Metric Learning Driven Multi-Task Structured Output Optimization for Robust Keypoint Tracking

Authors

  • Liming Zhao Zhejiang University
  • Xi Li Zhejiang University
  • Jun Xiao Zhejiang University
  • Fei Wu Zhejiang University
  • Yueting Zhuang Zhejiang University

DOI:

https://doi.org/10.1609/aaai.v29i1.9783

Keywords:

computer vision, object tracking, metric learning, multi-task learning, structured output learning

Abstract

As an important and challenging problem in computer vision and graphics, keypoint-based object tracking is typically formulated in a spatio-temporal statistical learning framework. However, most existing keypoint trackers are incapable of effectively modeling and balancing the following three aspects in a simultaneous manner: temporal model coherence across frames, spatial model consistency within frames, and discriminative feature construction. To address this issue, we propose a robust keypoint tracker based on spatio-temporal multi-task structured output optimization driven by discriminative metric learning. Consequently, temporal model coherence is characterized by multi-task structured keypoint model learning over several adjacent frames, while spatial model consistency is modeled by solving a geometric verification based structured learning problem. Discriminative feature construction is enabled by metric learning to ensure the intra-class compactness and inter-class separability. Finally, the above three modules are simultaneously optimized in a joint learning scheme. Experimental results have demonstrated the effectiveness of our tracker.

Downloads

Published

2015-03-04

How to Cite

Zhao, L., Li, X., Xiao, J., Wu, F., & Zhuang, Y. (2015). Metric Learning Driven Multi-Task Structured Output Optimization for Robust Keypoint Tracking. Proceedings of the AAAI Conference on Artificial Intelligence, 29(1). https://doi.org/10.1609/aaai.v29i1.9783