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Abstract 

This Blue Sky presentation focuses on a major shift toward 
a notion of “ambient intelligence” that transcends general 
applications targeted at the general population.  The focus is 
on highly personalized agents that accommodate individual 
differences and changes over time.  This notion of Extended 
Ambient Intelligence (EAI) concerns adaptation to a 
person’s preferences and experiences, as well as changing 
capabilities, most notably in an environment where 
conversational engagement is central.  An important step in 
moving this research forward is the accommodation of 
different degrees of cognitive capability (including speech 
processing) that may vary over time for a given user—
whether through improvement or through deterioration. We 
suggest that the application of divergence detection to 
speech patterns may enable adaptation to a speaker’s 
increasing or decreasing level of speech impairment over 
time. Taking an adaptive approach toward technology 
development in this arena may be a first step toward 
empowering those with special needs so that they may live 
with a high quality of life.  It also represents an important 
step toward a notion of ambient intelligence that is 
personalized beyond what can be achieved by mass-
produced, one-size-fits-all software currently in use on 
mobile devices.  
 

        Introduction   

A major shift has been underway toward an investigation 

of a notion of “ambient intelligence” that transcends the 

“Future Mobile Revolution.” The term “ambient 

intelligence” has generally been associated with 

applications that have a broad user base, as artificial 

intelligence “finds its way to more aspects of human life 

every day” (Kar, 2013).  Within this paradigm, one need 

no more than his/her smartphone to provide information 
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about a particular medicine, to reserve a place in the 

emergency room, or to request home delivery of 

prescription medication. Taking into account location-

specific information, personalized address books, and 

calendar entries, the same formulas are employed for each 

individual who uses a given application. 

 However, this notion of “ambient intelligence” ignores 

the degree to which individuals differ from each other and 

change over time.  What would the world be like if each 

individual were equipped with their own personal agent, 

designed to follow and adapt to that individual over long 

periods of time?  Over a lifetime of co-activity, this agent 

would learn the user’s needs, preferences, and capabilities, 

and would adapt accordingly.  More importantly, the agent 

would accommodate changes in the user’s needs, 

preferences, and capabilities over time.  We refer to this 

notion of ambient intelligence as Extended Ambient 

Intelligence (EAI) below.  

 A major challenge in the development of EAI-based 

human-machine interaction (e.g., Smart Home 

environments designed for clients with neurological 

disorders) is the tradeoff between the degree of 

intrusiveness and presence of empathy, in addition to the 

impact of this tradeoff on conversational engagement 

(Page, 2006).  When clients are under (human) observation 

in a hospital setting, there are frequent, intrusive 

interactions, yielding an environment that is less conducive 

to engagement and that deprives patients of perceived 

personal autonomy. Such an environment is associated 

with increased rates of mental illness and depression in 

older patients (Boyle, 2005). Interactions with lower levels 

of intrusion (e.g., remote telemedicine in the form of two-

way video, email, and smart phones) may be lacking in 

empathy and, moreover, adaptation to clients’ needs and 

capabilities can be lost without daily, personalized 

interactions.  Thus, simulating empathy-based modeling of 
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the client to guide interactions is critical (Bee et al., 2010), 

yet an “optimal sense of intrusiveness” needs to be 

maintained. 

 Our research at IHMC has shifted toward an extended 

notion of ambient intelligence in which the degree of 

engagement has become central in the development of 

systems for human-machine interaction.  We have initiated 

efforts that focus on predicting, planning, and managing 

physical effects, taking into account individual behavior 

along psychological and social dimensions of the client, 

caregiver, and primary physicians (Atkinson, Clancey and 

Clark, 2014).  We aim to explore computational models 

that integrate core AI components with intelligent agent 

architectures to enable robust, trustworthy, adaptive 

autonomy in the context of long-duration human-machine 

joint activity (Atkinson 2009; Atkinson, Friedland and 

Lyons 2012).  Our overall research theme will be reported 

at the forthcoming AAAI 2015 Spring Symposium on 

Ambient Intelligence for Health and Cognitive 

Enhancement.(Atkinson, et. al., forthcoming 2015 

 This work necessarily involves development of AI 

algorithms for natural language, multi-modal social 

interaction, and a theory of mind.    

 This paper focuses on the natural language aspects of 

human-machine interaction, using speech recognition as an 

example of the need for extreme personalization and 

adaptation to changing conditions.   

Speech Adaptation in  

Human-Machine Interaction 

Research on EAI-based conversational agents at IHMC 

focuses on enabling an autonomous intelligent agent to 

take the role of life-long companion, providing highly 

personalized assistance and support for healthy assisted 

living.  As a starting point, recent studies at IHMC with 

clients who have suffered Traumatic Brain Injuries (TBI) 

have highlighted the potential benefits of mediating 

communication between client and caregiver using 

companion agents (Wilks et al., 2014). 

 An important next step in the personalization and 

adaptation of companion-style agents is to incorporate 

speech recognition that accommodates different degrees of 

impairment that may vary over time for a given user 

(improvement and deterioration).  Our approach involves 

the detection of speech language divergences along a range 

of different dimensions.  We borrow the notion of 

divergence from the study of cross-linguistic variations 

(Dorr, 1993, 1994; Dorr et al., 2002; Habash and Dorr, 

2002), where a language pair is considered “close” if it 

shares certain properties (but possibly not others), and 

“far” (i.e., divergent) if very few properties are shared.   

To illustrate the concept of divergence across languages, 

consider three properties: vocabulary, pronunciation, and 

syntactic structure.  Table 1 shows the properties that are 

shared between Spanish and four other languages.  The 

language that diverges the most radically from Spanish is 

Chinese, which does not share vocabulary, syntactic 

structure, or pronunciation with Spanish. 

Table 1: Linguistic Divergence across Languages 

 

We apply this same notion of divergence to the problem 

of “speech functioning,” constraining our language pair to 

asymptomatic English speech compared to impaired 

English speech.  In this case, the divergence properties to 

be studied are articulatory and disfluency patterns. We 

develop and apply techniques for detecting such 

divergences and leverage these to enable adaptive 

automatic speech recognition.  The goal is to adapt to both 

deterioration and improvement in speech, within the same 

person, over time.  For example, in ALS, speech is likely 

to become more impaired over time, whereas with TBI, the 

speech is likely to become less impaired. We hypothesize 

that while there may be variability in some static measures 

of impairment, there still exist trends of dynamic changes 

which will become clearer as we consider data over longer 

time spans and learn how context (patient history, 

environmental factors, etc.) influences or explains short-

term variations in speech production. 

Table 2 is a notional table illustrating a range of 

articulatory properties for “Baseline” English (as 

determined for a native English speaker who has no speech 

impairment i.e. pre-symptomatic) compared to those 

exhibited during different stages of Amyotrophic Lateral 

Sclerosis (ALS)—early, mid, late—thus providing a 

framework for capturing the degree of divergence.  The 

final column has the highest level of divergence from the 

baseline: imprecise consonants, distorted vowels, and 

hypernasal bilabials. 

 
“Baseline” 

English 

ALS 

English 

(early) 

ALS 

English 

(mid) 

ALS 

English 

(late) 

consonants imprecise imprecise imprecise 

vowels ~baseline distored distorted 

bilabials (b,m) ~baseline ~baseline hypernasal 

Table 2: Example of Speech-related Divergence 

 

Considering divergence properties as separate dimensions 

in speech deterioration is a crucial aspect of EAI that goes 

beyond standard speaker adaptation.  Our work focuses not 

just on adaptation to a particular speaker’s vocal patterns, 

Spanish Italian French English Chinese 

vocabulary X X X  

syntax X X   

pronunciation X    
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but also on generalization of such adaptations to other 

clients who are at the same stage of speech deterioration or 

improvement, and who therefore share common speech 

patterns.  Furthermore, recognition of a client’s level of 

deterioration or improvement could provide valuable data 

between regular visits by a caretaker or physician.  

  The application of the EAI paradigm to this speech 

problem is also an extension of our intent to consider our 

level of intrusiveness in the patient’s life both in the end 

product and during data collection. While a controlled 

study and data collection with contextual aspects removed 

could be helpful for the studying divergence in those with 

deteriorated speech, embedding our research in an EAI 

environment holds the promise of learning to understand 

patients without requiring undue demands of their time or 

interfering with their daily routine. 

Related Work 

A cogent review of research, application, and evaluation 

of conversational agents that lay the groundwork for the 

development of today’s EAI agents was published in an 

edited compendium (Cassell, 2000).  Several of the 

foundational papers therein examine both verbal and 

nonverbal behaviors during face-to-face conversation.  

More recent research has focused on the development of 

“engagement techniques” for sustaining a conversation 

with a human user.  Examples of such systems include 

SEMAINE (Schroder, 2010), VHTookit (Hartholt et al., 

2013), and Companions (Wilks et al., 2011). 

The closest speech processing study to the divergence 

approach described above is by Biadsy et al. (2011), who 

investigated the variation of speech properties under 

intoxicated and sober conditions. This earlier work was 

applied to the detection of intoxication (vs. sobriety), not 

the degree of intoxication.  Rudzicz et al. (2014) employed 

another approach for recognizing impaired speech for 

detection of Alzheimer’s (vs. no Alzheimer’s) and Little 

(2012) developed an analogous application for detection of 

Parkinson’s (vs. no Parkinson’s) (Kepes, 2014). These 

approaches measure the “voice signal” to answer a yes/no 

question—rather than analyzing the content to determine 

the degree of divergence from a baseline.  Nevertheless, 

the incidental but significant discovery from these earlier 

studies, that pronunciation varies systematically within 

categories of speech impairment, is a critical finding that 

can be leveraged for adapting speech recognition 

technology to varying degrees of impairment. 

Other work has focused on finding patterns in written 

text which may provide evidence of a mental disorder, 

such as work by Rude et. al (2004). However, in such 

work, a person’s language production ability is not 

impaired, but rather indicative of underlying mental 

factors. 

Research on modeling non-native or dialectal speech 

(Livescu and Glass, 2000) is a closer approximation to 

what is suggested here for recognition of speech changes 

over time. The focus of dialectal modeling is on detecting 

divergent content, not on discerning characteristics of the 

speech signal.  Happily, we are able to leverage an 

important discovery from the work of those above—as 

well as that of Beukelman et al. (2011), Duffy et al. (2012), 

Green et al. (2013), and Orimaye (2014)—which is that 

pronunciation varies systematically within categories of 

speech impairment. This discovery is critical to correlating 

the divergence from a baseline English and providing a 

foundation for adapting speech recognition technology to 

varying degrees of impairment. 

 

Detection and Adaptation of Divergence 

The divergences of impaired speech can be seen 

throughout the entire linguistic spectrum, including sub-

phonetic acoustic differences, pronunciation variation, 

subword repetition, and disfluency in discourse. As these 

divergences span multiple levels of speech processing, we 

must develop multiple methods for identifying 

divergence. We anticipate using Kaldi (Povey et al. 2011) 

as our base speech recognition system, and plan to extend 

it to detect and adapt to speech divergence. 

As previous work has mainly focused on detection, we 

will focus on the additional task of adaptation at both the 

phonetic and dialogue level. Traditional acoustic-phonetic 

adaptation techniques, such as Maximum Likelihood 

Linear Regression (MLLR) adaptation (Leggeter & 

Woodland, 1995) and Feature-space MLLR (fMLLR) 

(Gales 1998), seek to move either the model space or the 

feature representation to keep the phonetic boundaries 

relatively constant. We can use a traditional adaption 

technique as the first stage in adaptation, and then evolve 

it with a second transform that describes the changes over 

time. For pronunciation adaptation, we will incorporate 

the phonetic confusion networks in the pronunciation 

model. 

In addition to detecting and adapting to sub-word 

disfluencies, we propose to extend techniques from our 

work on DialogueView (Yang et al., 2008) for annotation 

and detection of higher discourse-level disfluencies, 

including speech repairs (i.e., “like a t- sort of like a 

tomato”) and abandoned or incomplete utterances (i.e., 

“what kind o-,”, typically exhibited when one speaker 

interrupts the other).  

Dialogue data from an EAI environment provides 

crucial information for aiding in speech repairs, by 

providing multi-modal context consisting of objects and 

environmental conditions for reference resolution and 
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possible substitutions. In addition, knowledge of the 

environment could explain away disfluencies that would 

otherwise be interpreted as a result of the patient’s 

condition – we should not interpret an abandoned utterance 

as an indicator of speech impairment if our system detects 

that a pot in the kitchen is overflowing, for example. 

 

Experimental Design 

Initial data collection of impaired speech for testing will 

consist of de-identified speech recordings gathered from 

quarterly visits over 3 years of 25 ALS patients currently 

followed by James A. Haley Veteran’s Administration 

Hospital (Tampa VA). We will record a mixture of 

context-independent calibration sentences and context-

dependent conversational speech regarding events in the 

patients’ lives.  

 These controlled data will be essential in quantifying the 

various speech and biological factors that change over time 

so that we have a base to build upon and compare 

performance to when generalizing our models to an 

uncontrolled ambient environment, where we can collect 

finer-grained data about the patient and provide more 

immediate feedback to caretakers and physicians. 

 Given the difficulty of collecting experimental data from 

an EAI environment in a comfortable setting for the 

patient, we plan on evaluating contextual effects on the 

speech of a baseline participant in our planned Smart 

Home environment equipped with microphones, depth 

cameras, and other sensors to monitor the occupant and the 

environment. We are also investigating methods of 

increasing the fidelity of the smart home environment and 

interactive context for patients through the use of 

immersive virtual reality and augmented reality. We will 

build on the results of previous studies showing that social 

norms and behavior carry over to virtual environments 

with sufficient fidelity for socio-cognitive research studies 

(Yee 2007; Schultze 2010). We can then combine our 

findings from these contextual and virtual models to 

determine how speech divergences can be tracked 

independently of context in a natural environment without 

interfering with the patient’s daily life. 

Discussion 

In the endeavor to move past the current notion of 

“ambient intelligence,” we consider an Extended Ambient 

Intelligence (EAI) paradigm that takes into account the 

degree to which individuals differ from each other and 

change over time.  We consider the possibility of 

equipping individuals with their own personal agent, 

designed to follow and adapt to an individual’s capabilities 

over long periods of time.   

 Within this overarching framework, we enhance human-

machine interaction by providing a paradigm within which 

speech recognition adapts over time.  There are a number 

of potential advantages to this adaptive view of ambient 

intelligence: 

 

 We benefit from the potential for embedding this 

technology into several different AI systems 

(companions, humanoid avatar, and robot) to enable 

conversations with a computer. 

 We leverage such paradigms to investigate interactive 

dialog that includes informal language understanding, 

in the face of disfluencies such as filled pauses (uh), 

repeated terms (I-I-I know), and repair terms (she—I 

mean—he).  

 We are then able to investigate pragmatic 

interpretation of language and action: undertaking 

intention recognition, e.g., Fill it with rockbee may be 

understood with gesture toward a coffee cup as Fill it 

with coffee. 

 

EAI research is well on its way toward providing a 

foundation for highly personalized conversational agents, 

e.g., in an ambient assisted living environment.  Taking an 

adaptive approach toward technology development in this 

arena may be a first step toward empowering those with 

special needs so that they may remain in their homes and 

participate in society with a positive quality of life. 
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