cabulary can be severely crippling: the results obtained by
(Hirsh, Nation, and others 1992) show that one must be fa-
miliar with at least 95% of the vocabulary of a text in order
to understand it, and 98% to read it for leisure.

Lexical Simplification (LS) aims to address this problem
by replacing words that may challenge a certain target au-
dience with simpler alternatives. It was first introduced in
the work of (Devlin and Tait 1998), who inspired further re-
search. The biggest challenge in LS is performing replace-
ments without compromising the grammaticality or chang-
ing the meaning of the sentence being simplified.

Most strategies in the literature take LS as the series of
cognitive processes illustrated by the pipeline in Figure 1.
By following this model, the performance of LS systems
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Complex Sentence Simplified Sentence

|_ The cat perched on the mat. The cat sat on the mat.

Complex Word Identification Substitution Ranking

The cat perched on the mat. #1: sat, #2: rested

Substitution Generation Substitution Selection

perched: rested, sat, roosted perched: rested, sat, roosted

Figure 1: Lexical Simplification Pipeline

has considerably increased in recent years. The approach of
(Horn, Manduca, and Kauchak 2014) offers an improvement
of 62.9% in accuracy over the earlier work of (Biran, Brody,
and Elhadad 2011). However, most recent work is limited to
exploiting linguistic resources that are scarce and/or expen-
sive to produce, such as WordNets and Simple Wikipedia.
In this paper, we describe an LS approach that focuses on
the simplification needs of non-native English speakers. We
propose an unsupervised strategy for Substitution Genera-
tion, Selection and Ranking. Instead of relying on complex
and expensive resources, our approach uses a new context-
aware model for word embeddings, which can be easily
trained over large corpora, as well as n-gram frequencies ex-
tracted from a corpus of movie subtitles. We also introduce a
new domain-specific dataset for the task, which accounts for
the simplification needs of non-native English speakers. We
evaluate the performance of our approaches for each step of
the pipeline both individually and jointly, comparing them
to several other approaches in the literature.

2 Complex Word Identification

Complex Word Identification (CWI) is the task of deter-
mining which words in a text should be simplified, given
the needs of a certain target audience. It is commonly per-
formed before any simplification occurs, and aims to pre-
vent an LS system from making unnecessary substitutions.
Most existing work, however, do not provide an explicit so-
Iution to CWI, and instead model it implicitly (Biran, Brody,
and Elhada@ 2011; Horn, Manduca, and Kauchak 2014;
Glavas and Stajner 2015). In order to address CWI and still
be able to compare our LS approach to others, we have cho-



sen to create a dataset that accounts for the simplification
needs of non-native English speakers.

In previous work focusing on the evaluation of LS sys-
tems, (De Belder and Moens 2012) and (Horn, Manduca,
and Kauchak 2014) introduce the LSeval and LexMTurk
datasets. The instances in both datasets, 930 total, are com-
posed of a sentence, a target word, and candidate substi-
tutions ranked by simplicity. Using different metrics, one
is able to evaluate each step of the LS pipeline over these
datasets. There is, however, no way of knowing the profile
of the annotators who produced these datasets. In both of
them, the candidate substitutions were suggested and ranked
by English speakers from the U.S., who are unlikely to be
non-native speakers of English in their majority. This lim-
itation renders these datasets unsuitable for the evaluation
of our approach because i) the target words used may not
be considered complex by non-native speakers ii) the can-
didate substitutions suggested may be deemed complex by
non-native speakers. In order to reuse these resources and
create a more reliable dataset, we have conducted a user
study to learn more about word complexity for non-native
speakers.

2.1 A User Study on Word Complexity

400 non-native speakers participated in the experiment,
all university students or staff. They were asked to judge
whether or not they could understand the meaning of each
content word (nouns, verbs, adjectives and adverbs, as
tagged by Freeling (Padr and Stanilovsky 2012)) in a set of
sentences, each of which was judged independently. Volun-
teers were instructed to annotate all words that they could
not understand individually, even if they could comprehend
the meaning of the sentence as a whole.

All sentences used were taken from Wikipedia, LSeval
and LexMTurk. A total of 35, 958 distinct words from 9, 200
sentences were annotated (232, 481 total), of which 3,854
distinct words (6, 388 total) were deemed as complex by at
least one annotator.

2.2 A Dataset for Lexical Simplification

Using the data produced in the user study, we first assessed
reliability of the LSeval and LexMTurk datasets in evaluat-
ing LS systems for non-native speakers. We found that the
proportion of target words deemed complex by at least one
annotator was only 30.8% for LexMTurk, and 15% for LSe-
val. As for the candidate substitutions, 21.7% of the ones in
LSeval and 13.4% in LexMTurk were deemed complex by
at least one annotator.

These results show that, although they may not be used
in their entirety, both datasets contain instances that are suit-
able for our purposes. To create our dataset, we first used the
Text Adorning module of LEXenstein (Paetzold and Specia
2015; Burns 2013) to inflect all candidate verbs and nouns
in both datasets to the same tense as the target word. We
then used the Spelling Correction module of LEXenstein to
correct any misspelled words among the candidates of both
datasets. Next, we removed all candidate substitutes which
were deemed complex by at least one annotator in our user
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study. Finally, we discarded all instances in which the tar-
get word was not deemed complex by any of our annotators.
The resulting dataset, which we refer to as NNSeval, con-
tains 239 instances.

3 Substitution Generation

The goal of Substitution Generation (SG) is to generate can-
didate substitutions for complex words. Most LS approaches
in the literature do so by extracting synonyms, hyper-
nyms and paraphrases from thesauri (Devlin and Tait 1998;
De Belder and Moens 2010; Bott et al. 2012). The generators
described in (Paetzold and Specia 2013; Paetzold 2013) and
(Horn, Manduca, and Kauchak 2014) do not use thesauri, but
instead extract candidate substitutions from aligned parallel
sentences from Wikipedia in Simple Wikipedia. Although
parallel corpora can be produced automatically, they still of-
fer limited coverage of complex words, and can thus limit
the potential of a simplifier.

The recent work of (Glavas and §tajner 2015) aims to ad-
dress these limitations by exploiting word embedding mod-
els (Mikolov et al. 2013), which require only large corpora to
be produced. Given a target word, they extract the 10 words
from the model for which the embedding vectors have the
highest cosine similarity to the one of the complex word it-
self. Traditional embedding models suffer, however, from a
very severe limitation: they do not accommodate ambiguous
words’ meanings. In other words, all possible meanings of a
word are represented by a single numerical vector. We pro-
pose a new type of embeddings model that addresses this
limitation.

3.1 Context-Aware Word Embedding Models

In order to learn context-aware word embeddings, we resort
to annotating the training corpus from which the model is
learned. If one is able to assign a sense label to all words in
the training corpus, then a distinct numerical vector would
be assigned to each sense of a word. But as shown by
(Navigli 2009), state-of-the-art Word Sense Disambiguation
(WSD) systems make mistakes more than 25% of the time,
are language dependent and can be quite slow to run. Con-
sidering that the training corpora used often contain billions
of words, this strategy becomes impractical.

We instead compromise by using Part-Of-Speech (POS)
tags as surrogates for sense labels. Although they do not con-
vey the same degree of information, they account for some
of the ambiguity inherent to words which can take multi-
ple grammatical forms. Annotating the corpus with raw POS
tags in Treebank format (Marcus, Marcinkiewicz, and San-
torini 1993), however, could introduce a lot of sparsity to
our model, since it would generate a different tag for each
inflection of nouns and verbs, for example. To avoid spar-
sity, we generalise all tags related to nouns, verbs, adjectives
and adverbs to N, V, J and R, respectively.

Once the words in the training corpus are annotated with
their generalised POS tags, the model can be trained with
any tool available, such as word2vec' or GloVe?.

"https://code.google.com/p/word2vec/
*http://nlp.stanford.edu/projects/glove/



3.2 Candidate Generation Algorithm

Given a target word in a sentence, its POS tag, and a context-
aware embeddings model, our generator extracts as candi-
dates the n words in the model with the shortest cosine dis-
tance from the target word that satisfy the following con-
straints:

1. The word must share the same POS tag as the target word.

2. The word must not be a morphological variant of the tar-
get word.

These constraints are designed to filter ungrammatical and
spurious candidate substitutions. In order to find whether or
not a candidate is a morphological variant of the target word,
use extract their stem and lemma using the Text Adorning
module of LEXenstein, and verify if any of them are identi-
cal.

4 Substitution Selection

The step of Substitution Selection (SS) is responsible for
deciding which of the generated substitutions can replace
a target word in a given context. While some of existing
work employs WSD strategies to address this task explic-
itly (Nunes et al. 2013; Baeza-Yates, Rello, and Dembowski
2015), others choose to address it implicitly, by joint model-
ing SS and Substitution Ranking (SR) (Horn, Manduca, and
Kauchak 2014; Glavas and §tajner 2015).

As discussed in the previous Section, WSD systems of-
ten suffer from low accuracy, and can hence compromise
the performance of a simplifier. Most of them also depend
on the synonym relations of a thesauri to work, which can
severely compromise the potential of the substitution gener-
ator being applicable. If the generator produces a candidate
that is not registered in the thesauri, it will not able to decide
whether or not it is a synonym of a target complex word,
which would force the candidate to be discarded. Although
the results reported by (Horn, Manduca, and Kauchak 2014)
and (Glavas and gtajner 2015) show that joint modeling se-
lection and ranking can be a viable solution, we believe that
it can limit the performance of an LS approach.

We hypothesize that a dedicated SS approach would more
efficiently capture the intricacies of grammaticality and
meaning preservation, and consequently allow for the next
step to model word simplicity more effectively. We hence
take SS as a ranking task itself, and assume that all candi-
dates have a likelihood of fitting the context in which a target
word is placed. In order to propose an unsupervised setup for
the task, we first introduce the technique of Boundary Rank-
ing.

4.1 Boundary Ranking

The goal of a boundary ranker is to, given a set of example
ranking instances and a feature space, learn the direction in
which the ranking property grows on the feature space pro-
vided. To do so, a decision boundary must be learned from a
binary classification setup inferred from the ranking exam-
ples. Consider Example 1, in which four words are ranked
by simplicity.
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1:sat, 2:rested, 3:roosted, 4:perched @))

A boundary ranker will produce binary classification
training instances from the example above based on a param-
eter p, which determines the maximum positive ranking po-
sition. If p=2, then sat and rested will receive label 1, while
the remaining words will receive label 0. Once this process
is applied to all example rankings available, any linear or
non-linear model can be fitted to the data in order to learn a
decision boundary between positive and negative examples.
Finally, an unseen set of words can be ranked according to
their distance from the boundary: the furthest they are from
the negative portion of the data, the higher their ranking.

But notice that Boundary Ranking is an inherently super-
vised approach: it learns a model from ranking examples. In
order to train a selector in an unsupervised fashion, we resort
to the Robbins-Sturgeon hypothesis.

4.2 The Robbins-Sturgeon Hypothesis

In Jitterbug Perfume (Robbins 2003), author Tom Robbins
states that “There are no such things as synonyms! He prac-
tically shouted. Deluge is not the same as flood”. A simi-
lar statement was made by Theodore Sturgeon, another ac-
claimed book author, during an interview: “Here’s the point
to be made - there are no synonyms. There are no two words
that mean exactly the same thing.”. As a summary of these
quotes, the Robbins-Sturgeon hypothesis states that a word
is irreplaceable.

Although modern LS approaches (Horn, Manduca, and
Kauchak 2014; Glavas and Stajner 2015) show that explor-
ing synonymy relations is very useful in making texts eas-
ier to read, the Robbins-Sturgeon hypothesis can be used to
learn a boundary ranker over unannotated data. If we take
this hypothesis to be correct, we can assume that a given
target complex word is the only word suitable to replace it-
self. In the binary classification setup of a boundary ranker,
this would mean that the only candidate substitution which
would receive label 1 is the target word itself, while any
other candidates would receive label 0. With these settings,
we would not require annotated data: the candidates to re-
ceive label 0 could be automatically produced by a substitu-
tion generator, allowing the training of the ranker over unan-
notated data, and hence unsupervised SS.

5 Substitution Ranking

During Substitution Ranking (SR), the selected candidate
substitutions are ranked according to their simplicity. Re-
cently, sophisticated strategies have been introduced for this
task, ranging from Support Vector Machines (Jauhar and
Specia 2012; Horn, Manduca, and Kauchak 2014), hand-
crafted metrics (Biran, Brody, and Elhadad 2011; Bott et
al. 2012), and rank averaging (Glava§ and Stajner 2015).
Nonetheless, the most popular SR strategy in the litera-
ture is frequency ranking: the more frequently a word ap-
pears in a corpus, the simpler it is (Devlin and Tait 1998;
De Belder and Moens 2010; Leroy et al. 2013). Modern LS
approaches also go a step further and account for a word’s



context by using not word but n-gram frequencies (Baeza-
Yates, Rello, and Dembowski 2015), achieving state-of-the-
art simplification results.

Most work assume that the quality of the word and n-
gram frequencies produced depend more on the size of the
corpus used, rather than on the domain from which it was
extracted. Because of this assumption, the most frequently
used corpus is the Google 1T, which is not freely avail-
able and is composed of over 1 trillion words. (Brysbaert
and New 2009), however, has shown that the raw frequen-
cies extracted from movie subtitles capture word familiar-
ity more effectively than the ones extracted from other cor-
pora. Their subtitle corpus was also evaluated on the Lexical
Simplification task of SemEval 2012 by (Shardlow 2014). It
helped (Shardlow 2014) achieve scores comparable to those
obtained by Google IT, although it is more than four or-
ders of magnitude smaller. These results are very encourag-
ing for our purposes, since the gold-standard used was also
produced by non-native English speakers. Inspired by these
observations, we have compiled a new corpus for SR.

5.1 Compiling a Corpus of Subtitles

We hypothesize that the type of content from which the sub-
titles are extracted can also affect the quality of the word
frequencies produced. We believe that movies targeting chil-
dren or young adults, for an example, use a more accessible
language than movies targeting older audiences.

In order to test this hypothesis, we exploit the facilities
provided by IMDb? and OpenSubtitles*. While IMDDb offers
an extensive database of ID-coded and categorised movies
and series, OpenSubtitles allows for one to use these IDs to
query for subtitles in various languages. IMDb also allows
users to create their own lists, and hence help other users
with similar taste to find new movies and series to watch.

We compiled our corpus by first parsing 15 lists of movies
for children, as well as the pages of all movies and series un-
der the “family” and “comedy” categories. A total of 12,037
IMDb IDs were gathered. We then queried each ID found in
OpenSubtitles, and downloaded one subtitle for each movie.
For series, we have downloaded one subtitle for each episode
of every season available. All subtitles were parsed, and a
corpus of 145,350,077 words produced. We refer to it as
SubIMDB.

6 Experiments

In the following Sections, we describe each of the exper-
iments conducted with our LS approach, which we refer
henceforth to as LS-NNS. All other approaches hereon men-
tioned were replicated to the best of our ability.

6.1 Substitution Generation
We compare ours to five other SG systems:
e Devlin (Devlin and Tait 1998): One of the most frequently

used SG strategies in the literature, it generates candidates
by extracting synonyms from WordNet.

3http://www.imdb.com/
*http://www.opensubtitles.org/
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e Biran (Biran, Brody, and Flhadad 2011): Extracts candi-
dates from the Cartesian product pairs between the words
in Wikipedia and Simple Wikipedia. Any pairs of words
that are not registered as synonyms or hypernyms in
WordNet are discarded.

e Yamamoto (Kajiwara, Matsumoto, and Yamamoto
2013): Queries dictionaries for target words, retrieving
definition sentences, and then extracts any words that
share the same POS tag as the target word. For this ap-
proach, we use the Merriam Dictionary.

e Horn (Horn, Manduca, and Kauchak 2014): Extracts
word correspondences from aligned complex-to-simple
parallel corpora. For this system, we use the parallel
Wikipedia and Simple Wikipedia corpus provided by
(Horn, Manduca, and Kauchak 2014).

e Glavas (Glavas and §tajner 2015): Extracts candidates us-
ing a typical word embeddings model. For each target
complex word, they retrieve the 10 words for which the
embeddings vector has the highest cosine similarity with
the target word, except for their morphological variants.

Like the Glavas generator, ours selects 10 candidates for
each target word. We use the word2vec toolkit to train our
word embeddings model. The corpus used contains 7 bil-
lion words, and includes the SubIMDB corpus, UMBC web-
base®, News Crawl’, SUBTLEX (Brysbaert and New 2009),
Wikipedia and Simple Wikipedia (Kauchak 2013). To tag
our corpus, we use the Stanford Parser (Klein and Man-
ning 2003), which offers over 97% accuracy in consoli-
dated datasets. For training, we use the bag-of-words model
(CBOW), and 500 dimensions for the embedding vectors.
We use the same resources and parameters to train the model
for the Glavas generator.

For evaluation, we use the the following four metrics over
the NNSeval dataset:

e Potential: The proportion of instances for which at least
one of the substitutions generated is present in the gold-
standard.

e Precision: The proportion of generated substitutions that
are present in the gold-standard.

e Recall: The proportion of gold-standard substitutions that
are included in the generated substitutions.

e F1: The harmonic mean between Precision and Recall.

The results obtained, which are illustrated in Table 1,
reveal that our generator is more effective than all other
approaches evaluated. They also highlight the potential of
context-aware word embedding models: they offer a 2.4%
F1 improvement over the traditional embeddings model used
by the Glavas generator.

6.2 Substitution Selection

A Substitution Selection system requires a set of candidate
substitutions to select from. For that purpose, we use the

Shttp://www.merriam-webster.com/
®http://ebiquity.umbc.edu/resource/html/id/351
"http://www.statmt.org/wmt1 1/translation-task.html



Potential Precision Recall F1
Yamamoto 0.314 0.026 0.061 0.037
Biran 0.414 0.084 0.079 0.081
Devlin 0.485 0.092 0.093 0.092
Horn 0.464 0.134 0.088 0.106
Glavas 0.661 0.105 0.141 0.121
LS-NNS 0.699 0.118 0.161 0.136

Table 1: Substitution Generation evaluation results

candidate substitutions produced by the highest performing
generator from the previous experiment, which is LS-NNS.
We compare ours to five other SS approaches:

e No Selection: As a baseline, we consider the approach of
not performing selection at all.

o Lesk (Lesk 1986): Uses the Lesk algorithm to select the
word sense in WordNet that best describes a given target
word with respect to its context.

e Leacock (Leacock and Chodorow 1998): Uses a more so-
phisticated interpretation of the Lesk algorithm. It takes
into account not only the overlap between a target words’
context and sense examples in WordNet, but also their se-
mantic distance.

e Belder (De Belder and Moens 2010): Candidate substi-
tutions are filtered with respect to the classes learned by
a latent-variable language model. For this approach, we
use the algorithm proposed by (Brown et al. 1992), which
learns word clusters from large corpora. We learn a total
of 2,000 word clusters.

e Biran (Biran, Brody, and Elhadad 2011): Filters candi-
date substitutions with respect to the cosine distance be-
tween the word co-occurrence vectors of a target word
and a candidate substitution. We use a lower-bound of 0.1
and an upper-bound of 0.8. The corpus used to obtain the
co-occurrence model is the same used in the training of
the word embedding models used by our SG approach.

As discussed in a previous Section, the boundary ranker
used by our approach requires training instances with binary
labels. Using the Robbins-Sturgeon hypothesis, we create
training instances by assuming a maximum positive ranking
position p = 1, i.e., we assign label 1 to all target words in
the NNSeval dataset, and O to all the generated candidates.
We use seven features to train the model:

e Language model log-probabilities of the following
five n-grams: s;_ic, €S;+1, Si—1CSiy1, Si—28;—1c and
cS;+1Si+2, where ¢ is a candidate substitution, and ¢
the position of the target word in sentence s. We use
a b5-gram language model trained over SubIMDB with
SRILM (Stolcke 2002).

e The word embeddings cosine similarity between the tar-
get complex word and a candidate. For this feature, we
employ the same context-aware embeddings model used
in the SG experiment.

e The conditional probability of a candidate given the POS
tag of the target word. To calculate this feature, we learn
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the probability distribution P (c|p;), described in Equa-
tion 2, of all words in the corpus used to train our context-
aware word embeddings model.

O(Cvpt)
2pep Clep)
where c is a candidate, p; is the POS tag of the target

word, C'(c, p) the number of times ¢ received tag p in the
training corpus, and P the set of all POS tags.

P (clpr) = 2

For each instance of the evaluation dataset, we discard the
50% lowest ranked candidate substitutions. We learn the de-
cision boundary through Stochastic Gradient Descent with
10-fold cross validation. For evaluation, we use the same
dataset and metrics described in the previous experiment.

The results (Table 2) show that our approach was the only
one to obtain higher F1 scores than those achieved by not
performing selection at all. This reveals that SS is a very
challenging task, and that using an unreliable approach can
considerably decrease the effectiveness of the SG used.

Potential Precision Recall F1
No Selection 0.699 0.118 0.161 0.136
Lesk 0.176 0.060 0.026  0.037
Leacock 0.013 0.011 0.002 0.003
Belder 0.247 0.201 0.034 0.058
Biran 0.322 0.122 0.068  0.087
LS-NNS 0.644 0.192 0.131 0.156

Table 2: Substitution Selection evaluation results

6.3 Substitution Ranking

In this experiment, we evaluate the potential of our corpus
(SubIMDB) in SR alone. To do so, we first train 5-gram lan-
guage models over SubIMDB and four other corpora:

e Wikipedia (Kauchak 2013): Composed of 97,912, 818
words taken from Wikipedia.

e Simple Wiki (Kauchak 2013): Composed of 9, 175, 446
words taken from Simple Wikipedia.

e Brown (Francis and Kucera 1979): Composed of
1,182,211 words of edited English prose produced in
1961.

e SUBTLEX (Brysbaert and New 2009): Composed of
62, 504, 269 words taken from assorted subtitles.

We then rank candidates by their unigram probabilities
in each language model. The evaluation dataset used is the
one provided for the English Lexical Simplification task of
SemEval 2012 (Specia, Jauhar, and Mihalcea 2012), com-
posed of 300 training and 1, 710 test instances. We choose
this dataset as opposed to NNSeval because it has also been
annotated by non-native speakers and it allows a more mean-
ingful comparison, given that 12 systems have already been
tested on this dataset as part of SemEval 2012. Each instance
is composed of a sentence, a target word, and candidate sub-
stitutions ranked in order of simplicity by non-native speak-
ers. The evaluation metric used is TRank, which measures



the ratio with which a given system has correctly ranked
at least one of the highest ranked substitutions on the gold-
standard. As discussed in (Paetzold 2015), this metric is the
one which best represents the performance of a ranker in
practice.

The results obtained are illustrated in Table 3. For com-
pleteness, we also include in our comparison the best per-
forming approach of SemEval 2012, as well as the baseline,
in which candidates are ranked according to their raw fre-
quencies in Google 1T.

TRank
Wikipedia 0.519
Simple Wiki 0.570
Brown 0.596
SUBTLEX 0.618
Google 1T 0.585
Best SemEval | 0.602
SubIMDB 0.627

Table 3: Substitution Ranking evaluation results

Our findings show that frequencies from subtitles have
a higher correlation with simplicity than the ones extracted
from other sources. Our corpus outperformed all others, in-
cluding the best approach in SemEval 2012, by a consider-
able margin. We have also found evidence that domain is
more important than size: the Brown corpus, composed of
1 million words, outperformed the Google 1T corpus, com-
posed of 1 trillion words.

6.4 Round-Trip Evaluation

Finally, we assess the performance of our LS approach in its
entirety. We compare it to three modern LS systems:

e Biran (Biran, Brody, and Elhadad 2011): Combines the
SG and SS approaches described in Sections 6.1 and 6.2
with a metric-based ranker. Their metric is illustrated in
Equation 3, where F'(c, C) is the frequency of candidate
c¢in corpus C, and ||¢|| the length of candidate c.

F(c, Wikipedia)
F(c, Simple Wikipedia)

e Kauchak (Horn, Manduca, and Kauchak 2014): Com-
bines the generator of Section 6.1 with an SVM ranker
(Joachims 2002) that joint models SS and SR. They train
their approach on the LexMTurk dataset, and use as fea-
tures the translation probability between a candidate and
the target word, as determined by an alignment model
learned over a simple-complex parallel corpus, as well as
n-gram frequencies from various corpora.

M(c) =

X |lef

3)

e Glavas (Glava$ and Stajner 2015): Combines the genera-
tor of Section 6.1 with a ranker that also joint models SS
and SR. It ranks candidates by averaging the rankings ob-
tained with several features. As features they use n-gram
frequencies, the cosine similarity between the target word
and a candidate, as determined by a typical word embed-
dings model, as well as the average cosine similarity be-
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tween the candidate and all content words in the target
word’s sentence.

For evaluation, we use the the following metrics over the
NNSeval dataset:

e Precision: The proportion of instances in which the tar-
get word was replaced with any of the candidates in the
dataset, including the target word itself.

e Accuracy: The proportion of instances in which the tar-
get word was replaced with any of the candidates in the
dataset, except for the target word itself.

o Changed Proportion: The proportion of times in which
the target word was replaced with a different word.

We train our generation and selection approaches with the
same settings used in the previous experiments. For Sub-
stitution Ranking we use 5-gram probabilities with two to-
kens to the left and right of the candidate. This way, we ac-
count for context during Substitution Ranking. The results
obtained are illustrated in Table 4. They reveal that our ap-
proach is the most effective Lexical Simplification solution
for non-native English speakers.

Precision Accuracy Changed
Biran 0.121 0.121 1.000
Kauchak 0.364 0.172 0.808
Glavas 0.456 0.197 0.741
LS-NNS 0.464 0.226 0.762

Table 4: Round-trip evaluation results

7 Conclusions

We have proposed a new, unsupervised Lexical Simplifica-
tion approach. It relies in two resources: a context-aware
word embeddings model and a corpus of subtitles, both of
which can be easily obtained for multiple languages. We
have also introduced NNSeval, a new dataset for the eval-
uation of LS systems which targets the simplification needs
of non-native English speakers. In our experiments, we com-
pare our strategies to several others, and show that ours are
the most effective solutions available for Substitution Gen-
eration, Selection and Ranking.

In the future, we intend to create lexicon retrofitted
context-aware embedding models, explore more sophisti-
cated unsupervised SR solutions, conduct new user studies
with non-native English speakers, and investigate whether
or not the word frequencies from SubIMDB are capable of
capturing elaborate psycholinguistic properties, such as Age
of Acquisition and Familiarity.

All methods and resources used in this paper are available
in the LEXenstein framework®.
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