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Abstract

Sparse coding can learn good robust representation to
noise and model more higher-order representation for
image classification. However, the inference algorithm is
computationally expensive even though the supervised
signals are used to learn compact and discriminative
dictionaries in sparse coding techniques. Luckily, a sim-
plified neural network module (SNNM) has been pro-
posed to directly learn the discriminative dictionaries for
avoiding the expensive inference. But the SNNM module
ignores the sparse representations. Therefore, we pro-
pose a sparse SNNM module by adding the mixed-norm
regularization (l1/l2 norm). The sparse SNNM modules
are further stacked to build a sparse deep stacking net-
work (S-DSN). In the experiments, we evaluate S-DSN
with four databases, including Extended YaleB, AR, 15
scene and Caltech101. Experimental results show that
our model outperforms related classification methods
with only a linear classifier. It is worth noting that we
reach 98.8% recognition accuracy on 15 scene.

Introduction
It is well-known that sparse representations have a number of
theoretical and practical advantages in computer vision and
machine learning (Lee et al. 2007; Gregor and LeCun 2010;
Yang et al. 2012). In particular, sparse coding techniques
have led to promising results in image classification, e.g.
face recognition and digit classification. Sparse coding, as
a generative model, is a very important way to extract the
sparse representations. However, sparse coding has the ex-
pensive inference algorithm and does not use the label of
the training data. Although some researchers use the su-
pervised signals to learn compact and discriminative dic-
tionaries (Jiang, Lin, and Davis 2013; Zhuang et al. 2013;
Huang et al. 2013), the expensive inference algorithm is still
a problem. Since it is to train the dictionaries by using the
labels, do we directly learn the discriminative dictionaries for
avoiding the expensive inference?

Fortunately, a simplified neural network module (SNNM)
(Deng and Yu 2011a) can directly train the discriminative dic-
tionaries and fast calculate the representations. In the SNNM,
the input layer is non-linearly mapped to a hidden layer by
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using a projection matrix W and a sigmoid activation func-
tion, and linearly mapped to an output layer by a matrix U.
Clearly, W has discriminative ability because it is trained
by minimizing the least squares error between the output
vector and label vector. Moreover, SNNM can fast infer the
hidden representation by only calculating a projection multi-
plication and a nonlinear transformation. Following a stacked
scheme (Wolpert 1992), many SNNM modules are further
stacked to build a Deep Stacking Network (DSN), which
is previously named the Deep Convex Network (Deng and
Yu 2011b). Recently, DSN has received increasing atten-
tions due to its successful application in speech classifica-
tion and information retrieval (Deng, Yu, and Platt 2012;
Deng, He, and Gao 2013). Additionally, the DSN is attractive
in that SNNM’s the batch-mode nature offers a potential so-
lution to the insurmountable problem of scalability in dealing
with virtually unlimited amount of training data available
nowadays (Deng and Yu 2013). Therefore, we extend DSN
for image classification.

Despite DSN’s success in speech classification, its frame-
work also has several limitations. First, the conventional DSN
only has used the sigmoid activation function for the non-
linear hidden layer (Deng, Yu, and Platt 2012). Although
sigmoid has been widely used in the literature, it suffers
from a number of drawbacks: for example the training can be
slow, and with random initialization, the solution can stuck
at a poor local solution that does not have good predictive
performance (Glorot and Bengio 2010). In fact there are
another two types of activation functions. The one is hyper-
bolic tangent, which has been applied to training deep neural
networks. It suffers from the same problems as those of sig-
moid functions. A more recent proposal is the rectifier linear
unit (ReLU) (Nair and Hinton 2010). It is observed that this
method is very useful for object recognition and often trains
significantly faster (Glorot, Bordes, and Bengio 2011).

Second, sparse representations play a key role in im-
age classification because they have the power to learn
good robust features to noise, train gabor-like filters, and
model more higher-order features (Ranzato et al. 2007;
Lee, Ekanadham, and Ng 2008). Evidently, sparse represen-
tations have led to promising results in image classification
(Jiang, Lin, and Davis 2013). Furthermore, there is consider-
able evidence that in brain the percentage of neurons active
is between 1 and 4% (Lennie 2003). It is reasonable to con-
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sider the sparse representations in SNNM modules. However,
the conventional techniques for training SNNM completely
ignores the sparse representations. Generally, they can be
achieved by penalizing non-zero activation of hidden units
(Ranzato, Boureau, and LeCun 2008) or a deviation of the
expected activation of the hidden units (Lee, Ekanadham, and
Ng 2008) in neural networks. Moreover, in neural networks
the local dependencies between hidden units can make hidden
units for better modeling observed data (Luo et al. 2011). But
SNNM module restricted connections within hidden layer
can not exhibit these dependencies. Fortunately, the hidden
units without increasing the connections can be divided into
non-overlapping groups for capturing the local dependencies
among hidden units (Luo et al. 2011). The local dependencies
can be implemented by using l1/l2 regularization upon the
activation possibilities of hidden units in SNNM module.

In light of the above argument, this paper exploits a Sparse
Deep Stacking Network (S-DSN) for image classification.
S-DSN is obtained by stacking the sparse SNNM modules,
which consider the two activation function: ReLU and sig-
moid; and use the group sparse penalties (l1/l2 regulariza-
tion) to penalize the hidden representations in SNNM mod-
ular. Our S-DSN has many explicit advantages. First, com-
pared with sparse coding technique (LC-KSVD (Jiang, Lin,
and Davis 2013)), one-layer S-DSN can learn the projection
dictionaries, which lead to a faster inference. Second, com-
pared with DSN, S-DSN can extract sparse representations
for learning good features in image classification. Last, S-
DSN can retain the scalable structure of DSN. To conform
the advantages of the S-DSN for image classification, exten-
sive experiments have been performed on the four databases,
including Extended YaleB, AR, 15 scene and Caltech101.
Compared with multiple related methods, the experiments
show that our model gets better classification results than
other benchmark methods. In particular, we reach 98.8%
recognition accuracy on 15 scene.

Deep Stacking Network

The DSN architecture is originally presented in the literature
(Deng and Yu 2011b). Deng and Yu explore an original strat-
egy for building deep networks, based on stacking layers of
the basic SNNM modules, which take the simplified form of
multilayer perceptron. We mathematically describe as follow:

Let the target vectors ti = [t1i, · · · , tji, · · · , tCi]
T

be arranged to form the columns of T =
[t1, · · · , ti, · · · , tN ] ∈ RC×N . Let the input data vec-
tors xi = [x1i, · · · , xji, · · · , xDi]

T be arranged to form the
columns of X = [x1, · · · , xi, · · · , xN ] ∈ RD×N . Formally,
in the basic module, the lower-layer weight matrix, which is
denoted by W ∈ RD×L, connects the linear input layer and
the nonlinear hidden layer. The upper-layer weight matrix,
which is denoted by U ∈ RL×C , connects the nonlinear
hidden layer with the linear output layer. The outputs of
upper-layer is Y = UT H, where H = σ(WT X) ∈ RL×N

is the hidden layer outputs and σ(a) = 1/(1 + e−a) is
the sigmoid activation function (Deng and Yu 2011a;
2011b). The parameters U and W are learned to minimize

the least squares objective:

min
U,W

fdsn = ‖UT H− T‖2F + α‖U‖2F (1)

where α is a regularization parameter of upper-layer weight
matrix U.

Clearly, U has a closed-form solution:

U = (HHT + αI)−1HTT (2)

By using a gradient descent (Deng and Yu 2011b) algo-
rithm to minimize the the least squares objective in (1) and
deriving the gradient of W in the basic module, we obtain

∂fdsn
∂W

= 2X
[
HT ◦ (I−HT ) ◦ (UUT H− UT)T

]
(3)

where ◦ denotes element-wise multiplication and I is the
matrix of all ones.

The ”convex” solution accentuates the role of convex op-
timization in learning the output network weights U in each
basic module (Deng and Yu 2011a). Many basic modules
are often stacked up with one on top of another to form a
deep model. More specifically, the input units of a higher
module can include the output units of the lowest module
and optionally the raw input feature in the DSN (Deng and
Yu 2011b). For obtaining the higher-order information in
the data, DSN has recently been extended to Tensor-DSN
(T-DSN) (Hutchinson, Deng, and Yu 2013), which’s the basic
module is to replace a linear map from hidden representa-
tion to output with a bilinear mapping. It retains the scalable
structure of DSN and provides the higher-order feature inter-
actions missing in DSN.

Sparse Deep Stacking Network
The S-DSN is a sparse case of the DSN. The stacking opera-
tion of the S-DSN is the same as that for the DSN described
in (Deng and Yu 2011b). The general paradigm is to use the
output vector of lower module and the original input vector
to form the expanded ”input” vector for the higher module
of the DSN. The modular architecture of S-DSN is different
from that of DSN. We consider the sigmoid function and the
ReLU function; and the sparse penalties are added into the
hidden units of modular architecture.

Sparse Module
The outputs of upper-layer is Y = UT Ĥ and the hidden layer
outputs is as follow:

Ĥ = φ(WT X) ∈ RL×N (4)

where φ(a) is the sigmoid activation function σ(a) or the
ReLU activation function max(0, a). For simplicity, letH =
{1, 2, · · · , L} denote the set of all hidden units. H is are
divided into G groups, where G is the number of groups.
The gth group is denoted by Gg, where H =

⋃G
g=1 Gg and⋂G

g=1 Gg = ∅. So, Ĥ = [ĤG1,:; · · · ; ĤGg,:; · · · ; ĤGG,:].
The parameters U and W are learned to minimize the least

squares objective:

min
U,W

fsdsn = ‖UT Ĥ− T‖2F + α‖U‖2F + βΨ(Ĥ) (5)
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where α is a regularization parameter of upper-layer weight
matrix U, β is a regularization constant of the activation of the
hidden units and Ψ(Ĥ) represents the imposed penalty over
sparse representations Ĥ. Typically, the l1 norm is conducted
as a penalty to explicitly enforce sparsity on each sparse
representation. It is described as:

Ψ(Ĥ) =
N∑
i=1

‖ĥi‖1 (6)

where ĥi is the representation of ith example (i = 1, · · · , N).
In neural networks, sparse representations are advanta-

geous for classification (Ranzato et al. 2007). Moreover,
group sparse representations (Bengio et al. 2009) can learn
the statistical dependencies between hidden units and lead
to better performance (Luo et al. 2011). To implement the
dependencies, we averagely divide hidden units into non-
overlapping groups to restrain the dependencies within these
groups and force hidden units in a group to compete with each
other (Luo et al. 2011). Luckily, a mixed-norm regularization
(l1/l2-norm) can be conducted in the modular architecture to
achieve group sparse representations. Following (Luo et al.
2011), we consider the mixed-norm regularization, which is
as follows:

Ψ(Ĥ) =
G∑

g=1

‖ĤGg,:‖1,2 (7)

where ĤGg,: is the representation matrix associated to those
intra-modality data belonging to the gth group and the l1/l2-
norm is defined as

‖ĤGg,:‖1,2 =

N∑
i=1

√∑
j∈Gg

ĥ2j,i (8)

Learning Weights- Algorithm
Once the lower-layer weight matrix W are fixed, Ĥ are also
determined uniquely. Then solving the upper-layer weight
matrix U can be formulated as a convex optimization prob-
lem:

min
U
fusdsn = ‖UT Ĥ− T‖2F + α‖U‖2F (9)

which has a closed-form solution:

U = (ĤĤ
T

+ αI)−1ĤTT (10)

There are two algorithms for learning the lower-layer
weight matrix W. First, given fixed current U, W can be
optimized using a gradient descent algorithm (Deng and Yu
2011a) to minimize the squared error objective:

min
W

f1sdsn = ‖UT Ĥ− T‖2F + βΨ(Ĥ) (11)

and deriving the gradient, we obtain

∂f1sdsn
∂W

=2X
[
dφ(Ĥ

T
) ◦ (UUT Ĥ− UT)T

]
+ 2βX

[
dφ(Ĥ

T
) ◦ Ĥ

T
◦ /H̃

T
]

(12)

where ◦ denotes element-wise multiplication, ◦/ denotes
element-wise division, H̃ that it’s element is h̃j,i =

Algorithm 1 Training Algorithm of Sparse Modular
1: Input: Data matrix X, label matrix T, parameters θ =
{ε, α, β,G} and training epochs E.

2: Initialize: Projection Matrix W are initialized with small
random values.

3: Given W, calculate Ĥ by Eq. (4).
4: Update W by Eq. (16).
5: Repeat 3-4 E epochs (or until convergence).
6: Output weight matrix W.

√∑
j∈Gg ĥ

2
j,i, dφ(Ĥ

T
) denotes element-wise gradient com-

putation, dφ(a) is the gradient of the activation function.
When φ(a) is the sigmoid activation function, dφ(a) =
σ(a) × (1 − σ(a)) and when φ(a) is the ReLU activation
function, dφ(a) is described as:

dφ(a) =

{
1, a > 0;
0, a ≤ 0. (13)

To ReLU activation function, we follow the hypothesis (Glo-
rot, Bordes, and Bengio 2011) that the hard non-linearities
do not hurt the optimization so long as the gradient can be
propagated to many hidden units.

Second, for faster moving W towards a direction that finds
the optimal points, the deterministic nonlinear relationship
between U and W is used to compute the gradient. By plug-
ging (10) into criterion (5), the least squares objective is
rewritten as:

min
W

f2sdsn =‖[(ĤĤ
T

+ αI)−1ĤTT ]T Ĥ− T‖2F +

α‖(ĤĤ
T

+ αI)−1ĤTT ‖2F + βΨ(Ĥ) (14)
However, when regularization is used in the objective func-

tion (5) (i.e. α > 0), the gradient of f2sdsn can be very com-
plicated. To simplify the gradient we assume α = 0 in f2sdsn.
So, second term of f2sdsn is equivalent to zero. Similar to

(Deng and Yu 2011b), then we derive the gradient ∂f2
sdsn

∂W and
obtain
∂f2sdsn
∂W

=2X
[
dφ(Ĥ

T
) ◦ [Ĥ

†
(ĤTT )(TĤ

†
)− TT (TĤ

†
)]
]

+ 2βX
[
dφ(Ĥ

T
) ◦ Ĥ

T
◦ /H̃

T
]

(15)

where Ĥ
†

= Ĥ
T

(ĤĤ
T

)−1 and dφ(·) and H̃ are defined in
(12).

The algorithm then updates W using the gradient defined
in (12) and (15) as

W = W− ε∂f
1
sdsn

∂W
or W = W− ε∂f

2
sdsn

∂W
(16)

where ε is a learning rate. The weight matrix learning process
is outlined in Algorithm 1.

The S-DSN Architecture
The spare SNNM module described in the above subsection
is used to construct the K-layers S-DSN architecture, where
K is the number of layers. In kth spare module we denote

the input by Xk, hidden representations by Ĥ
k
, output by
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Algorithm 2 Training Algorithm of S-DSN
1: Input: Data X, label T, parameters θ = {ε, α, β,G},

training epochs E and the number of layers K.
2: Initialize: X1 = X and k = 1.
3: while k ≤ K
4: Given Xk, T, θ and E, optimize Wk by Algorithm 1.

5: Given Xk and Wk, calculate Ĥ
k

by Eq. (4), Uk by Eq.

(10) and Yk =
(
Uk
)T

Ĥ
k
.

6: Xk+1 = [X; Yk].
7: end while
8: Output weight matrix Wk(k = 1, · · · ,K).

Yk, label matrix by T and weight matrix by Wk and Uk.
Given input data X and label T, when k = 1, X1 = X. Then
the general paradigm of S-DSN can be decomposed in three
phases:
• Step 1: Train the kth sparse module to minimize the least

squares error between Yk and T.
• Step 2: Generate the input Xk+1 of the k + 1th sparse

module by adding the output Yk of kth sparse module.
• Step 3: Iterate as in Step 1 and Step 2 to construct the

S-DSN architecture.

We summarize the optimization of S-DSN in Algorithm 2.
For capturing the spare representation from raw data, this pa-
per proposes the S-DSN, which is implemented by penalizing
the hidden unit activations and rectifying the negative of out-
puts of hidden units activations. Due to the simple structure
of each module, the S-DSN still retains the computational
advantage of the DSN in parallelism and scalability during
learning all parameters.

Experiments
We present experimental results on four databases: the Ex-
tended YaleB database, the AR face database, Caltech101
and 15 scene categories.
• Extended YaleB database: this database contains 2,414

frontal face images of 38 people. There are about 64 im-
ages for each person. The original images were cropped
and normalized to 192× 168 pixels.
• AR database: this database consists of over 4,000 color

images of 126 people. Each person has 26 face images
taken during two sessions. These images include more fa-
cial variations, including different illumination conditions,
different expressions, and different facial ”disguises” (sun-
glasses and scarves). Following the standard evaluation
procedure, we use a subset of the database consisting of
2,600 images from 50 male subjects and 50 female sub-
jects. Each face image was also cropped and normalized
to 165× 120 pixels.

• Caltech-101: this database [10] contains 9144 images be-
longing to 101 classes, with about 40 to 800 images per
class. Most images of Caltech-101 are with medium reso-
lution, i.e., about 300× 300.
• 15-Scene: this data set, compiled by several researchers

[11, 20, 24], contains a total of 4485 images falling into

15 categories, with the number of images per category
ranging from 200 to 400. The categories include living
room, bedroom, kitchen, highway, mountain and et al.
According to (Jiang, Lin, and Davis 2013), the four

databases are preprocessed 1: in the Extended YaleB database
and AR face database, each face image is projected onto a
n-dimensional feature vector with a randomly generated ma-
trix from a zero-mean normal distribution. The dimension
of a random-face feature in Extended YaleB is 504 while
the dimension in AR face is 540. In face databases the n-
dimensional features of each image are normalized to [−1, 1].
For the Caltech101 database, we first extract sift descriptors
from 16× 16 patches, which are densely sampled from each
image on a dense grid with 6-pixels stepsize; then we ex-
tract the spatial pyramid feature based on the extracted sift
features with three grids of size 1× 1, 2× 2 and 4× 4. To
train the codebook for spatial pyramid, we use the standard
k-means clustering with k = 1024. For the 15 scene category
database, we compute the spatial pyramid feature using a
four-level spatial pyramid and a SIFT-descriptor codebook
with a size of 200. Finally, the spatial pyramid features are
reduced to 3000 dimensions by PCA.

The matrix parameters are initialized with small ran-
dom values sampled from a normal distribution with
zero mean and standard deviation of 0.01. For sim-
plicity, we use the constant learning rate ε cho-
sen from {20, 15, 5, 2, 1, 0.2, 0.1, 0.05, 0.01, 0.001}, the
regularization parameter α chosen from {1, 0.5, 0.1},
the sparse regularization parameter β chosen from
{0.1, 0.05, 0.01, 0.001, 0.0001} and the group number G
chosen from {2, 4, 5, 10, 20}. In all experiments, we only
train 5 epochs, the number of hidden units is 500 and the
number of layers is 2. For each data set, each experiment is
repeated 10 times with random selected training and testing
images, and the average precision is reported. In the rest of
this paper, we denote that S-DSN(sigm) indicates S-DSN
with sigmoid function; S-DSN(relu) indicates S-DSN with
ReLU function; DSN-1, S-DSN(sigm)-1 and S-DSN(relu)-
1 respectively indicate one-layer DSN, S-DSN(sigm) and
S-DSN(relu); DSN-2, S-DSN(sigm)-2 and S-DSN(relu)-2
respectively indicate two-layer DSN, S-DSN(sigm) and S-
DSN(relu).

Sparseness Comparisons
Before presenting classification results, we first show the
sparseness of S-DSN(sigm) and S-DSN(relu) compared to
DSN. We use Hoyer’s sparseness measure (HSM) (Hoyer
2004) to figure out how sparse representations learned by the
S-DSN(sigm), S-DSN(relu) and DSN. This measure has good
properties, which is in the interval [0, 1] and on a normalized
scale. Its value more close to 1 means that there are more
zero components in the vector. We perform comparisons on
Extended YaleB and AR databases, and results are reported
in Table 1. The sparseness results show that S-DSN(sigm)
and S-DSN(relu) have higher sparseness and higher recog-
nition accuracy. Table 1 compares the network HSM of the

1they can be downloaded from:
http://www.umiacs.umd.edu/ zhuolin/projectlcksvd.html
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Table 1: Hoyer’s sparseness measures (HSM) on Extended
YaleB and AR databases. We train on 15 (10) samples per
category for Extended YaleB (AR) and the rest for testing.
For two databases, the number of hidden units is 500, the
group sizes for S-DSN(sigm) and S-DSN(relu) are 4 and
the number of layers is 2. In Extended YaleB, ε = 0.2 and
α = 0.5 are used for DSN; ε = 0.2, α = 0.5 and β = 0.001
are used for S-DSN(sigm). In Extended YaleB ε = 0.05 and
α = 1 are used for DSN; ε = 0.05, α = 1 and β = 0.0001
are used for S-DSN(relu).

S-DSN(sigm) DSN
layers HSM Acc. (%) HSM Acc. (%)

Extended 1 0.096 91.4 0.010 88.9
YaleB 2 0.111 92.0 0.012 89.4

S-DSN(relu) DSN
layers HSM Acc. (%) HSM Acc. (%)

AR 1 0.286 93.2 0.003 80.2
2 0.306 93.5 0.003 81.2

Figure 1: Activation probabilities of first hidden layer are
computed under DSN and S-DSN(relu) on the AR database.
Activation probabilities be normalized by dividing the maxi-
mum of activation probabilities.

S-DSN(sigm) and the S-DSN(relu) to that of DSN. We ob-
serve that the average sparseness of two layers S-DSN(sigm)
is about 0.105 (Extended YaleB) and the average sparseness
of two layers S-DSN(relu) is about 0.291 (AR). In contract,
the average sparseness of two layers DSN is on average be-
low 0.02 in the databases. It can be seen that the S-DSN can
learn sparser representations. Due to space reasons, Figure
1 only visualizes the activation probabilities of first hidden
layer, which are computed under the S-DSN(relu) and the
DSN given an image from test set of AR.

Results
Face Recognition Extended YaleB: We randomly select half
(32) of the images per category as training and the other half
for testing. The parameters are selected as follow: in DSN
ε = 0.1 and α = 0.5; in S-DSN(sigm) ε = 0.1, α = 0.5,
G = 2, and β = 0.01; in S-DSN(relu) ε = 0.01, α = 2,
G = 5, and β = 0.001. AR: For each person, we randomly
select 20 images for training and the other 6 for testing. In
our experiments, ε = 0.1 and α = 0.5 are used in DSN;
ε = 0.1, α = 0.5, G = 4, and β = 0.001 are used in S-
DSN(sigm); ε = 0.01, α = 1, G = 4, and β = 0.001 are
used in S-DSN(relu).

We compare S-DSN with DSN (Deng and Yu 2011b), and
LC-KSVD (Jiang, Lin, and Davis 2013) and SRC (Wright et

Table 2: Recognition Results Using Random-Face Features
on the Extended YaleB Database

Methods Acc. (%) Methods Acc. (%)
SRC 97.2 LC-KSVD 96.7

DSN-1 96.6 DSN-2 96.9
S-DSN(sigm)-1 96.9 S-DSN(sigm)-2 97.4
S-DSN(relu)-1 96.1 S-DSN(relu)-2 96.7

Table 3: Recognition Results Using Random Face Features
on the AR Face Database

Methods Acc. (%) Methods Acc. (%)
SRC 97.5 LC-KSVD 97.8

DSN-1 97.6 DSN-2 97.8
S-DSN(sigm)-1 97.9 S-DSN(sigm)-2 98.1
S-DSN(relu)-1 97.6 S-DSN(relu)-2 97.8

al. 2009) algorithms, which reported state-of-the-art results
on those two databases. The experimental results are sum-
marized in Table 2 and Table 3, respectively. S-DSN(sigm)
achieves better results than DSN, LC-KSVD and SRC. From
Table 2 S-DSN(sigm)-1 is better than LC-KSVD and has
about 0.2% improvement in Extended YaleB. From Table
3, S-DSN(sigm)-1 and S-DSN(sigm)-2 are also better than
LC-KSVD and have about 0.1% and 0.3% improvement in
AR, respectively. In addition, we compare with LC-KSVD in
terms of the computation time for classifying one test image.
S-DSN has a faster inference because it can directly learn
projection dictionaries. As shown in Table 4, S-DSN is 7
times faster than LC-KSVD.

15 Scene Category: Following the common experimental
settings, we randomly choose 100 images from each class
for training data and the rest for test data. In our experiments,
ε = 20 and α = 0.1 are used in DSN; ε = 20, α = 0.1,
G = 4, and β = 0.05 are used in S-DSN(sigm); ε = 15,
α = 0.1, G = 4, and β = 0.001 are used in S-DSN(relu).

We compare our results with SRC (Wright et al. 2009),
LC-KSVD (Jiang, Lin, and Davis 2013), DeepSC (He et al.
2014), DSN (Deng and Yu 2011b) and other state-of-the-art
approaches: ScSPM (Yang et al. 2009), LLC (Wang et al.
2010), ITDL (Qiu, Patel, and Chellappa 2014), ISPR+IFV
(Lin et al. 2014), SR-LSR (Li and Guo 2014), DeCAF (Don-
ahue et al. 2014), DSFL+DeCAF (Zuo et al. 2014). The
detailed comparison results are shown in Table 5. Compared
to LC-KSVD, S-DSN(relu)-1’s performance is much better,
since it makes a 5.9% improvement. It also registers about
1.8% improvement over the deep models: DeepSC, DeCAF,
DSFL+DeCAF and DSN. As Table 5 shows, we see that
S-DSN(relu) performs best among all existing methods. The
confusion matrix for the S-DSN(relu) are further shown in
Figure 2, from which we can see that the misclassification
errors of industrial and store are higher than others.

Caltech101: Following the common experimental settings,
we train on 5, 10, 15, 20, 25, and 30 samples per category
and test on the rest. Due to space reasons, we only give the
parameters for 30 training samples per category: ε = 0.2
and α = 0.5 are used in DSN; ε = 0.2, α = 0.5, G = 4,
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Table 4: Inference Time (ms) for a Test Image on the Ex-
tended YaleB Database

Methods SRC LC-KSVD S-DSN(relu)
Average time 20.121 0.502 0.069

Table 5: Recognition Results Using Spatial Pyramid Features
on the 15 Scene Category Database

Methods Acc. (%) Methods Acc. (%)
ITDL 81.1 ISPR+IFV 91.1

SR-LSR 85.7 ScSPM 80.3
LLC 89.2 SRC 91.8

LC-KSVD 92.9 DeepSC 83.8
DeCAF 88.0 DSFL+DeCAF 92.8
DSN-1 96.7 DSN-2 97.0

S-DSN(sigm)-1 96.5 S-DSN(sigm)-2 97.1
S-DSN(relu)-1 98.8 S-DSN(relu)-2 98.8

and β = 0.01 are used in S-DSN(sigm); ε = 0.05, α = 0.5,
G = 2, and β = 0.001 are used in S-DSN(relu).

We evaluate our approach using spatial pyramid features
and compare with with SRC (Wright et al. 2009), LC-KSVD
(Jiang, Lin, and Davis 2013), DeepSC (He et al. 2014), DSN
(Deng and Yu 2011b) and other approaches ScSPM (Yang
et al. 2009), LLC (Wang et al. 2010), LRSC (Zhang et al.
2013), LCLR (Jiang, Guo, and Peng 2014). The average
classification rates are reported in Table 6. From these results,
S-DSN(relu)-1 outperforms the other competing dictionary
learning approaches, including LC-KSVD, LRSC, and SRC;
and has 1.6% improvement. S-DSN(relu) also registers about
1.5% improvement over a deep model: DSN. Note that 76.5%
accuracy achieved by our method (the number of hidden
units is 1000) is also competitive with the 78.4% reported in
DeepSC.

We examine how performance of the proposed S-DSN
changes when varying the number of hidden units. We ran-
domly select 30 images per category for training data and the
rest for test data. We consider six settings where the num-
ber of hidden units changes from 100 to 3000 and compare
the results with DSN. As reported the results in Figure 3,
our approaches maintain high classification accuracies and
outperform the DSN model. When increasing the number
of hidden units, the accuracy of the system improves for
S-DSN(sigm), S-DSN(relu) and DSN.

Effects of Number of Layers: The deep framework uti-
lizes multiple-layers of feature abstraction to get a better rep-
resentation for images. From Tables 2, 3, 5 and 6, we check
the effect of varying the number of layers and the classifica-
tion accuracy improves as the number of layers increases. In
addition, compared to the dictionary learning approaches, S-
DSN has a faster inference and a deep architecture. Moreover,
S-DSN has a good performance in image classification.

Conclusion
In this paper, we present an improved DSN model, S-DSN,
for image classification. S-DSN is constructed by stacking

Figure 2: The confusion matrix on the 15 scene category
database.

Table 6: Recognition Results Using Spatial Pyramid Features
on the Caltech101 Database

Methods 5 10 15 20 25 30
ScSPM - - 67.0 - - 73.2

SRC 48.8 60.1 64.9 67.7 69.2 70.7
LLC 51.2 59.8 65.4 67.7 70.2 73.4

LC-KSVD 54.0 63.1 67.7 70.5 72.3 73.6
LRSC 55.0 63.5 67.1 70.3 72.7 74.4
LCLR 53.4 62.8 67.2 70.8 72.9 74.7
DSN-1 53.6 61.8 67.7 70.2 72.0 74.6
DSN-2 54.9 63.4 68.2 70.5 72.9 74.7

S-DSN(sigm)-1 54.0 62.3 67.6 70.2 72.1 74.7
S-DSN(sigm)-2 55.4 63.7 68.3 70.8 73.2 74.9
S-DSN(relu)-1 55.4 63.8 68.7 71.2 73.5 76.0
S-DSN(relu)-2 55.6 64.2 69.0 71.3 73.6 76.2

many sparse SNNM modules. In each sparse SNNM mod-
ule, the lower-layer weights and the upper-layer weights are
solved by using the convex optimization and the gradient
descent algorithm. We use the S-DSN to further extract the
sparse representations from the random face features and
spatial pyramid features for image classification. Experimen-
tal results show that S-DSN yields very good classification
results on four public databases with only a linear classifier.
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