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Abstract

Study of the human brain through fMRI can potentially bene-
fit the pursuit of artificial intelligence. Four examples are pre-
sented. First, fMRI decoding of the brain activity of subjects
watching video clips yields higher accuracy than state-of-the-
art computer-vision approaches to activity recognition. Sec-
ond, novel methods are presented that decode aggregate rep-
resentations of complex visual stimuli by decoding their inde-
pendent constituents. Third, cross-modal studies demonstrate
the ability to decode the brain activity induced in subjects
watching video stimuli when trained on the brain activity in-
duced in subjects seeing text or hearing speech stimuli and
vice versa. Fourth, the time course of brain processing while
watching video stimuli is probed with scanning that trades off
the amount of the brain scanned for the frequency at which it
is scanned. Techniques like these can be used to study how
the human brain grounds language in visual perception and
may motivate development of novel approaches in Al

Introduction

A dichotomy exists between two traditional fields that study
intelligence for disjoint purposes. Al attempts to engineer
synthetic intelligent systems, usually without concern for
how natural intelligence works. Psychology and related dis-
ciplines attempt to scientifically understand natural intelli-
gence, usually without concern for how to replicate it in en-
gineered systems. Here I advocate a third enterprise: study-
ing neuroscience not for the primary goal of understand-
ing brain function for its own sake but rather as a means
for reverse-engineering brain function to serve the goal of
helping Al—and the related disciplines of computer vision
(CV) and NLP—design better synthetic methods. I present
four examples of this. First, I present a novel comparison
of state-of-the-art action-recognition methods from CV with
state-of-the-art methods for decoding brain scans obtained
with fMRI on the same dataset. This suggests methods for
improving CV action recognition. Second, I present novel
methods for recovering aggregate representations, like Dan
fold shirt on the left, in brain-scan data, from constituent
representations like Dan, fold, shirt, and on the left. Novel
methods show that the brain regions involved in classify-
ing the aggregate constitute a disjoint union of those in-
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volved in classifying the constituents. This suggests meth-
ods for decomposing brain activity into primitives to inves-
tigate the methods employed by the brain when solving a
plethora of standard AI problems. Third, I present novel
methods for performing cross-modal decoding of brain-scan
data: training models on subjects reading text or hearing
speech and then using those models to decode video, and
vice versa. This suggests methods for understanding the se-
mantic KR methods employed by the brain. Fourth, I present
novel methods for probing the time-course of brain process-
ing: how information flows through different brain regions
while processing stimuli. This suggests methods for reverse-
engineering the algorithms employed by the brain.

Related Work

State-of-the-art brain-activity classification involves a small
number of concept classes, where the stimuli are still images
of objects or orthographic presentation of nouns. Just et al.
(2010) classify orthographic nouns, 5 exemplars from each
of 12 classes, achieving a mean rank accuracy of 72.4% on a
1-0f-60 classification task, both within and across subjects.
(Note that rank accuracy differs from classification accuracy
and denotes “the normalized rank of the correct label in the
classifier’s posterior-probability-ordered list of classes,” Just
et al. 2010, p. 5.) Pereira, Botvinick, and Detre (2012) re-
analyze the preceding data in the context of a prior from
Wikipedia and achieve a mean accuracy of 13.2% on a 1-of-
12 classification task and 1.94% on a 1-of-60 classification
task. Hanson and Halchenko (2009) classify still images of
2 object classes: faces and houses, and achieve an accuracy
above 93% on a 1-of-2 classification task. Connolly et al.
(2012) classify still images of objects, 2 instances of each
of 3 classes: bugs, birds, and primates, and achieve an ac-
curacy between 60% and 98% on a 1-of-2 within-class clas-
sification task and an accuracy between 90% and 98% on a
1-of-3 between-class classification task. Haxby et al. (2011)
classify image and video stimuli cross-subject achieving be-
tween 60% and 70% between-subject accuracy on image
data with 6 to 7 classes and video data with all 18s clips
from Raiders of the Lost Ark.

Comparison of fMRI Decoding with CV

There has been significant research on action recognition
within CV for two decades (see References for a sample).



This work attempts to automatically label short video clips
with one of a small set of classes, typically verbs. The pre-
dominant approach is bag of spatio-temporal visual words
(BOW; Schuldt, Laptev, and Caputo 2004). In this approach,
features are extracted from the video at a subset of space-
time points then pooled and vector quantized, video clips are
summarized as histograms of occurrence frequency of code-
book entries, and models are trained on such histograms ex-
tracted from a training set and then used to classify those ex-
tracted from unseen test video. Features used include spatio-
temporal interest points (STIP; Schuldt, Laptev, and Caputo
2004) and, more recently, Dense Trajectories (Wang et al.
2011; 2013; Wang and Schmid 2013). Classification often
is performed with a support-vector machine (SVM; Cortes
and Vapnik 1995).

The fact that BOW methods summarize an entire video
clip as a single histogram bears similarity to the standard
fMRI methods that classify stimuli from a single brain vol-
ume (i.e., a single 3D image of the brain). Moreover, fMRI
researchers typically employ SVMs for multivariate pattern
analysis (MVPA). Thus BOW methods for action recogni-
tion and MVPA methods for fMRI bear a structural similar-
ity. We asked whether they yield similar accuracy, perform-
ing an apples-to-apples comparison between CV methods
applied to short video clips and fMRI analysis methods ap-
plied to scans of subjects watching the same videos (Barbu
et al. 2014). Our corpus consisted of 169 2.5s video clips,
covering 6 classes carry, dig, hold, pick up, put down, and
walk.

We adopted a rapid event-related experiment design (Just
et al. 2010). Each of 8 runs for 8 subjects contained 48
stimulus presentations. A single brain volume was cap-
tured for each presentation. Stimuli were counterbalanced
across all 6 classes within each run with 8 randomly se-
lected videos for each of the 6 classes in each run. Each
brain volume consisted of 64x64x35 voxels of dimen-
sion 3.125mmx3.125mm x3.000mm. Standard techniques
(AFNI; Cox 1996) were employed to process the fMRI data,
ultimately reducing the 143,360 voxels in each scan to a
4,000 element vector for within-subject analyses and 12,000
for cross-subject. Such vectors constituted samples for train-
ing and testing a linear SVM classifier that employed Linear
Discriminant Dimensionality Reduction (Gu, Li, and Han
2011). We performed both within-subject and cross-subject
train and test, employing leave-1-run-out and leave-1-run-
and-1-subject-out cross validation.

We applied C2 (Jhuang et al. 2007), Action Bank
(Sadanand and Corso 2012), Stacked ISA (Le et al. 2011),
VHTK (Messing, Pal, and Kautz 2009), Cao et al.’s (2013)
implementation of Ryoo et al.’s (2011) method, Cao et al.’s
(2013) method, and an implementation of the classifier de-
scribed in Wang et al. (2013) on top of the Dense Trajecto-
ries (Wang et al. 2011; 2013; Wang and Schmid 2013) fea-
ture extractor to the same dataset. These experiments em-
ployed the same leave-1-run-out cross validation. Results
are shown in Fig 1. Note that all the CV systems that we
tested on yield similar accuracy to the cross-subject fMRI
experiments and much lower accuracy than the correspond-
ing within-subject fMRI experiments.
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Figure 1: Results from Barbu et al. (2014). Classification
accuracy of fMRI data and the 7 CV methods. Red lines in-
dicate medians, box extents indicate upper and lower quar-
tiles, error bars indicate maximal extents, and crosses indi-
cate outliers. The dashed green lines indicates chance per-
formance.
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Figure 2: Suggested method for using fMRI to help design
better CV algorithms.

This suggests an approach for using fMRI to help design
better CV algorithms (Fig. 2). Note that both CV methods
and standard fMRI analysis employ similar classifiers, usu-
ally SVMs. They differ in the feature vector. CV methods
train the entire pipeline with labeled videos, taking the fea-
ture vectors to be unsupervised latent variables. FMRI can
provide access to that hidden state.

Decomposing Sentences into Words

We conducted another study to determine the feasibility
of decomposing brain activity elicited from complex video
stimuli into constituents denoting orthogonal aspects of
these stimuli. The stimuli were designed as cross products:
1 of 4 actors performing 1 of 3 verbs (carry, fold, leave) on
1 of 3 objects (chair, shirt, tortilla) in either 1 of 2 directions
(leftward, rightward) or 1 of 2 locations (on the left, on the
right), yielding 4 x 3 x 3 x 2 = 72 combinations.

We employed the same experiment design, capturing a
single brain volume for each of 72 stimulus presentations,
one for each element in the above cross product, in each run,
for each of 8 runs for each of 7 subjects. We performed the
same within-subject train-and-test analysis and attempted to
decode both the individual constituents (words) as well as
aggregates (word pairs and triples as well as entire sentences
denoting the entire cross product). Aggregates were decoded
using two classifiers: one trained jointly on samples depict-
ing the particular aggregate, and the conjunction of classi-
fiers trained independently on samples depicting each indi-
vidual constituent component. Results are shown in Fig. 3.

Several things are of note. First, individual constituents,
as well as aggregates (pairs, triples, and sentences) can all be



Figure 3: Results of the decomposability study. For pairs
and triples, the accuracy of joint (left) vs. independent (right)
classifiers.

Figure 4: Brain regions for subject 1 from (top) searchlight
analysis and (bottom) thresholded SVM weights.

decoded with accuracy far above chance. Second, the accu-
racy of joint classifiers is largely the same as that of the inde-
pendent classifiers. This indicates both a level of common-
ality between different aggregate concepts that share a com-
mon constituent concept as well as a degree of independence
of the processing of the constituents that combine to form
the aggregate. To strengthen this analysis, we measured the
correlation between the stream of individual judgments pro-
duced by both the independent and joint classifiers by com-
puting both the accuracy and the Matthews correlation coef-
ficient (MCC) for multi-class classification (Gorodkin 2004)
on samples where the joint classifier was correct, obtaining a
surprisingly high degree of correlation (Table 1). To further
assess the degree of independent processing, we estimated
the brain regions employed for each of the constituents us-
ing two methods: searchlight (Kriegeskorte, Goebel, and
Bandettini 2006) and backprojection of thresholded SVM
weights (Fig. 4 left). This was quantified with two novel
analyses: computing the percentage of voxels in the union
of the constituents for the independent classifier that are also
in the intersection together with the percentage of voxels in
the joint classifier that are shared with the independent clas-
sifier. The former measures the degree to which the con-
stituent classifiers employ disjoint brain regions. The latter
measures the degree to which the joint classifiers constitute
the union of the brain regions employed by the independent
classifiers. Table 1 indicates that the joint aggregate classi-
fiers are, to a large extent, a disjoint union of the constituent
classifiers.
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This suggests an approach to deciphering the constituents
of algorithms employed by the brain for a variety of intelli-
gent behavior. One can scan subjects performing reasoning,
planning, game-playing, language-understanding, and even
motor-control tasks (subject to scanner constraints) and use
the disjoint-union analysis to determine the primitives em-
ployed, how they are shared among the different tasks, and
how they combine in ways specific to a particular task. Such
can motivate development of new Al algorithms.

Brain Activity from Video and Text Stimuli

We conducted a new study, video-and-text, to assess the
ability to decode verbs cross modally. We asked two ques-
tions: can we decode a larger number of classes and can
we do so cross modally? For this study, we used a sub-
set of Hollywood 2 (Marszaltek, Laptev, and Schmid 2009),
a dataset of movie clips with 12 classes (AnswerPhone,
DriveCar, Eat, FightPerson, GetOutCar, HandShake, Hug-
Person, Kiss, Run, SitDown, SitUp, and StandUp) that is
used within the CV community to evaluate performance of
action-recognition methods. We normalized the resolution,
frame rate, duration, and aspect ratio of this subset, selecting
384 2s clips, 32 for each of the 12 classes.

We employed the same experiment design, except that
each of 2 subjects underwent 16 runs, each with 48 stim-
uli. Half were video depictions of the event classes and
half were text strings naming the event classes. Each class
was presented 4 times per run, twice as video and twice as
text. We employed the same within-subject fMRI analysis
paradigm as before, using 2,000 voxels. The same cross
validation was performed by CV methods as for fMRI. We
performed 7 analyses on the fMRI data: modality (1 of 2)
determine whether the subject is looking at video or text,
verb-from-video (1 of 12) decode the class from scans of
the video stimuli, verb-from-text (1 of 12) decode the class
from scans of the text stimuli, verb (1 of 12) decode the
class from scans of all stimuli, verb-modality (1 of 24) de-
code the class and modality, text-to-video (1 of 12) decode
the class from scans of the video stimuli, having been trained
on scans of the text stimuli, and video-to-text (1 of 12) de-
code the class from scans of the text stimuli, having been
trained on scans of the video stimuli. Results are shown in
Fig. 5(a,b).

Several things are of note. First, it is possible to deter-
mine whether the subject is looking at video or text with
perfect accuracy. Second, it is possible to decode 1-of-12
verbs from video stimuli with about 57.8%—62.7% accuracy.
While this is lower than the accuracy obtained in the earlier
study (69.7%; Fig. 1), it is still far above chance, on a task
that has twice as many classes. Third, performance when
decoding verbs from video stimuli is again higher than all of
the CV methods. This replicates the earlier result with twice
as many classes and with a standard dataset from the CV
community. Fourth, it is possible to decode 1-of-12 verbs
from text with about 23.6%-39.0% accuracy, again a level
far above chance. (Subject 1 was a native English speaker
while subject 2 was not; this might explain the lower perfor-
mance on text despite similar performance on video.) Fifth,
when the video and text data are pooled for both training
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Table 1: Correlation between between independent and joint classification for constituent pairs and triples. Quantitative com-
parison of the brain regions employed by the independent classifiers to those employed by the joint classifiers: the percentage
of voxels in the union of the constituents for the independent classifier that are also in the intersection; the percentage of voxels

in the joint classifier that are shared with the independent classifier.
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and test, accuracy of decoding 1-of-12 verbs is about the
mean of decoding such from video alone and text alone.
The results are similar irrespective of whether or not the
task involved simultaneous determination of modality. This
is to be expected since modality alone can be decoded per-
fectly. Sixth, it is possible to decode 1-of-12 verbs from
video stimuli using a classifier trained on text stimuli—and
vice versa—with about 15.6%—23.4% accuracy. Again, this
is far above chance and demonstrates a level of modality-
independent decoding.

Brain Activity from Video and Speech Stimuli

An additional study, video-and-speech, used the same de-
sign as video-and-text except that text stimuli were re-
placed with speech. Only subject 1 from video-and-text was
scanned. The experiment design was otherwise identical to
that of video-and-text. Results are shown in Fig. 5(c).

Several things are of note. First, it is again possible to de-
code modality with perfect accuracy. Second, the accuracy
of decoding verbs from video is again higher than all CV
methods. Third, it is possible to decode verbs from speech
with about 45.0% accuracy, again a level far above chance.
Fourth, pooling video and speech data again yields the same
results. Fifth, it is again possible to decode verbs from video
stimuli using a classifier trained on speech stimuli—and
vice versa—with about 21.0%-23.6% accuracy. Again, this
is far above chance and demonstrates a level of modality-
independent decoding.

This, together with the above method for analyzing unions
and intersections of brain regions, suggests an approach for
using fMRI to help decode the KR mechanisms employed
by the brain. One can determine those brain regions em-
ployed while processing video, text, or speech depictions of
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Figure 6: (a) Subset of brain regions for (a) subject 1 and
(b) subject 2 in video-and-text and (c) subject 1 in video-
and-speech. Red indicates video, blue indicates text/speech.
Note that all 3 have roughly the same intersection of video
and text/speech suggesting a potential common semantic re-
gion for verbs in video, text, and speech across subjects.

the same concept and and compute the intersection and set
differences to determine which processing is modality neu-
tral and which is modality specify (Fig. 6).

Probing the Time-Course of Processing

We conducted another study to determine the feasibility of
measuring the time-course of processing by acquiring fewer
slices at a higher acquisition rate. We captured 6 axial slices,
instead of 35, placed in the parietal lobe a few mm below
the top of the brain. This covers the supplementary motor
area (SMA) and the premotor cortex: regions of high activ-
ity for video stimuli determined by backprojecting the SVM
weights from earlier studies. The voxel size was the same,
so overall, about 1/6 as much brain volume was covered.
But the acquisition rate was more than 6 times as fast. Only
video stimuli were presented to a single subject.

The same analysis pipeline was used. A classifier was
trained and tested on a sequence of adjacent partial-brain



Figure 7: Accuracy as a function of temporal offset from
stimulus onset and classification sequence length, both in
units of 300ms, for (left) 1000 and (right) 2000 voxels.

volumes, instead of a single full-brain volume. This was
done by concatenating the partial volumes into a single long
vector. The sequence length was varied, as well as the offset
from stimulus onset. Voxel selection and dimensionality re-
duction were performed on the entire concatenated (partial)
volume sequence by the same method as was previously per-
formed on a single (full) volume. Accuracy was computed
for 1,000 and 2,000 voxels in the entire (partial) volume se-
quence (Fig. 7). In each plot, the left axes are the offset from
stimulus onset to the start of the partial-volume sequence
used for classification. The right axes are the length of the
partial-volume sequence used for classification.

Several things are of note. First, for a fixed sequence
length the function is almost unimodal. It largely increases
monotonically to a single maximum and then decreases
monotonically. Second, the asymptotes at either end are at
about chance (1/12=8.3%). Third, the maximum for each
classification sequence length is around 13-17 TRs, which
is 4.2s to 5.4s after stimulus onset. Fourth, the maximum in-
creases with increase in sequence length and peaks at about
9 TRs, which is 2.7s. With increase in sequence length, it
is better to start the sequence a little earlier but it is subop-
timal to keep the center of the sequence constant. It is best
to increase the tail of the sequence more than the head (by
about a factor of 2). Fifth, there is a huge difference in ac-
curacy with change in offset as well as length. Sixth, the
maximal accuracy is 31.7%, which is lower than the best
obtained with a single-volume full-brain scan and analysis
(45%). We can take the best analysis of sequence length
1 (19.5%) to approximate the best one can obtain with a
single-volume partial-brain scan and analysis. Thus volume
sequence classification can improve accuracy by 62.5% over
single-volume classification.

Newer scanners can perform full-brain scans in 250ms
and partial-brain scans even faster. Reprogramming the
scanner with specialized pulse sequences, one could fo-
cus the scanner on specific brain regions at specific time
points. Since scanners are controlled by computers, one
could tightly integrate scanner control with real-time analy-
sis of scan data to focus the scanner on brain regions exhibit-
ing that activity most correlated with the stimuli as they are
being presented. One can even adapt the stimuli in real time
to elicit desired brain activity. This suggests using real-time
machine-learning methods to help reverse-engineer brain
function and ultimately improve Al algorithms.
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Conclusion

The field of Al has experienced many debates over its his-
tory: symbolicism vs. connectionism, deliberation vs. plan-
ning, lifted vs. ground planning and reasoning, forward
vs. backward chaining planning, state-space vs. plan-space
planning, empiricism vs. rationalism, and determinism vs.
stocasticism, just to name a few. While one can imagine at-
tempting to ask which side natural intelligence is on each
of these debates through traditional human-subject experi-
ments as performed by psychologists and cognitive scien-
tists, examining the input-output behavior of an organism
might fail to tease apart the internal structure of that or-
ganism. This is the promise of methods like fMRI (and
other sensor mechanisms like EEG, MEG, and PET). One
can imagine testing the plausibility of a plethora of repre-
sentational and algorithm choices made by Al systems, for
NLP: the set of labels used by part-of-speech taggers, the
tree structures used by parsers, whether parsing is top down
or bottom up, the set of thematic roles, and the validity of
verb classes; for CV: features such as SIFT, STIP, HOG,
and HOF, delineation of object detections as axis-aligned

rectangles, sliding window detectors, 2D vs. Z%D and 3D

representations, and segmentation and group strategies; for
robotics: strategies for localization and mapping (SLAM),
configuration-space path planning, and strategies for bipedal
walking, just to name a few. One can systematically con-
duct carefully controlled experiments to search for evidence,
or lack thereof, for each side of the above fundamental Al
questions. The studies reported here are a first step in ad-
dressing two such questions: the neural plausibility of BOW
approaches to activity recognition vs. time-series classifiers,
and propositional joint probabilistic modeling of the ground-
ing of language in vision vs. relational compositional ap-
proaches.
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