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Abstract

Multi-view point registration is a relatively less stud-
ied problem compared with two-view point registra-
tion. Directly applying pairwise registration often leads
to matching discrepancy as the mapping between two
point sets can be determined either by direct correspon-
dences or by any intermediate point set. Also, the local
two-view registration tends to be sensitive to noises. We
propose a novel multi-view registration method, where
the optimal registration is achieved via an efficient and
effective alternating concave minimization process. We
further extend our solution to a general case in practice
of registration among point sets with different cardinali-
ties. Extensive empirical evaluations of peer methods on
both synthetic data and real images suggest our method
is robust to large disturbance. In particular, it is shown
that our method outperforms peer point matching meth-
ods and performs competitively against graph matching
approaches. The latter approaches utilize the additional
second-order information at the cost of exponentially
increased run-time, thus usually being less efficient.

Introduction
Point matching or registration is a fundamental research
topic in computer vision and pattern recognition since many
applications rely on accurate geometric model acquisition,
including object recognition, localization, tracking, appear-
ance and texture analysis, virtual reality, among others (Lian
and Zhang 2012; Tsin and Kanade 2004; Chui and Rangara-
jan 2003; Zhang 1994; Myronenko and Song 2010). As a
basic form, two-view point registration generally consists
of two subproblems: i) finding correspondence from two
views; ii) estimating the pose transformation. However, the
key challenge is a typical chicken-and-egg problem: two
subproblems are interlocked, and the overall optimization
is highly non-convex. In practice, data acquisition often in-
volves obtaining either intensity or depth data of an object
from more than two view points (Dorai et al. 1998). Hence,
multi-view point matching or registration has attracted more
attention recently because it involves more matching param-
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eters and correspondences among a set of views with po-
tential performance improvements. Fig.1 gives some exem-
plar results of the proposed multi-view registration method
which is applied on real images, where the conventional
two-view registration methods often produce unsatisfactory
results due to various reasons, such as local occlusions and
large transformations, among others.

Despite of the empirical success of two-view point reg-
istration methods, the extension to multi-view registration
remains as an open problem (Sharp, Lee, and Wehe 2004;
Pooja and Govindu 2010). As a straightway matching strat-
egy based on two-view solution, performing pairwise regis-
tration sequentially over all views hardly works well (Pulli
1999). Another potential scheme to reuse the two-view reg-
istration techniques is repeating the two-view registration on
each pair of views and then aligning the pairwise alignment
results to derive the final solution. However, this strategy
suffers two major limitations: i) different orders of pairwise
registration may result in non-unique correspondences; ii)
the registration error by the local noise of a pairwise align-
ment, in an extreme case, may propagate along the pairwise
registration sequence and would be further accumulated if
no extra information is available to dismiss the noise.

It is generally recognized that additional information from
multi-view can help improve the alignment than the case
when only a pair of views is given. To address the above is-
sues and leverage multi-view data, we design a novel multi-
view registration algorithm via an alternative optimization
procedure. We transform the objective function to a concave
one over iteration efficiently, which can be minimized by a
global optimizer, preventing a local optimum in the sequen-
tial cycle of registration process. Extensive empirical studies
corroborate the effectiveness of our method that generates
more accurate and consistent aligning results.

Related Work
In this section, we provide a structured view on previous
work concerning point registration and a more broad topic
i.e. finding point correspondence.

Application scenario: multi-view vs. two-view There is
extensive work for two-view registration. For instance, given
a rough initial registration, the iterative closest point (ICP)
method iterates between finding the point correspondence
via nearest neighbor method and updating the transforma-
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Figure 1: Examples of registration results. From left to right: house and car from the Pose dataset, hotel from the CMU sequence.

tion with the least square error (Chen and Medioni 1992;
Zhang 1994). Many other methods, such as the Robust Point
Matching (RPM) (Chui and Rangarajan 2003) and the Co-
herent Point Drift (CPD) method (Myronenko and Song
2010), are designed to perform the pairwise registration.
On the contrary, the multi-view alignment problem is less
studied and existing work mainly focuses on developing
the registration strategies for aligning multiple pairwise re-
sults (Bergevin et al. 1996; Sharp, Lee, and Wehe 2004;
Pooja and Govindu 2010).

Alignment strategy: simultaneous vs. sequential One
intuitive strategy is to perform pair-view registration at a
time, and then repeat the pairwise registration in a sequential
manner (Chen and Medioni 1992; Turk and Levoy 1994).
Such a strategy enjoys the simplicity of both computational
overhead and implementation efforts. However, this simple
strategy is known to be sensitive to noises. Another alter-
native registration method is first presented by Bergevin et.
al. (Bergevin et al. 1996), and then further refined in (Benje-
maa and Schmitt 1997). More recently, (Pooja and Govindu
2010) proposes an extension to the standard ICP algo-
rithm to simultaneously average the redundant information
in multi-view data. (A.Torsello, Rodola, and Albarelli 2011)
proposes to use dual quaternion and adopts a new distortion
measure derived from the screw motion. Note that most of
these methods are specifically designed for the setting of the
rigid transformation, neglecting non-rigid transformations.

Optimization technique: global vs. heuristic Most of
the well-known point registration methods are heuristic.
Briefly speaking, one starts from an initial estimation and
solves the overall problem by alternately solving the two
sub-problems, i.e., pose estimation and point correspon-
dence. The above mentioned ICP based approaches fall
into this category. In addition, Robust Point Matching
(RPM) (Chui and Rangarajan 2003) relaxes point correspon-
dence to be continuously valued and achieves an optimized
solution in the continuous space. The coherent point drift
(CPD) method (Myronenko and Song 2010) models point
matching under a probabilistic framework and uses expec-
tation maximization (EM) for obtaining optimal solutions.
(Lian and Zhang 2012) forms a concave objective and ob-
tains a globally optimal solution. Similarly, (Li and Hartley
2007) achieves a global optimality grounded by the Lips-
chitz global optimization process. However, the global opti-
mized results are achieved only for the two-view case.

Transformation: similarity vs. affine transformation
Given a point x ∈ R2, its similarity transformation is cal-
culated as sRx + t, where s is the scaling factor, and R, t
denotes rotation matrix and translation vector respectively.

The affine transformation is computed as Vx + t where
V ∈ R2×2 denotes the affine matrix and t for translation.
In particular, for the similarity transformation, if the scalar
factor equals 1, then it becomes rigid transformation. In gen-
eral, both two types are non-rigid transformations. There are
also other types of parameterized transformations, such as
RBF non-rigid transformation (Chui and Rangarajan 2003;
Myronenko and Song 2010), which is parameterized by a
set of basis points. etc. In our experiment, we would focus
on the two most popular types as described above.

Point registration vs. graph matching Graph match-
ing (Tian et al. 2012; Yan et al. 2013; 2014; Zhou and la
Torre 2012; Cho, Lee, and Lee 2010) and point registra-
tion are closely related formulations, both of which are used
for solving the point set correspondence problem. How-
ever, there are two important differences between these two
approaches. First, graph matching typically explicitly in-
fuses pairwise or higher-order point tuple affinity, which
is beyond unary similarity, to derive the objective func-
tion. While point registration does not explicitly use such
point-tuple affinities between two point sets. Its optimiza-
tion can be casted as a linear programming problem given
known transformation parameters. The other major differ-
ence is graph matching does not impose parametric prior
or constraints to the transformation between two point sets,
yet point registration involves various parameterized trans-
formation models such as affinity or similarity transform,
as we discussed above. Therefore, both formulations are
mathematically challenging: graph matching is casted to a
constrained quadratic (due to including higher-order affin-
ity terms) assignment programming problem which is well
known to be NP-hard; In contrast, point registration involves
additional unknown transformation parameters which need
be estimated jointly with the point correspondence. Note si-
multaneously optimizing with respect to these two variables
are non-convex without a closed form solution.

From Two-view to Multi-view Registration
Before diving into main body, first several notations are de-
fined. Without loss of generality, this paper mainly presents
the proposed multi-view registration formulation and algo-
rithm in the context of three views. Let X = {xi},Y =
{yi},Z = {zi} denote three point sets, whose cardinal-
ity equals m, n, l respectively. For point set X , denote
each point by xi = [x1

i , ..., x
d
i ] ∈ Rd, so for Y , Z . P ∈

{0, 1}m×n, denotes the point matching matrix with Pij = 1
indicating that xi corresponds to yj and Pij = 0 otherwise.
The pairwise transform parameters over the three point sets
are θxy ∈ Rk,θxz ∈ Rk,θyz ∈ Rk, where k is the de-
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gree of freedom of the transformation. Let Jxi, Jyi, Jzi de-
note the Jacobian matrices of the i-th point in point sets
X , Y , Z , respectively. To make the problem mathemati-
cally tractable, we assume the transformation T (xi|θ) is lin-
ear with respect to its parameters θ. Their matrix forms are
Jx ∈ R2m×d, Jy ∈ R2n×d, Jz ∈ R2l×d. In addition, we
define Ȳ , [‖y1‖22, . . . , ‖yn‖22]T , Z̄ , [‖z1‖22, . . . , ‖zl‖22]T .
Im ∈ Rm×m denotes the identity matrix, and 1m ∈ Rm×1

denotes the column vector whose elements being all ones.
A⊗ B is the Kronecker product of matrices A and B.

We introduce one important formulation for two-view
point registration. Being a baseline approach, this pairwise
method is also the starting point of the proposed method.

Baseline: Pairwise Robust Point Matching
For pairwise form of robust point matching (RPM)
model (Chui and Rangarajan 2003), the problem is ex-
pressed via minimizing an objective w.r.t. Pxy (xy is omit-
ted in Eq.1), θxy from X to Y , which consists of a point-
to-point distance term and a regularizer g(θxy) related to a
prior transform θ0 and a weight matrix H ∈ Rk×k:

E(P,θxy) =
∑
i,j

Pij‖yj − T (xi|θ)‖+ g(θxy) (1)

P1n = 1m, 1T
mP ≤ 1n, g(θxy) = (θxy − θ0)T H(θxy − θ0)

The optimal θ̂xy is found by zeroing its derivative1.

θ̂xy = (JT
x Jx + H)−1[JT

x (Pxy ⊗ Id)Y + Hθ0] (2)

Proposed Multiple-View RPM Formulation
Without loss of generality, assume |X | ≤ |Y| ≤ |Z| and
the mapping for X→Y is injection, so for Y→Z . Based on
these assumptions, in line with footnote (1), we propose the
following three-view registration formulation:

Exyz =Exy + Exz + Eyz (3)

=
∑
i,j

‖yj − Jxiθxy‖2 +
∑
i,k

‖zk − Jxiθxz‖2

+
∑
j,k

‖zk − Jyjθyz‖2 + g(θxy) + g(θxz) + g(θyz)

In the explicit form w.r.t. correspondence matching matrix
Pxy , Exy (similar for Exz , Eyz) can be written as:

θT
xyJT

x Jxθxy − 2θT
xyJT

x (Pxy ⊗ Id)Y + 1T
mPxyȲ + g(θxy)

where g(θ) = (θ − θ0)
T H(θ − θ0). To make the prob-

lem mathematically tractable, we assume θxy , θxz , θyz are
independent to each other2, thus can be decided by the
matching matrix Pxy , Pxz , Pyz independently. By letting

1We assume each point in X has its counterpart in Y:
Pxy1n=1m. Therefore, we can simplify the mathematics and reach
Eq.2 which is the foundation of later derivation of this paper. This
constraint is widely used in related literature such as (Chui and
Rangarajan 2003; Lian and Zhang 2012) and reference therein.

2The reader may have the concern that θxy , θxz , θyz should be
compatible with each other while computing them independently
as simplified in the paper in general cannot ensure this compatibil-

∂E
∂θxy

= ∂E
∂θxz

= ∂E
∂θyz

= 0 the optimal θxy , θxz , θyz can
be calculated by Eq.2. As a result, they are eliminated in the
objective function and we arrive at a new nonlinear objec-
tive function w.r.t. Pxy , Pxz , Pyz where Exy can be written
as follows (similar for Exz , Eyz)

Exy =1T
mPxyȲ −

(
YT (Pxy ⊗ Id)T Jx + θT

0 H
)

(JT
x Jx + H)−1

·
(

JT
x (Pxy ⊗ Id)T Y + Hθ0

)
+ θ0Hθ0

By eliminating the constant terms, the expansion of Exy
(similar for Exz , Eyz) w.r.t. matching matrix Pxy becomes:

Exy =1T
mPxyȲ− 2θT

0 H(JT
x Jx + H)−1JT

x (Pxy ⊗ Id)Y (4)

+ YT (Pxy ⊗ Id)T Jx(JT
x Jx + H)−1JT

x (Pxy ⊗ Id)Y

To obtain a more clear expression, we vectorize the matrix
version of P to p=vec(P) by stacking its rows. By separating
the linear Elin

xyz and the quadratic parts Eqd
xyz we reach:

Exyz =Elin
xyz(pxy, pxz, pyz)− Eqd

xyz(pxy, pxz, pyz) (5)

Elin
xyz =(1T

m ⊗ ȲT
+ (Kx ⊗ Y)Wxy)pxy

+ (1T
m ⊗ Z̄T

+ (Kx ⊗ Z)Wxz)pxz

+ (1T
n ⊗ Z̄T

+ (Ky ⊗ Z)Wyz)pyz

Eqd
xyz =‖(UxJT

x )⊗ YT Wxypxy‖
2 + ‖(UxJT

x )⊗ ZT Wxzpxz‖
2

+ ‖(UyJT
y )⊗ ZT Wyzpyz‖

2

where Kx = 2(θT
0 H(JTx Jx + H)−1JTx ) and similar for

Ky , Kz . In the rest of the paper, we further assume |Y|=|Z|
and the correspondence is a bijection, then it is mathemati-
cally sound (refer to footnote 1) to rewrite the objective as
Exyz=Exy+Exz+Ezy by replacing Eyz with Ezy . The rea-
son for introducing this alternative writing of the objective
function would be clear in the next section.
Exyz =Elin

xyz(pxy, pxz, pzy)− Eqd
xyz(pxy, pxz, pzy) (6)

Elin
xyz =(1T

m ⊗ ȲT
+ (Kx ⊗ Y)Wxy)pxy

+ (1T
m ⊗ Z̄T

+ (Kx ⊗ Z)Wxz)pxz

+ (1T
l ⊗ ȲT

+ (Kz ⊗ Y)Wzy)pzy

Eqd
xyz =‖(UxJT

x )⊗ YT Wxypxy‖
2 + ‖(UxJT

x )⊗ ZT Wxzpxz‖
2

+ ‖(UzJT
z )⊗ YT Wzypzy‖

2

where UT
x Ux = (JT

x Jx + H)−1, UT
y Uy = (JT

y Jy + H)−1,
UT

z Uz = (JT
z Jz + H)−1, Wxy , Im ⊗ [In ⊗ e1d, . . . , In ⊗ edd]T ,

Wxz , Im⊗[Il⊗e1d, . . . , Il⊗edd]T , Wyz , In⊗[Il⊗e1d, . . . , Il⊗
edd]T , Wzy , Il ⊗ [In ⊗ e1d, . . . , In ⊗ edd]T , such that W satis-
fies vec(P⊗ Id)=W vec(P) and eid is a d-dimensional column
vector with the i-th element being 1 and the rest 0s.

Alternating Optimization
The rough idea for alternating optimization is to fix one pair-
wise alignment variable and then update the other in a rotat-
ing manner. For three-view scenario as we discussed so far,

ity. In fact, from our experiments, we empirically found the esti-
mated θxy , θxz , θyz are roughly consistent. Note one way of mit-
igating the consistency issue is that to some extent we bring this
compatibility back since the point correspondence matching con-
sistency is preserved in our formulation i.e. Pxy = PxzPzy .
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Figure 2: Similarity transform test on Chui-Rangarajan data: Point matching distance error by 5 methods (RPM, M-RPM, FGM,
UG, M-GM) against deformation, noise and outlier. The bars indicate the standard deviation of the error over 20 random trials.

Figure 3: Affine transform test on Chui-Rangarajan data: Point matching distance errors by 5 methods (RPM, M-RPM, FGM,
M-GM, CPD) against deformation, noise and outlier. The bars indicate the standard deviation of the error over 20 random trials.

there are three variables pxy , pxz , pyz . Remember it is still
under the assumption as stated in Sec.3 that |X | ≤ |Y| =
|Z| and Pxz , Pxy are injection and Pzy bijection. There-
fore, the two equations Pxz = PxyPyz , Pxy = PxzPzy both
hold. However, it would cause node-mapping information
loss if one moves Pyz (Pzy) to the left side of the equation:
Pyz = PyxPxz (Pzy = PzxPxy). In fact these two equations
do not hold because X only corresponds to a subset of Y
and Z . In fact, the derived Pd

yz = PyxPxz cannot satisfy the
injection requirement for Eyz thus Eq.2 is broken.

Based on the above analysis, we will chose to fix one of
pxy and pxz alternatively and optimize with respect to pyz
(pzy) and the other. Specifically, given known pxy , we have
pxz = (In ⊗ Pxy)pyz; when pxz is fixed, it becomes pxy =
(In⊗Pxz)pzy . Attention shall be taken here to the new form
pzy instead of pyz . One may argue to avoid pzy (accordingly
Ezy) by using pyx = (In ⊗ Pxz)pyz . However pyx reverses
the term Eyx which breaks the assumption in footnote (1)
for A → B is an injection in the objective function EAB .
In contrast, as Y → Z is a bijection, reverse Eyz to Ezy is
not harmful. Therefore, it becomes clear why we replace the
term Eyz with Ezy as shown in Eq.6, in addition with Eq.5.

Note we impose no assumption about the property of the
point distribution or the topology of the point sets. Hence,
our approach and analysis are generic. In what follows, we
will give a detailed description of the proposed method un-
der the context of three-view registration, which will be ex-
tended to a more general setting with multiple views.

Three-view Alternating Optimization Mechanism
By fixing pxy we can discard Exy in Eq.5, and the objective
function that is only with respect to pxz , pyz becomes
Exzyz =(1Tm ⊗ Z̄T

+ (Kx ⊗ Z)Wxz)pxz − ‖[(UxJTx )⊗ ZT
]Wxzpxz‖

2

+(1Tn ⊗ ȲT
+ (Ky ⊗ Z)Wyz)pyz − ‖[(UyJTy )⊗ ZT

]Wyzpyz‖
2

The two quadratic terms in Exzyz can be written as:
Eqd

xzyz =pT
xz[(UxJT

x )⊗ ZT Wxz]T [(UxJT
x )⊗ ZT Wxz]pxz

+pT
yz[(UyJT

y )⊗ ZT Wyz]T [(UyJT
y )⊗ ZT Wyz]pyz

Alternatively, one can fix pxz and remove the constant term
Exz from Eq.6 to obtain the new objective function:
Exyzy =(1Tm ⊗ ȲT

+ (Kx ⊗ Y)Wxy)pxy − ‖[(UxJTx )⊗ YT
]Wxypxy‖

2

+(1Tl ⊗ ȲT
+ (Kz ⊗ Y]Wzy)pzy − ‖[(UzJTz )⊗ YT

]Wzypzy‖
2

Similarly, its quadratic term can be written as:

Eqd
xyzy =pT

xy[(UxJT
x )⊗ YT Wxy]T [(UxJT

x )⊗ YT Wxy]pxy

+pT
zy[(UzJT

z )⊗ YT Wzy]T [(UzJT
z )⊗ YT Wzy]pzy

To simplify the exposition of the objective function
over iterations that would be shown later, we introduce
Bxz = (UxJT

x ) ⊗ ZT Wxz, Byz = (UxyJT
y ) ⊗ ZT Wyz ,

Bxy = (UxJT
x ) ⊗ YT Wxy , and Bzy = (UzJT

z ) ⊗ YT Wzy ,
Fxy = In⊗Pxy , Fxz = In⊗Pxz . Based on these notations, we

further define: Cyzxz =

[
Byz

BxzFxy

]
, Czyxy =

[
Bzy

BxyFxz

]
.

Using the two objective function formula Exzyz , Exyzy
and the above notations, the iteration can be compactly
described as follows in a rotating manner.

Step 1) Fix pxy update pyz for minimizing partial ob-
jective function Exz+Eyz . Replace pxz by pxz=Fxypyz , the
quadratic term in Exzyz can be rewritten compactly as:

Eqd
xzyz = pT

yzBT
yzByzpyz + pT

yz(BxzFxy)T (BxzFxy)pyz

= pT
yzCT

yzxzCyzxzpyz

Now we reach the objective function with respect to pyz:

E(pyz) = bT
yzpyz − ‖Cyzxzpyz‖

2 (7)

Step 2) Fix pxz update pzy for minimizing partial objec-
tive function Exy+Ezy . Replace pxy by pxy=Fxzpzy , which
leads to Exyzy=pT

zyCT
zyxyCzyxypzy . Then we have:

E(pzy) = bT
zypzy − ‖Czyxypzy‖

2 (8)

where byz and bzy have the following forms:

byz =1Tn ⊗ Z̄T
+ (Ky ⊗ ZT

)Wyz +
(

1Tm ⊗ Z̄T
+ (Kx ⊗ ZT

)Wxz

)
Fxy

bzy =1Tl ⊗ ȲT
+ (Kz ⊗ YT

)Wzy +
(

1Tl ⊗ ȲT
+ (Kx ⊗ YT

)Wxy

)
Fxz
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Algorithm 1 Alternating concave optimization for three-
view point registration
1: Input: X ,Y,Z (Y , Z are ‘complete’ point sets), θ0, Tmax;
2: Output: Consistent point matching solution Pxy,Pxz,Pyz;
3: Procedure:
4: Obtain Pxy via minimizing Eq.1 for initialization;
5: for t = 1 : Tmax do
6: Fix Pxy , update Pyz (Pxz by Pxz=PxyPyz) via minimizing

Eq.7 by concave optimization (Lian and Zhang 2012);
7: Fix Pxz , update Pzy (Pxy by Pxy=PxzPzy)via minimizing

Eq.8 by concave optimization (Lian and Zhang 2012);
8: end for

Figure 4: Illustration for the alternating optimization or-
der, given complete point sets B1, B2, B3 and incomplete
sets A1, A2, A3. Two rows denote two possible loop-
ing alternating optimization iteration paths, respectively.
Top row: (Pa1b1,Pa2b1,Pa3b1) → (Pa1b2,Pa2b2,Pa3b2) →
(Pa1b3,Pa2b3,Pa3b3) → (Pa1b1,Pa2b1,Pa3b1) → · · · ; Bot-
tom row: (Pa1b1,Pa2b1,Pa3b1) → (Pa1b3,Pa2b3,Pa3b3) →
(Pa1b2,Pa2b2,Pa3b2)→ (Pa1b1,Pa2b1,Pa3b1)→ · · · .

After a series of derivation and transformation, the above
two formulations enable us to employ the method used in
(Lian and Zhang 2012) for solving the minimization prob-
lems of (7) and (8). Specifically, the objective function (7)
or (8), in its concave quadratic program form, is first trans-
formed into a separable form via eigen decomposition, and
then derives the convex envelope of the resulting function
over a rectangular region. Then, the normal rectangular al-
gorithm (Horst and Tuy 1996) is used, as a tailored Branch-
and-bound approach. Note that after the Eigen decomposi-
tion based linear transformation, the number of quadratic
terms shrinks to be the number of transformation parame-
ters, thus the method becomes more efficient. Readers are re-
ferred to (Lian and Zhang 2012) for more details. The over-
all algorithmic chart of our method specifically for three-
view point registration is described in Alg.1.

Multiple-View Extension
Now we discuss how to generalize our method to
the N -view registration problem with unequal cardinal-
ity of point sets. Denote the “complete” point sets as
{B}Ni=1 = {B0,B1, . . . ,BN}, and those “incomplete” point

Figure 5: Mean run-time (in seconds) for similarity transfor-
mation test on Chui-Rangarajan dataset by 5 methods (RPM,
M-RPM, FGM, UG, M-GM). Three types of disturbance,
i.e. deformation, noise, outlier are measured, respectively.

sets {A}Mi=1 = {A0,A1, . . . ,AM} such that the node map-
ping from Ai(i = 1, . . . ,M) to Bj(j = 1, . . . , N) is an
injection which satisfies the assumption in footnote (1), and
the correspondences in any pair of Bi,Bj is bijection. Now
we use ai to denote the index of Ai and bi for Bi. In gen-
eral, the objective function suited to our specific alternating
optimization method is tailored to the following form3:

E =

N∑
bj=1

M∑
ai=1

Eaibj +

N∑
bi,bj=1,bi 6=bj

Ebibj (9)

One can choose an anchor point set from {B}Ni=1 in rotation.
The anchor view serves as the bridge to diffuse the infor-
mation from {A}Mi=1 to {B}Ni=1 and within {B}Ni=1. With-
out loss of generality, in iteration k, view Bk is chosen as
the anchor view. By using p(k−1)

aubk
which is updated in the

previous iteration k-1, for the bijection p(k)
bkbv

between Bk
and Bv (v 6=k), one can optimize its associated partial objec-
tive function E(p(k)

bkbv
)=Ebkbv+

∑M
u=1Eaubv by rewriting

p(k)
aubv

=(Iau
⊗ P(k−1)

aubk
)p(k)

bkbv
to replace p(k)

aubv
with p(k)

bkbv
. In

consequence, one can update p(k)
bkbv

by applying the concave
optimization algorithm similar to solving the problem of (7)
and (8). Accordingly, p(k)

aubk+1
is also updated which would

be used in the next iteration. To further concretize our idea,
Fig.4 illustrates two possible iteration rotation orders given
three “complete” views B1,B2,B3 and three “incomplete”
A1,A2,A3. In practice, in order to obtain such “complete”
point sets given a large number of views, one can divide the
whole batch into subsets, and performs our method in each
of the subset where the “complete” views exist.

Experiments
We implement all the competing methods in Matlab R2009
on a desktop with dual 2.53GHz CPU and 3G memory.
Since all methods output point correspondences, we use the
correspondences computed by a method to find the best
transformation between the two point sets, and define the
error as the mean of the Euclidean distances between the
transformed model points and their ground truth.

3For Eaiaj where the mapping from Ai to Aj is an injec-
tion, they cannot be incorporated under the current alternating op-
timization framework. This is because it is possible that the de-
rived Paiaj =PaibkPbkaj used in Eaiaj would break the assump-
tion Paiaj 1=1 if Ai, Aj corresponds to different subsets.
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The synthetic data used in this paper is generated by the
template from Chui-Rangarajan data sets (Chui and Ran-
garajan 2003). The tested real image data is from CMU hotel
and house sequences. The other two sequences (volvo and
house) from the pose database (Vikstn et al. 2009).

In line with (Lian and Zhang 2012)’s experimental pro-
tocol, rotation-invariant and rotation non-invariant exper-
iments are performed by setting a regularized and non-
regularized transformation parameter θ, respectively. For
rotation-invariant tests, we use 2-D similarity transformation
which has been shown a good tradeoff between transforma-
tion flexibility and matching robustness. For rotation sensi-
tive tests, we use affine transformation in our method as it
has small number of parameters while has a certain flexibil-
ity to handle non-rigid transformation.

For comparison, we use the two-view registration RPM
formulation (Lian and Zhang 2012) as the baseline, and
the recent factorized graph matching method (FGM) (Zhou
and la Torre 2012). Note these two-view methods both can-
not ensure the matching consistency across different view-
pairs. The recent graph matching method (M-GM) (Yan et
al. 2013) is also tested by following the authors’ settings.
We further evaluate UG (Caetano and Caelli 2006) and CPD
(Myronenko and Song 2010) for similarity and affine trans-
formation tests, respectively. We term the proposed multi-
view robust point matching as M-RPM (red curves in plots).
Note only the M-GM method and our method can ensure the
matching consistency among all the compared methods.

Experiments on Synthetic Data
Similarity transform test For similarity transform test
which is rotation invariant (non-regularized θ in our
method), the RPM (Lian and Zhang 2012), FGM (Zhou and
la Torre 2012), M-GM (Yan et al. 2013) and UG (Caetano
and Caelli 2006) are evaluated by non-rigid deformation,
noise and outliers respectively. For each test, in addition
with these disturbances, random rotations are imposed on
the other two of the three point sets respectively. The match-
ing errors, which follow the protocol of (Lian and Zhang
2012), are shown in Fig.2. It can be seen that for all deforma-
tion, noise and outlier tests, our method often outperforms
other point-matching methods. The average run time shown
in Fig.5. While Fig.7 shows a visual example of how accu-
racy is boosted during two iterations by our method, mean-
while, still being more efficient than the higher-order graph
matching methods: FGM and M-GM, although outperform
in the outlier test, yet being the slowest across tests.
Affine transform test For rotation sensitive affine transfor-
mation (regularized θ in our method), the matching errors
are displayed in Fig.3, where the deformation setting is sim-
ilar to the similarity transformation test with no random rota-
tion imposed. It can be seen that our method outperforms for
deformation and noise tests significantly while being less ef-
fective on the outlier tests. Compared with the RPM method,
the performance gain is consistent and notable.
Unequal size test We perform clutter test where one of the
three point sets has less points than the other two. Fig.8
shows the improved alignment between the smaller-size ob-
ject against the whole template, for the similarity transfor-

Figure 6: Examples of synthetic point sets of fish & Chinese
character from (Chui and Rangarajan 2003). From left to
right: reference template, deformation, outlier and noise.

mation deform test on the used synthetic data. Compared
with the baseline RPM, our method’s improvement is gained
by incorporating an additional, but also deformed whole
template. We further perform this test over different com-
pletion level as shown in the third column of Fig.8.

Figure 7: Iteration illustration: two iterations on similarity
testing. Left two: registration results; right two: resulting es-
timated binary correspondence matrix, whose ground truth
is the identity matrix.

Real Image Sequences
The matching accuracies (fraction of correct correspon-
dences) against different frame intervals and view rotation
angles by using different methods are shown in Fig.9. It can
be seen that our method also achieves the best accuracy for
most of the test cases. Note other methods like UG and the
baseline RPM suffer from the performance fluctuation due
to the periodic appearance variation of the testing image se-
quence, while our method tends to be more robust.

Discussion and Summary
The above experimental results suggest that the proposed
method mostly outperform peer point matching methods,
and performs competitively against graph matching meth-
ods, which utilize the second-order information with an ex-
ponential exploration time costs (Zhou and la Torre 2012;
Yan et al. 2013). As a result, our method is more efficient
than the comparing graph matching approaches.

Conclusion
We have proposed a novel formulation and an efficient opti-
mization solution for multi-view registration. It ensures con-
sistent matching solutions, and is able to handle point sets
of unequal sizes. Extensive tests on both synthetic and real
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Figure 8: Matching errors of synthetic clutter test by simi-
larity transformation (three point sets are used). From left to
right: i) clutter before matching; ii) matching using the two-
view RPM baseline (Lian and Zhang 2012); iii) our method;
iv) average matching errors by varying the ratio of sub-set to
whole-set over 10 tests for 3 methods: RPM, M-RPM, UG.

Figure 9: Matching accuracy on CMU and Pose datasets by
5 methods (RPM, M-RPM, FGM, UG, M-GM). From left to
right: CMU hotel, Pose house, Pose volvo car.

datasets are performed with more promising results com-
pared with other point registration methods, while being
more efficient than higher-order graph matching methods.

Appendix
Why Eq.2 depends on Pxy1n = 1m
Here we give the derivation details of Eq.2 to show why it
depends on Pxy1n = 1m. The matrix form of Eq.1 is:∑

i,j

Pij(yTj yj + θ
T JTxiJxiθ − 2θ

T JTxiyj) + (θ − θ0)
T H(θ − θ0)

=θ
T JTx (diag(P1n)⊗ Id)Jxθ − 2θ

T JTx (P⊗ Id)Y + 1TmPȲ + g(θ)

=θ
T JTx Jxθ − 2θ

T JTx (P⊗ Id)Y + 1TmPȲ + (θ − θ0)
T H(θ − θ0)

Zeroing the following partial derivative, we obtain Eq.2.

2(JT
x Jx + H)θ − 2JT

x (P⊗ Id)Y− 2Hθ0
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