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Abstract

Most previous work on video description trains individual
parts of speech independently. It is more appealing from a lin-
guistic point of view, for word models for all parts of speech
to be learned simultaneously from whole sentences, a hypoth-
esis suggested by some linguists for child language acquisi-
tion. In this paper, we learn to describe video by discrimina-
tively training positive sentential labels against negative ones
in a weakly supervised fashion: the meaning representations
(i.e., HMMs) of individual words in these labels are learned
from whole sentences without any correspondence annotation
of what those words denote in the video. Textual descriptions
are then generated for new video using trained word models.

Introduction

Generating textual description of video is attracting increas-
ing attention both in the natural-language-processing and
computer-vision communities. Prior work mainly falls into
three categories. First, some methods craft rule-based sys-
tems in which language generation is treated as an engi-
neering task (Kojima, Tamura, and Fukunaga 2002; Lee et
al. 2008; Khan, Zhang, and Gotoh 2011a; 2011b; Hanck-
mann, Schutte, and Burghouts 2012; Siddharth, Barbu, and
Siskind 2014). With ad hoc rules, they manually establish
the correspondence between linguistic terms and visual el-
ements, and then analyze the events or relations among the
visual elements to generate sentences. Second, other work
trains statistical models for lexical entries, where the trained
word models mainly serve to eliminate the tedious effort of
rule design when the problem size becomes large (Das et al.
2013; Guadarrama et al. 2013; Krishnamoorthy et al. 2013;
Sun and Nevatia 2014). In these approaches, the word mod-
els are pretrained individually and separately; models of dif-
ferent parts of speech may have different mathematical rep-
resentations or training strategies. Nouns, verbs, and prepo-
sitions are then mosaiced together to yield sentences. Hybrid
approaches, such as Barbu et al. (2012), learn some of the
words while engineering ad hoc rules for the others. Third,
another line of work does not train word models explicitly
(Rohrbach et al. 2013). Instead, they construct a structured
model (e.g., Conditional Random Field, CRF) which formu-
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Figure 1: (a) Word classification example from Guadarrama
et al. (2013): verbs are modeled by hierarchies with each
leaf represented by Dense Trajectories. (b) Word grounding
example: verbs are modeled by HMMs. Each state outputs
distributions that have semantic meaning, such as:

move (agent, horizontally),

move (patient,horizontally),

close (agent,patient),

and bigger (agent, patient).

lates the interaction among the words in a sentence by treat-
ing words as latent labels. Sentence generation is done by
inferring the latent labels given the observed variables, i.e.,
visual features. It is unclear, however, when a sentence is
generated, whether the words capture the semantic mean-
ings of the visual concepts or are produced simply due to
the high correlations encoded in the structured model.

All the above methods that learn to describe video treat
words merely as categories for the purpose of visual-feature
classification. In essence, they learn to match visual fea-
tures extracted from test video against those extracted from
training video, to get the most likely key words from the
sentences paired with the best matched training video. Then
a language model is employed to generate sentences from
those key words. None of them learn the actual language
semantics. To truly understand video content and describe
that content with natural language, a computer-vision sys-
tem should aim at learning to ground words in video con-
cepts, i.e., map words to meanings. The distinction between
using words for visual-feature classification and grounding



The person picked up The person put down

(a) training from video
described with sentences

Sm the traffic cone. the traffic cone.
The person carried the The traffic cone carried
traffic cone. the trash can.

fm The trash can picked up The stool put down the

the traffic cone. traffic cone.

(b) describing video
with sentences

The chair approached
the backpack.

The person picked up
the traffic cone to the
left of the trash can

The chair carried the
person.

The person carried the
chair towards the stool.

The backpack approached
the chair.

The chair approached the
chair.

The person to the left of the stool picked up the traffic cone.

Figure 2: An overview of our problem. Sentences in green (red) are positive (negative) training labels. Our method takes
{(Bim,Sm,&m)} as the only input, learns the meanings of the words that occur in s,, and &,,,, and generates sentences s’ for a
new video clip B’. Note that during this whole process there is no human intervention to map words to video regions/features.

words in visual concepts is illustrated in Fig. 1.

Beyond that, it is more appealing, from a linguistic point
of view, for this grounding process to happen simultaneously
for all parts of speech; words should be learned from scratch
simultaneously from whole sentences. A related hypothesis
is suggested by some linguists for child language acquisition
(Siskind 1996): children are likely to learn word meanings
under weak supervision, from what they see and hear, with-
out conceptual annotation (i.e., word-to-concept mappings).
Our recent work (Yu and Siskind 2013) also provided ex-
periment results in support of this. In this paper, we fur-
ther explore this language-grounding problem by asking the
question: does reasoning about semantic information that
is absent from the video and the presented sentences help
the learning of word meanings? We show that the answer is
yes by demonstrating a significant improvement to sentence-
generation accuracy over this prior work.

We attempt to accomplish a novel video-description task
in which word models are learned solely from whole sen-
tences that describe events that are both present and absent
in the video. We train with positive and negative sentential
labels (PLs and NLs) and generate textual description of new
video using trained models. We show that “negative” infor-
mation helps yield better trained word models. Our problem
is illustrated in Fig. 2 and a roadmap of our approach is in
Fig. 3. Learning in such a weakly supervised fashion re-
quires three things. First, our method automatically learns
the correspondence between words and video regions, and
trains each word model with its corresponding region(s). To-
wards this end, the proposed method must posses the abil-
ity to implicitly annotate video data by itself for training
different types of words. In our approach, this is achieved
by exploiting language semantics. Second, the method ex-
tracts useful training information not only from PLs, but
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also from NLs. Although much prior work uses discrimi-
native word labels for learning say, object or event models
(Felzenszwalb, Girshick, and McAllester 2010; Sadanand
and Corso 2012), to our knowledge, this is the first use of
discriminative sentential labels to learn to describe video.
Doing so requires major substantive mathematical machin-
ery: we use the Growth Transformation (Gopalakrishnan et
al. 1991) optimized with gradient ascent where the gradi-
ent is calculated by an adjoint graph derived similar to Back
Propagation (Rumelhart, Hinton, and Williams 1986). Fi-
nally, all words from six different parts of speech that can
occur in such sentential labels are represented in a unified
form, and more importantly, are grounded simultaneously.
This is done in a factorial Hidden Markov Model (HMM)
framework (Brand, Oliver, and Pentland 1997) where each
word is represented as a component HMM. In contrast, most
prior work learns just object models, learns just event mod-
els, learns object and event models with differing represen-
tations, or learns such separately. Given that our task is dif-
ficult, our problem domain is currently restrictive; we focus
on a small but representative lexicon instead of large quanti-
ties of video and text. Our lexicon contains 17 words from 6
parts of speech (nouns, verbs, adverbs, motion prepositions,
spatial-relation prepositions, and determiners).

Here, we first give an example of our training samples.
Suppose we have a training video clip (the first one shown
in Fig. 2). For this particular video, the following sentences

can be PLs:
la The person picked up the traffic cone.
Ib  The person picked up the traffic cone to the left of the stool.

Moreover, any sentence containing at least one word that is
untrue about the video is an NL, such as any of the follow-

ing:!

"Note that while we use negative sentences for training pur-
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Figure 3: A roadmap of our approach. The dashed boxes
represent the procedure components and the arrows repre-
sent flow of information between those components.

2a
2b
2¢
2d

The person carried the traffic cone.

The person picked up the traffic cone to the right of the stool.

The traffic cone picked up the person.

The backpack approached the trash can.

Note that an NL can share most of the words with a PL;
they might differ by just a single word (1a/2a and 1b/2b).
An NL might even share all the words with a PL but differ
in word order (1a/2c), because sentential semantics depends
on that order: person should be the agent and traffic cone
should be the patient. When a PL and an NL share common
components, discriminative training will drive the remain-
ing components to be different from each other. While PLs
are manually annotated for a video, NLs are automatically
generated by taking the complement of the PLs.

Problem

Our training samples are triples: (B, s, ), where B repre-
sents the information extracted from a video clip, s repre-
sents the PL, and ¢ represents a set of NLs. Note that while
there is only one s in a training sample, there may be an-
other s’ in another training sample (B, s’,£’) with the same
video clip, i.e., a video clip might be used multiple times.
This is because one video may depict different events, each
described by different sentences. Moreover, even a single
event might be described by variant sentences that highlight
different aspects of that event. A sequence of such triples
{(Bm;,Sm;&En) M| comprise our training set (Fig. 2).
Language learning with only video-PL pairs
{(Bn,sm) }M_, was studied in Yu and Siskind (2013). To

poses, we do not claim, from the perspective of the language-
acquisition process, that children must hear hundreds of negative
sentences in each scenario in order for them to learn the correct
word meanings. In our method, sentences are only used to specify
an internal logical representation that is used to generate the fac-
torial HMM. We can directly generate such from negative logical
representations without sentences. Such negative logical represen-
tations can be produced inferentially from the video input without
any actual negative sentences. Thus we don’t claim that children
actually hear sentences that describe things that don’t occur; all we
presume is that they can infer what hasn’t occurred in the video in
some internal logical representation.

3857

do so, they first model each word as an HMM where each
state represents a certain phase of the event described by
that word. For example, the meaning of a verb, such as
pick up, could be represented as a two-state HMM, where
the first state describes the motion of the hand of the agent
towards the patient while it is at rest and the second state
describes the joint motion of the hand of the agent together
with the patient in the reverse direction. Similarly, the
meaning of an adverb, such as quickly, could be represented
as a single-state HMM describing the high velocity of an
object. Likewise, meaning of a motion preposition, such
as towards, could be represented as a single-state HMM
describing the decreasing distance between two objects.
Moreover, the meaning of a spatial-relation preposition,
such as above, could be represented as a single-state HMM
describing the relative position of two objects. Dynamic
concepts, such as verbs, typically will be modeled as HMMs
with multiple states that describe the different phases of the
events described by such words. Stationary concepts, such
as objects and spatial relations, can be viewed as events
with only one phase. All such HMMs operate over features
extracted from the video: the positions, velocities, and
accelerations of individual objects, features of individual
objects such as their color, shape, and size, and the (chang-
ing) relative spatial relations between pairs of objects, i.e.,
the distance between two objects and the orientation of a
vector from one object to the other.

They then define a sample score L(B; s, A), where A rep-
resents the word meanings to be learned, and maximize the
training-set score:

M
A = arg max H L(By;sm,A)
m=1
Since sentences s,,, are modeled as factorial HMMs, the
solution can be found by maximum-likelihood estimation
over M factorial HMMs, using Baum Welch (Baum et al.
1970; Baum 1972).

We build upon the sample score and define the discrimi-
nation score as the ratio of the sample score of a PL to the
sum of the sample scores of the corresponding NLs, with
each score multiplied by a sentence prior 7(s):

[L(B;s, A)7(s)]
> LBix, A)r(x))*

xe

where 0 < € < 1 is a constant smoothing factor (e.g.,
0.01). The sentence prior 7(s) renders the scores compara-
ble across variation in sentence length, as longer sentences
tend to have lower score. It does so by assigning a higher
prior to longer sentences. The discrimination score can also
be seen as an approximation to the conditional probability of
a given positive sentence: instead of summing all possible
sentences in the sentence space, the partition function here
is replaced by the sum of a sampled subset, which makes
the problem tractable. Then, we try to maximize the total
discrimination score for all of the training samples:

(D

D(B;s,{ A) = 2

M
A = arg Hl[ilX H D(Bm;Sm,fHHA) &)

m=1



Again, each sentential label is modeled as a factorial HMM.
The above objective function directly models the discrimi-
nation between PLs and NLs and thus produces better word
models that, in turn, yield better video description than the
maximum-likelihood framework (Eq. 1), as sentence gener-
ation can be viewed as a process that differentiates correct
sentences from incorrect ones.

The Sentence Tracker

As the discrimination score builds on the sample score used
in Yu and Siskind (2013), together with methods for comput-
ing that sample score, known as the sentence tracker (Sid-
dharth, Barbu, and Siskind 2014), we first review that earlier
work. A sample score L(B;s, A) scores a sentential label s
for a video clip B. Higher scores indicate that s is more
likely to “correctly” depict B, in terms of the word mean-
ings A. Because each word in s is an HMM, and the sen-
tence can be treated as a factorial HMM composed from the
word HMMs, the score then depends on how well the visual
features extracted from B satisfy the factorial HMM implied
by s. However, the word HMMs in s cannot be directly ap-
plied to visual features in B, since we do not know (yet)
which word HMMs should be applied to which subsets of
visual features.

This can be mediated by a middle-layer concept, the par-
ticipants that relate s with B, in the following way. By pars-
ing s, the number L of participants can be determined, along
with a linking function ¢, that specifies which participant
fills argument ¢ of word w, for each argument of each word
in that sentence. For example, a sentence like

The person carried the chair towards the backpack.

4)
has 3 participants, X, Y, and Z, and linking functions
Héerson =X, 6! =X, 02 =Y, 0L.=Y,

carrled carrled chair
Otowargs = X towards =4

to construct the factorial HMM

PERSON(X) x CARRIED(X,Y) x CHAIR(Y")
x TOWARDS(Y, Z) x BACKPACK(Z)

The linking functions assign the argument of person and
the first argument of both carried and towards to X, the ar-
gument of chair and the second argument of carried to Y,
and the argument of backpack and the second argument of
towards to Z. As a result, our sentence is not just a bag of
words: the order of words does affect the semantics, since
The backpack carried the chair is quite different from
The chair carried the backpack. The linking functions are
the mapping from the sentence layer to the participant layer.
On the other hand, we associate each participant [ with an
object track j; in B. However, unlike the linking functions
which are the result of a purely linguistic process applied
to the sentence, this mapping from participants to tracks is
determined automatically during the scoring process (Eq. 7)
applied to both the sentence and the video. More specifi-
cally, we preprocess the video to yield a (noisy) collection
of object detections in each frame, taking B to be 7" frames

with J* detections {b%}7_, in frame ¢. From this we form

track collections J = {Jl}l:l by selecting specific detec-
tions from an intentionally overgenerated set of detections.

ebackpack
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video B

T tracks j;

participants [

linking functions 6,
sentence s

Figure 4: The three layers in the sample score.

Such track collections are not produced independently prior
to learning but rather produced automatically and implicitly
as part of the learning process. Thus a track j;, indexing
a sequence of detections Bj, = {bz'f}tT:l for participant ,

serves as the mapping from the participant layer to the video
layer (Fig. 4). The track j; and the linking functions !, to-
gether “annotate” video region(s) for each word w in the
sentence s.

Now, the factorial HMM s can be applied to the visual
features B through the participants /. A sentence s is rep-
resented by a sequence of words {s,}V_,, with each s,
referring to some entry e in the lexicon (e.g., in Eq. 4,
W =5, 81 = €person,*** ;S5 = €packpack)- A lexical en-
try e is modeled as an HMM. To decide the output of a word
HMM s,,, we first use the linking functions to obtain the
participants ¢, that fill the arguments i of the word, and use
the tracks jg: to select the detections Bj , from B. Then the

output of the HMM at frame ¢ is computed as a feature vec-
tor @Sw({bj;i }+:) of length Ny, using detections BJ% of
all the arguments i of the word. Each feature @Y ({b;, })
(1 < n < Ng,) is then quantized into bins. The coﬁipu-
tation function ®. of the feature vector depends on the lex-
ical entry e. For example, HMMs for nouns that serve as
object classifiers can output detector indices (see the Exper-
iments section) from a single participant track while HMMs
for verbs that serve as event recognizers can output distances
between detections from two participant tracks.

Now, the only issue that remains is how hidden state se-
quences k,, {kt }I_, of word HMMs s,, come into
play. The sentence-tracker framework (Siddharth, Barbu,
and Siskind 2014) exploits an analogy between a track j and
a state sequence k: detections of a track correspond to HMM
states of a state sequence, the detection score corresponds to
the HMM output probability, the temporal-coherence score
corresponds to the HMM state-transition probability, and
finding a track corresponds to estimating the state sequence.
Relying on this analogy, the sample score L(B;s, A) is

QI {ﬁ (ﬁf(b’ )(Hg b b )} @)

[ () ()

which produces a huge cross-product lattice among L partic-
ipants and W word HMMs. In the above, f is the detection
score and g is the temporal-coherence score. Both scores
are within [0, 1] and are adopted from Siddharth, Barbu, and
Siskind (2014). The quantity h, is the output distribution



€ t Y
a’v,u Ckj‘,kt 5jt»kt Q-
t=1 w=1 jtkt jt—1,kt—1
Sw=€ kt=u [ A
w =
T W
n _
hew2) =3 >, > |
t=1 w=1 jt kt
Sw=€ Kkt =u

of lexical entry s,,, as, is the state-transition probability,
and Q(J) is a positive quantity independent of HMMs for
normalizing track scores. (The initial probability of state k
for HMM e is defined as a.(0,%).) The output distribu-
tion h and state-transition probability a together constitute
the word meanings A. Thus a sentence s is essentially a large
factorial HMM with each component s,, as a word HMM.
The forward algorithm (Baum and Petrie 1966) computes
the above score, including Q(J), efficiently in polynomial
time. Readers are referred to (Siddharth, Barbu, and Siskind
2014) for a detailed analysis of the time complexity of the
sentence tracker.

Training Discriminative Sentential Labels
We find a local maximum to Eq. 3 using the Growth Trans-
formation (GT). First, we rewrite the objective function in
its logarithm form:

M € - log L(Bm,sm,A) +e-logm(sm)
OM) =" | ~log ¥ (L(Buix,A)r(x))°
m=1

XEEm

Note that € - log 7 (s, ) can be ignored since it’s independent
of A. The fact that the numerator and denominator in the dis-
crimination score D(B; s, ¢, A) in Eq. 2 are both polynomi-
als makes the following GT reestimation formula applicable
to O(A) as shown by Gopalakrishnan et al. (1991):

n n— A n n

8)\Z',j /\i,j:kﬁf}"l)
where ); ; is one of the parameters (i.e., either an out-
put probability h or a state-transition probability a in A)
that satisfies the sum-to-one constraint Zj Xij = 1 of

some distribution {); ;};, and D™ is for renormaliza-
tion. The above update formula guarantees the growth
O(A™) > O(A("_l)) given that a sufﬁciently large damp-

ing factor C; M) g provided for each )\ ) in the distribution

{)\(") };. Generally, the formula first takes the derivative of
O(A) w.r.t. each parameter, then adds a large positive value
to the result, multiplying the sum by the old parameter, and
finally renormalizes the parameters in each distribution.
While it is easy to apply GT to our objective function
and get the general update formula, the main issue resides
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o ({1l 1) (Hf(%)) o
w’ =1

in how to compute the derivative = /\( ) for every parameter

in Eq. 8. To start with, notice that only L in O(A) is a func-
tion of A. Thus the problem boils down to how to compute
the derivative of L w.x.t. each ); ;. For compact representa-

tion, we denote \; j = m . To compute this, we need
5J
to rewrite Eq. 7 using the forward algorithm

(BSA ZaTkT

where j! is the sequence { jf}le of detection indices for
the L participants at frame ¢ and k' is the sequence {k }}V_,
of HMM states for the W words at frame ¢, respectively.
Here att Kt represents the partial score of observing detec-
tions {b }J b {0} }3’;1 up to frame ¢ and having detec-
tion indices j¢ and HMM states k! at frame ¢. This quantity
is analogous to « in the general forward algorithm (Levin-
son, Rabiner, and Sondhi 1983) and can also be recursively

computed
) o) o

a}t’kt _|: Z a;;ll7k,,l
jt-lkt—1
sw L
11 I1 rz. <kt o {b' ) (Hflu
w=1n=1 l

btl bL

r 1y Vgt

)

on the huge cross-product lattice over L participants and W
word HMMs. Then, before getting to A; ;, we need to com-
pute the derivative oj, . of L(B;s, A) w.rt. each a}tﬁk,,.

When ¢ = T, it is trivial to see that ajTT wr = Q(J). For
t < T, using the chain rule and Eq. 9, we get

w
a;t‘kt = Z <H Gs,, > <HJ b" b’ trlr

ke \w=1
where 635,5 K¢ 18 the second term in Eq. 9.

kllkl

w M

’Ytkf

-

st

it kt

kt kr+1

ws M

L
) Qi1 k«+10 jt+ 1 kt+1

Now, we are able to derive TJ the partial derivatives
w.r.t. the transition probability af, ,, from state v to state u
of the HMM e, and the probability h?(u, z) of outputting
the value z as the nth feature at state v of the HMM e, are
given in Egs. 5 and 6 respectively, where 'yjttykt is the first
term in Eq. 9. After this, the derivatives are used to obtain



The person to the left of the
stool picked up the traffic cone.

The person approached the trash can.

The person to the left of the
traffic cone put down the stool.

The person carried the backpack.

Figure 5: Examples of our generated sentences.

S —+ NP VP

NP — D N [PP]
D — the
N — person | backpack | chair | traffic cone
trash can | stool
PP — P NP
P — to the left of | to the right of
VP — V NP [Adv] [PPm]
V — approached | carried | picked up | put down
Adv — quickly | slowly
PPy — Py NP
Py — towards | away from

Figure 6: The grammar used for the experiment. Our lexicon
contains 17 lexical entries over 6 parts of speech (6 nouns,
4 verbs, 2 adverbs, 2 motion prepositions, 2 spatial-relation
prepositions, and 1 determiner). Note that the grammar al-
lows for infinite recursion in the noun phrase.

86(?\(:) which are in turn put back into Eq. 8 for parameter

reestimation. Computing the derivatives (i.e., Eqs. 5 and 6)
turns out to have the same time complexity with the sen-
tence tracker reviewed in the Sentence Tracker section, i.e.,
O (T(JEKW)?), where T is the video length, J is the max-
imal number of detections per frame, L is the number of par-
ticipants, K is the maximal number of states in the HMMs,
and W is the number of words in the sentence. Usually, L,
W are quite small (e.g., L < 3 and W < 5) and thus the al-
gorithm runs approximately in polynomial time. In practice,
pruning performed on the sparse cross-product state space
can make the running time even shorter.

The damping factor C; affects both the performance and
the efficiency of the training procedure. Generally C; should
always guarantee the nonnegativity of \; ;, otherwise the ob-
jective might decrease. However, when C; — oo, the up-
date step size is so small that the parameters remain almost
unchanged and it takes a long time to converge. Thus, we
employ an adaptive method. The idea is that if the current
iteration increases the objective, we always pick C; as small
as possible for the next iteration. If the objective decreases,
we discard the new parameters, keep increasing C;, and re-
update the parameters until the objective increases or C;
reaches the upper limit. More specifically, let n’ be the last

successfully updated iteration. The value of C’i(n) is deter-
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mined by comparing iteration n — 1 with iteration n':

max |0, — min —— +e|l n’=n-1
Ci(n) = [ 7 OAijly =AY
s i,
X - max(e, C}n_l)) n <n-—1

where x > 1 is a fixed punishment factor and 0 < ¢ < 1.
With this strategy, our method usually converges within a
few dozen iterations (20 ~ 30).

Our iterative estimation procedure with GT is a local op-
timization method. The objective function O(A) in Eq. 2
is nonconvex and highly complex since it is a rational func-
tion of factorial HMMs. As a result, the function surface
might be jagged and a local-search procedure like ours may
be easily trapped into one of the many local maxima, the ma-
jority of which are far from optimal (Jiang 2010). Thus, the
smoothing factor € in Eq. 2 is crucial for a good solution; if
it is sufficiently small (0 < € < 1), it removes most shallow
maxima areas and flattens the function surface. In the exper-
iment, we set € to be the reciprocal of the video length, i.e.,
1/T. Conceptually, this renders Eq. 2 as a discrimination
between scores on a per-frame basis, enabling the compari-
son between two videos that have different lengths.

Experiment

To evaluate our approach, we filmed a corpus of 94 video
clips. The corpus was filmed at 640x480 resolution at
30 fps. Each clip varies in length between 2 and 5 seconds.
The clips were filmed in four outdoor environments. Each
clip contains a single person from a collection of four ac-
tors, as well as either two or three objects out of a collection
of five objects: a backpack, a chair, a traffic cone, a trash
can, and a stool. Every video clip depicts multiple simulta-
neous events and even a single event can be described with
sentences that refer to different aspects of that event (Fig. 2).

To obtain detections B (the Sentence Tracker section), an
off-the-shelf object detector (Felzenszwalb, Girshick, and
McAllester 2010; Felzenszwalb et al. 2010) is run on each
frame to obtain rectangular detections around objects. De-
tections from each object class have a unique detector in-
dex (e.g., number or symbol) that differentiates them from
detections from other classes. We trained six object detec-
tors, one for each of the six object classes in our corpus: per-
son, backpack, chair, traffic cone, trash can, and stool. Note



person
backpack
chair

traffic cone
trash can
stool

Figure 7: Examples of the learned output probabilities (in
percentages) for one-state noun HMMs. Each row repre-
sents a lexical entry. Each column represents a detector in-
dex.

that detector index of an object class has no specified corre-
spondence with any noun in the lexicon; instead, the corre-
spondence is learned. We pick the 2 highest-scoring detec-
tions of each object class and pool them to get 6 x 2 = 12 de-
tections per frame. Then features in Yu and Siskind (2013)
are computed for the detections: detector index and velocity
magnitude/orientation of one participant, and distance, size
ratio, and x-position between two participants.

We annotate and obtain a total of 276 PLs for all the video
clips, with 2.94 PLs per clip on average. Then N can-
didate sentences are generated from the grammar (Fig. 6)
for each video-PL pair. To best exploit the power of the
discriminative-training framework, we define priority on the
generated candidate sentences. We wish to select NLs that
are maximally effective; NLs that differ greatly from a given
PL are the least confusable with that PL and offer the least
discriminative power. On the other hand, those that are
highly similar to the PL are the most confusable and are the
most effective for learning. Thus we first consider M near
misses. A near miss is generated by replacing a single word
in the PL (e.g., 2a w.r.t. 1a and 2b w.rt. 1b in the Introduc-
tion). Near misses are effective because they tell the train-
ing procedure which single word of the PL is to be trained
against that of the corresponding NL.? They drive the train-
ing procedure to differentiate pairs of words of the same part
of speech. After this, we consider N — M random samples
in the sentence space determined by our grammar. Finally,
the candidates that are true of the video are filtered out and
the remaining ones are kept as NLs, where the filtering pro-
cess operates by deciding whether a given candidate is in the
true sentence set annotated by the human. In the experiment,
we empirically set N = 120, resulting in 33,396 candidate
sentential labels in total.

In the test, given a video clip B, the sentence generator
outputs the sentence s*, and its correctness is then decided.
The sentence generator is adopted from Siddharth, Barbu,
and Siskind (2014), in which beam search is used to approx-
imate the search for the highest-scoring sentence:

s* = arg maxL(B,s, A)
S

*In this case, we are actually training words against words, like
most prior discriminative-training methods. However, unlike these
prior methods, our framework does not need the annotated video
regions for the individual words that are trained, as this is deter-
mined implicitly.
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Rand ‘ Blind ‘ ML ‘ Our ‘ Hand (ground truth)
0.00 | 0.06 | 0.26 | 0.45 | 0.63

Table 1: Accuracies of different methods.

Some examples of generated sentences are given in Fig. 5.

To evaluate our method quantitatively, we perform three-
fold cross validation. For each fold, about 20 video clips
are selected for testing and the remaining ones are used for
training. We compute the generation accuracy, i.e., the num-
ber of hits divided by the number of total test cases. The
final accuracy is computed as the average of the accuracies
over three folds. For comparison, we report accuracies of
four other baselines: Rand, Blind, ML, and Hand.? The
Rand baseline uses randomized HMM:s for generation. The
Blind baseline outputs the same sentence for all test video
clips. If this baseline works well, it means that our corpus
is highly biased and poorly designed, in the sense that most
clips depict the same sentence. We find the upper bound
for the accuracy of this baseline by trying all AVP (agent-
verb-patient) triplets in the grammar, and take the one that
correctly describes the most clips as the blind decision. Any
other sentence from the grammar cannot possibly perform
better than this one because adding words is only likely to
change a correct sentence to an incorrect one, but not vice
versa. The ML baseline (Yu and Siskind 2013) trains the
word models using only the 276 video-PL pairs. Finally,
the Hand baseline generates sentences using hand-crafted
HMMs, similar to the prior work (Siddharth, Barbu, and
Siskind 2014) in which hand-crafted FSMs are used for sen-
tence generation. We developed the Hand models manu-
ally with validation on the test set,* as an estimate of the
upper bound on our learning performance. The accuracies
of different methods are shown in Table 1. As can be seen
from the table, our corpus is not biased (Rand and Blind).
Randomly guessing a sentence for each test video clip and
blindly choosing a same sentence for all test video clips both
result in nearly zero accuracy. This excludes the possibil-
ity of an algorithm achieving high accuracy by relying on
the biased distribution of the sentences depicted by the test
video. Our approach outperforms ML significantly (73.1%
improvement) and is much closer to Hand.

To analyze the failure modes of our method, we define
and compute the minimal Hamming distance of a generated
sentence. Namely, for each generated sentence, we find an
equal-length sentence from the grammar that correctly de-
scribes the paired video while yielding the minimal Ham-
ming distance, i.e., the minimal number of words that must
be replaced in the generated sentence to render it a correct
description of the video. Then, we obtain an averaged min-

3 Although it is desirable that our approach also be compared
with the latest work on video description reviewed in the Intro-
duction, to the best of our knowledge none of those methods have
end-to-end, open-access code or software.

“From a machine-learning perspective, this would constitute
“training on the test set”. A machine-learning method like ours
that does not have access to the test set will necessarily perform
worse.



noun ‘ verb ‘ preposition ‘ adverb ‘ sentence

1.25 | 0.58 0.20 0.00 2.03
0.69 | 0.37 0.00 0.00 1.06

ML
Our

Table 2: Average minimal Hamming distances. We list the
average number of words that need to be replaced for each
part of speech and add them up for the whole sentence.

imal Hamming distance over all the test samples. Instead of
a binary judgment made in the above, this will give a more
detailed and quantitative evaluation of how far away a gener-
ated sentence is from a correct one. We compute this metric
for both our method and the ML baseline, shown in Table 2.
One can see that, on average, one needs to replace roughly
one word to make the sentences generated by our method
correct, while it takes two for the ML baseline.

Finally, to take a closer look at the underlying representa-
tions learned by our method, we show the confusion matrix
of the learned output probabilities for one-state noun HMMs
in Fig. 7: all noun models successfully converge to the cor-
rect modes starting from randomly initialized distributions,
without any initially specified noun-to-detector correspon-
dence. Once this mapping is correctly learned, it is clear
that other parts of speech will also be properly trained, as in
supervised training with manual annotation.

Conclusion

We provide a framework for learning to describe video
in which discriminative training is used for learning word
meanings from video paired with positive and negative sen-
tential labels. The training procedure requires only weak
supervision. Because the proposed approach utilizes nega-
tive sentential labels, better performance is obtained on the
video-description task, compared to training with only posi-
tive sentential labels by maximum likelihood. Promising re-
sults have been shown on sentence generation for new video
with trained word models.
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