
Visual Learning of Arithmetic Operations

Yedid Hoshen and Shmuel Peleg
School of Computer Science and Engineering

The Hebrew University of Jerusalem
Jerusalem, Israel

Abstract

A simple Neural Network model is presented for end-
to-end visual learning of arithmetic operations from pic-
tures of numbers. The input consists of two pictures,
each showing a 7-digit number. The output, also a pic-
ture, displays the number showing the result of an arith-
metic operation (e.g., addition or subtraction) on the two
input numbers. The concepts of a number, or of an op-
erator, are not explicitly introduced. This indicates that
addition is a simple cognitive task, which can be learned
visually using a very small number of neurons.
Other operations, e.g., multiplication, were not learn-
able using this architecture. Some tasks were not learn-
able end-to-end (e.g., addition with Roman numerals),
but were easily learnable once broken into two sepa-
rate sub-tasks: a perceptual Character Recognition and
cognitive Arithmetic sub-tasks. This indicates that while
some tasks may be easily learnable end-to-end, other
may need to be broken into sub-tasks.

1 Introduction
Visual learning of arithmetic operations is naturally broken
into two sub-tasks: A perceptual sub-task of optical charac-
ter recognition (OCR) and a cognitive sub-task of learning
arithmetic. A common approach in such cases is to learn
each sub-task separately. Examples of popular perceptual
sub-tasks in other domains include object recognition and
segmentation. Cognitive sub-tasks include language model-
ing and translation.

With the progress of deep neural networks it has become
possible to learn complete tasks end-to-end. Systems now
exist for end-to-end training of image to sentence genera-
tion (Vinyals et al. 2014) and speech to sentence generation
(Hannun et al. 2014). But end-to-end learning may intro-
duce an extra difficulty: sub-tasks do not have unique train-
ing data, but depend on the results of other sub-tasks.

We examine end-to-end learning from a neural network
perspective as a model for perception and cognition: per-
forming arithmetic operations (e.g., addition) for visual in-
put and visual output. Both input and output examples of
the network are pictures (as in Fig. 1). For each training ex-
ample we give the student (the network) two input pictures,

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

each showing a 7 digit integer number written in a standard
font. The target output is also a picture, displaying the sum
of the two input numbers.

In order to succeed at this task, the network is required to
implicitly be able to learn the arithmetic operation without
being taught the meaning of numbers. This can be seen as
similar to teaching arithmetic to a person with whom we do
not possess a common language.

We model the learning process as a feed-forward artifi-
cial neural network (Bishop 1995; Hinton and Salakhutdi-
nov 2006). The input to the network are pictures of num-
bers, and the output is also a picture (of the sum of the input
numbers). The network is trained on a sufficient number of
examples, which are only a tiny fraction of all possible in-
puts. After training, given pictures of two previously unseen
numbers, the network generates the picture displaying their
sum. It has therefore learned the concept of numbers without
direct supervision and also learned the addition operation.

Although initially a surprising result, we present an anal-
ysis of visual learning of addition and demonstrate that it is
realizable using simple neural network architectures. Other
arithmetic operations such as subtraction are also shown to
be learnable with similar networks. Multiplication, however,
was not learned successfully under the same setting. It is
shown that the multiplication sub-task is more difficult to
realize than addition under such architecture. Interestingly,
for addition with Roman numerals both the OCR and the
arithmetic sub-tasks are shown to be realizable, but the end-
to-end training of the task fails. This demonstrates the extra
difficultly of end-to-end training.

Our results suggest that some mathematical concepts are
learnable purely from vision. An exciting possible implica-
tion is that some arithmetic concepts can be taught visually
across different cultures. It has also been shown that end-to-
end learning fails for some tasks, even though their sub-tasks
can be learned easily. This work deals with arithmetic tasks,
and future research is required to characterize what other
non-visual sub-tasks can be learned visually e.g., by video
frame prediction.

2 Arithmetic as Neural Frame Prediction
In this section we describe a visual protocol for learning
arithmetic by image prediction. This is done by training an
artificial neural network with input and output examples.

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

3733



Example A Example B Failure Example

Input Picture 1

Input Picture 2

Network Output
Picture

Ground Truth
Picture

Figure 1: Input and output examples from our neural network trained for addition. The first two examples show a typical correct
response. The last example shows a rare failure case.

2.1 Learning Arithmetic from Visual Examples

Our protocol for visual learning of arithmetic is based on
image prediction. Given two input pictures F1, F2, target
picture E is the correct prediction. The learner is required
to predict the output picture, and the predicted picture is
denoted P . The prediction loss is evaluated by the sum of
square differences (SSD) between the pixel intensities of the
predicted picture P and the target picture E.

The input integers are randomly selected in a pre-
specified range (for addition we use the range of
[0,4999999]), and are written on the input pictures. The re-
sult of the arithmetic operation on the input numbers (e.g.,
their sum) is written on the target output picture E. The
numbers were written on the pictures using a standard font,
and were always placed at the same image position. See
Fig. 1 for examples.

Learning consists of training the network with N such in-
put/output examples (we use N = 150, 000).

2.2 Network Architecture

In this section we present a method to test the feasibility of
learning arithmetic given the protocol presented in Sec. 2.1.
Our simple but powerful learner is a feed-forward fully-
connected artificial neural network as shown in Fig. 2.

The network consists of an input layer of dimensions
Fx×Fy×2 where Fx and Fy are the dimensions of the 2
input pictures. We used Fx×Fy = 15×60 unless specified
otherwise. The network has three hidden layers each with
256 nodes with ReLU activation functions (max(0, x)) and
an output layer (of the same height and width as the input
pictures) with sigmoid activation. All nodes between adja-
cent layers were fully connected. An L2 loss function is
used to score the difference between the predicted picture
and the expected picture. The network is trained via mini-
batch stochastic gradient descent using the backpropogation
algorithm.

3 Experiments
The objective of this paper is to examine if arithmetic oper-
ations can be learned end-to-end using purely visual infor-
mation. To this end several experiments were carried out:

3.1 Experimental Procedure
Using the protocol from Sec. 2.1 we generated 2 input pic-
tures per example, each showing a single integer number.
The numbers were randomly generated from a pre-specified
range as detailed below. The output pictures were created
similarly, displaying the result of the arithmetic operation
on the input.

The following arithmetic operations were examined:
• Addition: Sum of two 7 digit numbers, each in the range

[0,4999999].
• Subtraction: Difference between two 7 digit numbers in

the range [0,9999999]. The first number was chosen to be
larger or equal to the second number to ensure a positive
result.

• Multiplication: Product of two numbers, each in the range
[0,3160].

• Addition of Roman Numerals: Sum of two numbers in the
range [0,4999999]. Both input and output were written in
Roman numerals (IVXLCDM and another 7 numerals we
”invented” from 5000 to 5000000). The longest number
9,999,999 was 35 numerals long. The medieval notation
(IV instead of IIII) was not used.
For each experiment, 150,000 input/output pairs were ran-

domly generated for training and 30,000 pairs were ran-
domly created for testing. The proportion of numbers used
for training is a very small fraction of all possible combina-
tions.

We have also examined robustness to image noise of the
addition experiment. Both input and output pictures were
corrupted with a strong additive Gaussian noise.

A feed-forward artificial network was trained with the ar-
chitecture described in Fig. 2. The network was trained us-
ing mini-batch stochastic gradient descent with learning rate

3734



Figure 2: A diagram showing the construction of a neural
network with 3 hidden layers able to preform addition using
visual data. Two pictures are used as input and one picture
as output. The network is fully connected and uses ReLU
units in the hidden layers and sigmoid in the output layer.
The hidden layers have 256 units each.

0.1, momentum 0.9 and mini-batch size was 256. 50 epochs
of training were carried out. The network was implemented
using the Caffe package (Jia et al. 2014).

3.2 Results
The correctness of the test set was measured using an OCR
software (Tesseract (Smith 2007) ) which was applied to the
output pictures. The OCR results were compared to the de-
sired output, and the percentage of incorrect digits was com-
puted. The effectiveness of the neural network approach has
been tested on the following operations.

Addition: Three results from the test set are shown in
Fig. 1. The input and the output numbers were not included
in the training set. The examples qualitatively demonstrate
the effectiveness of the network at learning addition from
purely visual information. Quantitatively, the network has
been able to learn addition with great accuracy, with incor-
rect digit prediction rate being only 1.9%.

Subtraction: We trained a neural network having identical
architecture to the network used for addition. Subtraction of
a small number from a larger one was found to be of com-
parable difficulty to addition. The predicted digit error rate
was around 3.2% which is comparable to addition.

Multiplication: This task was found to be a much more
challenging operation for a feed-forward Neural Network.
The data for this experiment consisted of two input pic-
tures with 4-digit integers, resulting in an output picture
with 7 digit number, and the network used was similar to
the one used for addition. As theoretical work (e.g., (Franco
and Cannas 1998)) has shown that multiplication of binary
numbers may require two more layers than their addition,
we experimented with adding more hidden layers. The net-
work, even with 5 hidden layers, did not perform well on
this task, giving very large train and test errors. An example
input/output pair can be seen in Fig.3. It can be seen that the
least significant digit and two most significant digits were
predicted correctly, as enumeration of the different possi-
bilities is feasible, but the network was uncertain about the

Operation Pictures 1-hot Vectors
No.
Layers % Error No.

Layers % Error

Add 3 1.9% 1 1.7%
Subtract 3 3.2% 1 2.1%
Multiply 5 71.5% 3 37.6%
Roman
Addition 5 74.3 % 3 0.7 %

Table 1: The digit prediction error rates for end-to-end train-
ing on pictures, and for the stripped 1-hot representation de-
scribed in Sec. 5. For the purpose of error computation, the
digits in the output predicted images were found using OCR.
Addition and subtraction are always accurate. The network
was not able to learn multiplication. Although Roman nu-
meral addition failed using the picture prediction network, it
was learned successfully for 1-hot vectors.

central 4 digits. The predicted digit error rate was as high as
71%, and the OCR engine was often unable to read numbers
that had several blurry (uncertain) digits.

Addition of Roman numerals: It has been hypothesized
by Marr (Marr 1982) and others (see (Schlimm and Neth
2008)) that arithmetic using Roman numerals can be more
challenging than using Arabic numerals. We have repeated
the addition experiment with all numbers written as Roman
numerals, which can be up to 35 digits long. As is demon-
strated quantitatively in Tab. 1 the network was not able to
predict the output frame in Roman numeral basis. This sug-
gests that end-to-end visual learning of addition in Roman
numeral basis is more challenging, in agreement with Marr’s
hypothesis. We further analyze this result in Sec. 5.

Addition with Noisy Pictures: In one experiment we added
a strong Gaussian noise (σ=0.3) to all input and output pic-
tures, as can be seen in Fig.3. The network achieved very
good performance on this task, giving output pictures that
display the correct result, which are also clean from noise.
Failures can occur when the input digits are almost illegible.
In such cases the network generated a ”probabilistic” output
digit displaying a mixture of two digits. Mixture of digits
caused problems to our verification using an OCR, report-
ing 9.8% digit error rate whereas human inspection obtained
only 3.2% error rate. See Fig.5 for further details.

4 Previous Work
Theoretical characterization of the operations learnable by
neural networks is an established area of research. A pio-
neering paper presented by (Hajnal et al. 1987) used thresh-
old circuits as a model for neural network capacity. A line
of papers (e.g., (Hofmeister, Hohberg, and Köhling 1991;
Siu et al. 1993; Franco and Cannas 1998)) established
the feasibility of the implementation of several arithmetic
operations on binary numbers. Recently (Graves, Wayne,
and Danihelka 2014) has addressed implementing Univer-
sal Turing Machines using neural networks. Most theoretical
work in the field used binary representation of numbers, and
did not address arithmetic operations in decimal form. No-
tably, a general result (see (Shalev-Shwartz and Ben-David

3735



Subtraction Multiplication Noisy Addition

Input Picture 1

Input Picture 2

Network Output
Picture

Ground Truth
Picture

Figure 3: Examples of the performance of our network on subtraction, multiplication, and addition with noisy pictures. The
network performs well on subtraction and is insensitive to additive noise. It performs poorly on multiplication. Note that the
bottom right image is not the ground truth image, but an example of the type of training output images used in the Noisy
Addition scenario.

2014)), shows that operations implementable by Turing ma-
chine in time T (n) can be implemented by a neural network
of O(T (n)) layers and with O(T (n)2) nodes. It has sam-
ple complexity O(T (n)2) but has no guarantees on training
time. Research has also not dealt with visual learning.

Hypotheses about the difference in difficulty of learn-
ing arithmetic using decimal vs. Roman representations was
made by Marr (Marr 1982) and others. see (Schlimm and
Neth 2008) for a review and algorithms for Roman numeral
addition and multiplication.

Optical Character Recognition (OCR) (LeCun et al. 1990;
Jaderberg, Vedaldi, and Zisserman 2014) is a well studied
field. In this work we only deal with a very simple OCR
scenario, dealing with more complex characters and back-
grounds is out of scope of this work.

Learning to execute Python code (including arithmetic)
from textual data has been shown to be possible using
LSTMs by Zaremba and Sutskever (Zaremba and Sutskever
2014). Adding two MNIST digits randomly located in a
blank picture has been performed by Ba et al. (Ba, Mnih,
and Kavukcuoglu 2014). In (Zaremba, Kurach, and Fergus
2014), Recurrent Neural Networks (RNNs) were used for
algebraic expression simplification. These works, however,
required a non-visual representation of a number either in
the input or in the output. In this paper we show for the first
time that end-to-end visual learning of arithmetic is possible.

End-to-end learning of Image-to-Sentence (Vinyals et al.
2014) and of Speech-to-Sentence (Hannun et al. 2014) has
been described by multiple researchers. A recent related
work by Vondrick et al. (Vondrick, Pirsiavash, and Torralba
2015) successfully learned to predict the objects to appear in
a future video frame from several previous frames. Our work
can also be seen as frame prediction, requiring the network
to implicitly understand the concepts driving the change be-
tween input and output frames. But our visual arithmetic is
an easier task: easier to interpret and to analyze. The greater
simplicity of our task allows us to use raw frames rather than

(a) (b)

(c) (d)

Figure 4: (a-b) Examples of bottom layer weights for the
first input picture. (a) recognizes ’2’ at the leftmost position,
while (b) recognized ’7’ at the center position. (c-d)
Examples of top layer weights. (c) outputs ’1’ at the second
position, while (d) outputs ’4’ at the leftmost position.

an intermediate representation as used in (Vondrick, Pirsi-
avash, and Torralba 2015).

5 Discussion
In this paper we have shown that feed-forward deep neural
networks are able to learn certain arithmetic operations end-
to-end by purely visual cues. Several other operations were
not learned by the same architecture. In this section we give
some intuition for the method the network employs to learn
addition and subtraction, and the reasons why multiplica-
tion and Roman numerals were more challenging. A proof
by construction of the capability of a shallow DNN (Deep
Neural Network) to perform visual addition is presented in
Sec. 6.

When looking at the network weights for both addition
and subtraction, we can see that each bottom hidden layer
node is sensitive to a particular digit at a given position. Ex-
ample bottom layer weights can be observed in Fig. 4.a-b.
The bottom hidden layer nodes therefore represent each of
the two M -digit numbers as a vector of length 10×M , each
element representing the presence of digit 0 − 9 in position

3736



m ∈ [1,M ]. This representation of converting a variable
with D possible values (here 10) as D binary variables all
being 0 apart from a single 1 at the dth position is known as
”1-hot”. The top hidden layer contains a similar representa-
tion of the output number representing the presence of digit
0−9 in position m ∈ [1,M ] with total size 10×M . The task
of the central hidden layers is mapping between the 1-hot
representations of the input numbers (size 10×M×2) and
the 1-hot representation of the output number (size 10×M ).

The task is therefore split into 2 sub-tasks:

• Perception: learn to represent numbers as a set of 1-hot
vectors.

• Cognition: map between the binary vectors as performed
by the arithmetic operation.

Note that the second sub-task is different from arithmetic
operations on binary numbers (and is often harder).

In order to evaluate the above sub-tasks separately, we
repeated the experiments with the (input and output) data
transformed to 1-hot representation, thereby bypassing the
visual sub-task. We used the same architecture as in the end-
to-end case, except that we removed the first and last hid-
den layers (that are used for detecting or drawing images of
numbers at each location).

The results on the test sets measured as the percent-
age of wrong digits in the output number is presented in
Tab. 1. Addition and subtraction are both performed very
accurately as in the visual case. The network was not able
to learn multiplication due to the difficulty of the arith-
metic sub-task, in line with the results of the visual case.
This is also justified theoretically as (i) Binary multipli-
cation was shown by previous papers (Siu et al. 1993;
Franco and Cannas 1998) to require deeper networks than
binary addition. (ii) The Turing Machine complexity of the
basic multiplication algorithm (effective for short numbers)
is O(n2) as opposed to O(n) for decimal addition (n is the
number of digits). This means (Shalev-Shwartz and Ben-
David 2014) that the operation is realizable only by a deeper
(O(n2) vs. O(n) layers) and larger network (O(n4) vs.
O(n2) nodes).

More interesting is the relative accuracy at which Roman
numeral addition was performed, as opposed to the failure
in the visual case. We believe this is due to the high number
of digits for large numbers in Roman numerals (35 digits),
which causes both input and output images to be very high
dimensional. We hypothesize that convergence may be im-
proved with preliminary unsupervised learning of the OCR
tasks (i.e. teaching the network what numbers are by clus-
tering). We conclude that Roman arithmetic can be learned
by DNNs, but visual end-to-end learning is more challeng-
ing due to the difficulty of joint optimization with the OCR
sub-task.

Visual learning when data were corrupted by strong noise
was quite successful. In fact the concepts were learned well
enough that the output pictures were denoised by the net-
work. The performance on illegible digits is particularly in-
teresting. We found that on corrupted digits that could possi-
bly be read as multiple possibilities (In Fig. 5, digits 8 or 5),
the output digit also reflected this uncertainly, resulting in a

Input Picture 1

Input Picture 2

Network Output
Picture

Figure 5: Probabilistic arithmetic for noisy pictures: The
third digit from right in “Input Picture 1” can be either 5
or 8. The corresponding output digit is a mixture of 1 and 8.

mixture of the two possible outputs (In Fig. 5, digits 1 or 8)
with their respective probabilities. In other experiments (not
shown) we have found that visual learning works for unary
operations too (e.g., division by 2).

A significant difference between our model and the cog-
nitive system is its invariance to a fixed permutation of the
pixels. A human would struggle to learn from such images,
but the artificial neural networks manages very well. This
invariance can be broken by slight random displacement of
the training data or by the introduction of a convolutional
architecture.

Although Recurrent Neural Networks are generally bet-
ter for learning algorithms (such as multiplication), we have
chosen to use a fully connected architecture for ease of anal-
ysis. We hypothesize that better performance on multipli-
cation can be obtained using an LSTM-RNN (Long Short
Term Memory - Recurrent Neural Network) but we leave
this investigation for future work.

6 Feasibility of a Visual Addition Network
In this section we provide a feasibility proof by construction
of a neural network architecture that can learn addition from
visual data end-to-end. The construction of the network is
illustrated in Fig. 6.

We rely on logic gates for simplicity. A logic gate can be
implemented to an arbitrary accuracy by a single sigmoid
or by a linear combination of 2 ReLU units Θ(x > 0) =
(ReLU(x + δ) − ReLU(x))/δ. Although our reported re-
sults were obtained using a network utilizing ReLU units,
we have also tested our network with ReLU units replaced
by sigmoid units obtaining similar results but much slower
convergence. Logic gates are therefore a sufficiently good
model of our network.

An input example is shown in Fig. 1. The first layer of
the network is a dimensionality reduction layer. We choose
weights that correspond to the set of filters containing each
digit n (n ∈ 0..9) at each position m. Our experimental net-
work in fact chooses more complex filters usually concen-
trated between similar digits to increase accuracy of digit
detection (see Fig. 6 for examples). We construct 10×M×2
nodes in the HL1 layer indicating if each of the templates
is triggered. Each first hidden layer node responds to a spe-

3737



Figure 6: An illustration of the operation of a 3 hidden layer neural network able to perform addition using visual training. In
this example the network handles only 4 digit numbers, but larger numbers are handled similarly with a linear increase in the
number of nodes. i) The pictures are first projected onto a binary vector HL1 indicating if digit n is present at position m in
each of the numbers. ii) In HL2 we compute indicator variables vmi for each digit 1..M and threshold i = 0..19. The variable
is on if the summation result

∑m
j=1 (d1

m + d2m)×10j exceeds threshold i×10m. iii) In the final hidden layer we calculate
if a template is displayed by observing if the indicator variable corresponding to its digit and position is on but the following
indicator variable is off. The templates are then projected to the output layer.

cific template, for example T2nm corresponds to the template
detecting if the digit n is present at the mth position in pic-
ture 2. It has value 1 if a template appears and 0 if it does
not. Similarly the output layer is represented as a set of tem-
plates each corresponding to a digit (0..9) at a given position
(1..M ).

It is worth noticing that given two digits d1m and d2m at
the mth position in numbers 1 and 2 respectively, the mth

digit in the output dmo can be either (dm1 + dm2 )mod10 or
(dm1 +dm2 +1)mod10. For each pair of digits, the arithmetic
problem is to choose the correct result from the possible two.

In HL2 we compute an indicator function for each digit
m, where node vmi is on when the sum of digits d1 and
d2 and the possible increment from previous digits is larger
than its threshold i (i ∈ 0..19). This is formulated as

vmi = ∑m

j=1
(d1m+d2m)∗10j>=i×10m (1)

It is easily implemented for each node vmi with weights from
HL1 nodes T1mn and T2mn with values n∗10j for j ∈ 1..m,
n ∈ 0..9 and threshold i×10m. For later convenience we
denote vm20 = 0.

In HL3, output template omn corresponding to the digit n
at position m is turned on if in HL2 indicator vmn = 1 or
vmn+10 = 1 while vmn+1 = 0 or vmn+11 = 0 respectively. This
corresponds to the cases where the summation result of the
numbers up to digit m is n×10m ≤ result < (n+1)×10m

or (n+10)×10m ≤ result < (n+11)×10m. The equation

is therefore:

omn = vm
n −vm

n+1
+vm

n+10
−vm

n+11
>0 (2)

Finally the values are projected onto the output picture
using the corresponding digit templates.

By end-to-end training of the network with a sufficient
number of examples the network can arrive at the above
weights (although it is by no means guaranteed to), and in
practice good performance is achieved. End-to-end training
from visual data is therefore theoretically shown and experi-
mentally demonstrated to be able to learn addition with little
guidance. This is a powerful paradigm that can generalize
to visual learning of non-visual concepts that are not easily
directly communicated to the learner.

7 Conclusions
We have examined the capacity of neural networks for learn-
ing arithmetic operations from pictures, using a visual end-
to-end learning protocol. Our neural network was able to
learn addition and subtraction, and was robust to strong im-
age noise. The concept of numbers was not explicitly used.
We have shown that the network was not able to learn some
other operations such as multiplication, and visual addition
using Roman numerals. For the latter we have shown that
although all sub-tasks are easily learned, the end-to-end task
is not.

In order to better understand the capabilities of the net-
work, a theoretical analysis was presented showing how a

3738



network capable of performing visual addition may be con-
structed. This theoretical framework can help determine if a
new arithmetic operation is learnable using a feed-forward
DNN architecture. We note that such analysis is quite re-
strictive, and hypothesize that experimental confirmation of
the end-to-end learnability of complex tasks will often result
in surprising findings.

Although this work dealt primarily with arithmetic oper-
ations, the same approach can be used for general cognitive
sub-task learning using frame prediction. The sub-tasks need
not be restricted to the field of arithmetic, and can include
more general concepts such as association. Generating data
for the cognitive sub-task in not trivial, but generating visual
examples is easy, e.g., by predicting future frames in video.

While our experiments use two input pictures and one
output picture, the protocol can be generalized for more
complex operations involving more input and output pic-
tures. For learning non-arithmetic concepts, the pictures
may contain other objects beside numbers.

Acknowledgments. This research was supported by Intel-
ICRC and by the Israel Science Foundation. The authors
thank T. Poggio, S. Shalev-Shwartz, Y. Weiss, and L. Wolf
for fruitful discussions.

References
Ba, J.; Mnih, V.; and Kavukcuoglu, K. 2014. Multiple object
recognition with visual attention. arXiv:1412.7755.
Bishop, C. M. 1995. Neural networks for Pattern Recogni-
tion. Oxford Univ. Press.
Franco, L., and Cannas, S. A. 1998. Solving arithmetic prob-
lems using feed-forward neural networks. Neurocomputing
18(1):61–79.
Graves, A.; Wayne, G.; and Danihelka, I. 2014. Neural
turing machines. arXiv:1410.5401.
Hajnal, A.; Maass, W.; Pudlák, P.; Szegedy, M.; and Turan,
G. 1987. Threshold circuits of bounded depth. In Annual
Symposium on Foundations of Computer Science, 99–110.
IEEE.
Hannun, A.; Case, C.; Casper, J.; Catanzaro, B.; Diamos, G.;
Elsen, E.; Prenger, R.; Satheesh, S.; Sengupta, S.; Coates,
A.; et al. 2014. Deepspeech: Scaling up end-to-end speech
recognition. arXiv:1412.5567.
Hinton, G. E., and Salakhutdinov, R. R. 2006. Reducing
the dimensionality of data with neural networks. Science
313(5786):504–507.
Hofmeister, T.; Hohberg, W.; and Köhling, S. 1991. Some
notes on threshold circuits, and multiplication in depth 4. In
Int. Conf. Fundamentals of Computation Theory, 230–239.
Springer.
Jaderberg, M.; Vedaldi, A.; and Zisserman, A. 2014. Deep
features for text spotting. In ECCV’14, 512–528. Springer.
Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long,
J.; Girshick, R.; Guadarrama, S.; and Darrell, T. 2014.
Caffe: Convolutional architecture for fast feature embed-
ding. arXiv:1408.5093.

LeCun, Y.; Boser, B. E.; Denker, J. S.; Henderson, D.;
Howard, R. E.; Hubbard, W. E.; and Jackel, L. D. 1990.
Handwritten digit recognition with a back-propagation net-
work. In NIPS’89.
Marr, D. 1982. Vision: A Computational Investigation into
the Human Representation and Processing of Visual Infor-
mation. W.H. Freeman & Co.
Schlimm, D., and Neth, H. 2008. Modeling ancient and
modern arithmetic practices: Addition and multiplication
with arabic and roman numerals. In 30th Annual Confer-
ence of the Cognitive Science Society, 2097–2102.
Shalev-Shwartz, S., and Ben-David, S. 2014. Understanding
Machine Learning: From Theory to Algorithms. Cambridge
University Press.
Siu, K.-Y.; Bruck, J.; Kailath, T.; and Hofmeister, T. 1993.
Depth efficient neural networks for division and related
problems. IEEE Trans. Information Theory 39(3):946–956.
Smith, R. 2007. An overview of the tesseract ocr engine. In
Int. Conf. on Document Analysis and Recognition (ICDAR),
629–633.
Vinyals, O.; Toshev, A.; Bengio, S.; and Erhan, D.
2014. Show and tell: A neural image caption generator.
arXiv:1411.4555.
Vondrick, C.; Pirsiavash, H.; and Torralba, A. 2015.
Anticipating the future by watching unlabeled video.
arXiv:1504.08023.
Zaremba, W., and Sutskever, I. 2014. Learning to execute.
arXiv:1410.4615.
Zaremba, W.; Kurach, K.; and Fergus, R. 2014. Learning
to discover efficient mathematical identities. In NIPS’14,
1278–1286.

3739




