Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

On Computing Maximal Subsets of Clauses that Must Be Satisfiable
with Possibly Mutually-Contradictory Assumptive Contexts

Philippe Besnard
IRIT
CNRS UMR 5505
118 Route de Narbonne
F-31062 Toulouse, France
besnard @irit.fr

Abstract

An original method for the extraction of one maximal
subset of a set of Boolean clauses that must be satis-
fiable with possibly mutually contradictory assumptive
contexts is motivated and experimented. Noticeably, it
performs a direct computation and avoids the enumer-
ation of all subsets that are satisfiable with at least one
of the contexts. The method applies for subsets that are
maximal with respect to inclusion or cardinality.

Introduction

The extraction of maximal satisfiable subsets (MSSes) of a
set of Boolean clauses is a key issue in many knowledge
representation and reasoning fields. These subsets can be
maximal with respect to set-theoretic inclusion or cardinal-
ity. The set-theoretic complement of one MSS (noted Co-
MSS) is also of importance in many A.L areas since it is
an (inclusion or cardinality)-minimal subset of clauses that
should be corrected in order for the whole set of clauses to
be conflict-free. Although there can be an exponential num-
ber of MSSes in a contradictory set of clauses, the extrac-
tion of one MSS can prove useful when a quick decision
needs to be taken and when it is acceptable to base this de-
cision on one MSS, only. Moreover, computing one MSS
is also the basic kernel of techniques that either enumerate
all MSSes (Marques-Silva et al. 2013) when their number
is small, or compute some preferred ones. In addition, many
algorithms that enumerate minimal proofs of unsatisfiability,
or MUSes for (inclusion)-Minimal Unsatisfiable Sets, in the
clausal Boolean framework (Liffiton and Sakallah 2008a;
Grégoire, Mazure, and Piette 2007), rely on the enumera-
tion of MSSes. MUSes have also many applications in their
own right.

In this respect, techniques for extracting one MSS that
prove experimentally viable in many actual situations are
thus of a wide scope interest.

In this paper, we investigate the more general situation
where the maximal satisfiable subset to be extracted must
be conflict-free with a series of potential cases, called as-

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Eric Grégoire and Jean-Marie Lagniez

3710

CRIL
Université d’ Artois & CNRS
rue Jean Souvraz SP18
F-62307 Lens, France
{gregoire,lagniez} @cril.fr

sumptive contexts, that are under the form of (possibly mu-
tually contradictory) Boolean formulas. These assumptive
contexts are mutually conflicting when they express incom-
patible possible branches of an alternative. Should any of the
assumptive contexts turn out to be true, the (cardinality or in-
clusion) MSS would not get contradicted. Such a context is
widespread in A.L. and everyday life. A few examples:

e Planning. A robot needs to plan its next moves. It must
take its decisions based on its own knowledge A and
two newly downloaded maps. Although each map is it-
self conflict-free, it contains information conflicting with
the other map. Since the robot must act quickly and since
it assumes that the conflicts inside A are of a minor im-
portance, it decides to rely on just one MSS of the set-
theoretic union of A with the two maps, provided that this
MSS is compatible with each map. If the robot is given
more time then it computes more MSSes and takes a de-
cision on their global basis.

e Decision making. An agent wants to found her decision on
the part of her own knowledge and beliefs A that does not
contradict a given range of possibilities. Since she must
decide quickly, she starts by considering one maximal
subset of A that is satisfiable with each of those possibili-
ties (which again we call assumptive contexts). She is then
guaranteed that her decision will not be conflicting with
any of the assumptive contexts, should one of them even-
tually turn out to be true. She feels that conflicts within
her own information A are of lesser importance, so that
she accepts to drop some pieces of information involved
in these latter conflicts. Indeed, she regards it more impor-
tant to take a quick decision that is compatible with each
of the assumptive contexts.

e Model-based diagnosis. Diagnoses are defined as formu-
las from a Co-MSS, among other constraints (Hamscher,
Console, and de Kleer 1992; DX 2014). Diagnoses can
be required to be conflict-free with each member of a set
of additional considerations or assumptive contexts that
might be mutually conflicting.

e Reasoning about exceptions and default reasoning. For
example, in default logic (Reiter 1980), when the set of
standard logical formulas is consistent, an extension is a

maximal satisfiable set of formulas that, among other ad-
ditional constraints, are satisfiable together with the so-
called justifications of the generating default rules for the
extension. The non-commitment to assumptions property
(Delgrande, Schaub, and Jackson 1994) of Reiter’s default
logic expresses that extensions can be built from generat-
ing default rules with mutually conflicting justifications.

o Argumentation. In Dung’s seminal work on computa-
tional argumentation (Dung 1995), one logic-based inter-
pretation of extensions is based on one MSS of a corre-
sponding knowledge base (Vesic 2013). Also, in logic-
based argumentation (Besnard and Hunter 2008), it has
been shown how arguments can be directly computed
from MSSes (Besnard et al. 2010). More generally, argu-
ments can be required to be compatible with some addi-
tional pieces of information that might be mutually con-
flicting, like an argument showing that the defendant is
guilty and that is compatible with each of two cases: ei-
ther the defendant is telling the truth or lying.

e Belief change. The extraction of maximal subsets of
beliefs that are satisfiable with some additional con-
straints corresponds to the so-called multiple contraction
(Fuhrmann and Hansson 1994) paradigm in belief change.
Note also that following Levi’s identity (Levi 1977), con-
traction is a basic building block of belief revision, too
(Fermé and Hansson 2011; Alchourrén, Girdenfors, and
Makinson 1985): revising a deductive closed set of beliefs
by an incoming belief § involves the contraction of the set
by the negation of §, which is thus based on the extrac-
tion of MSSes that are satisfiable with J, followed by an
expansion by d, which includes deductive closure.

In view of these applications, the contribution of this pa-
per is as follows. We introduce and experimentally inves-
tigate a method to compute one maximal subset of a set
of Boolean clauses A such that this subset is satisfiable
with each member of a set of possibly mutually conflict-
ing Boolean formulas I'. Actually, it is not a straightforward
issue to transform an experimentally efficient method that
computes one MSS into a practical technique that extracts
one maximal satisfiable subset that is compatible with each
member of I'. Let us elaborate on this.

Assume first that (1) we have selected an experimen-
tally efficient algorithm that computes one MSS of a set of
Boolean clauses A, (2) we are given an unsatisfiable set of
of Boolean formulas I" that represents a set of assumptive
contexts that are mutually conflicting, (3) formulas from "
can contradict A and (4) A can be unsatisfiable. Let us write
Clausal(vy) for a set of clauses, equivalent to v with respect to
satisfiability, that is obtained through usual standard rewrit-
ing procedures.

One naive method would be as follows: for each v €
I, compute one MSS of A U {Clausal(y)} that contains
Clausal(7y) and its corresponding Co-MSS, which we denote
U,. Clearly, A" = A\ |, cp{¥,} is satisfiable with every
formula « of T'. However, A* is not necessarily an intended
solution since there might exist a strict superset of A* that
is also satisfiable with every formula of I'. Indeed, we might
have dropped two different clauses from A when consid-

3711

ering two formulas v, and vy, of I', whereas it is actually
enough to drop one clause, only. An illustration of this phe-
nomenon is Example 2 below. Clearly, this drawback holds
for both cardinality and inclusion-maximal MSSes. A nat-
ural but highly intractable solution to this problem requires
the following preliminary step: for each -, compute every
inclusion-maximal MSS of A that does not conflict with ~.
From this set of MSSes, compute the intended solution.

In this paper, we propose and investigate an approach that
avoids the computation of these intermediate MSSes and the
corresponding possible computational blow-up. To some ex-
tent, the approach pertains to the family of techniques that
ensure robust optimal solutions for all possible scenarios
(Ben-Tal, Ghaoui, and Nemirovski 2009).

Preliminaries and Technical Background

We consider standard Boolean logic: let £ be a language
of formulas over an alphabet P of Boolean variables, also
called atoms. Atoms are denoted by a,b,c,... The sym-
bols A,V,—,= and < represent the standard conjunc-
tive, disjunctive, negation, material implication and equiv-
alence connectives, respectively. Formulas are built in the
usual way from atoms, connectives and parentheses; they
are denoted by «, 3,7, ... Sets of formulas are denoted by
®,T", ... The cardinality of a set of formulas I" is written
card(I'). A literal is an atom or a negated atom. A clause is a
disjunction of literals. A unit clause is formed of one literal.

A set of formulas I' is satisfiable iff there exists at least
one model of A, namely a truth assignment of all atoms of
I' making all formulas of I' to be frue according to usual
compositional rules. Any formula ~ can be represented as a
set of clauses, denoted Clausal(vy), equivalent to vy with re-
spect to satisfiability, that is obtained through usual standard
rewriting procedures.

SAT is the N P-complete problem that consists in check-
ing whether a finite set of clauses is satisfiable.

From now on, we assume that A is a finite set of clauses,
that @ and ¥ are subsets of A and that I is a finite set of
Boolean formulas, each of the formulas in I" being (indi-
vidually) satisfiable. As a shortcut, v will be identified with
Clausal(~y) fory € T.

Definition 1. @ is an inclusion-Maximal Satisfiable Subset
of A, in short, ® is an MSSc(A), iff ® is satisfiable and
Va € A\ @, ® U {a} is unsatisfiable.

Definition 2. @ is a cardinality-Maximal Satisfiable Subset
of A, in short, @ is an MSS4 (A), iff @ is an MSSc (A) and
3P’ s.t. P’ is an MSSc (A) and card(®) < card(P’).

A Co-MSS of A is the set-theoretic complement in A
of the corresponding MSS. For ease of notation, we write
(Co-)MSS instead of (Co-)MSSc and (Co-)MSS., when
the context does not make this ambiguous or when no such
distinction is necessary.

Definition 3. ¥ is a Minimal Correction Subset (MCS or
Co-MSS) of A iff U = A\ ® where ® is an MSS of A.

Accordingly, A can always be partitioned into a pair made
of one MSSc and one Co-MSSc. Unless P = N P, extract-
ing one such partition is intractable in the worst case since it

belongs to the F' PN ¥ [wit, log] class, i.e., the set of function
problems that can be computed in polynomial time by exe-
cuting a logarithmic number of calls to an IV P oracle that
returns a witness for the positive outcome (Marques-Silva
and Janota 2014). Techniques to compute one such partition
that prove very often efficient are described in (Grégoire,
Lagniez, and Mazure 2014; Marques-Silva et al. 2013). Note
that in the worst case the number of MSSes is exponential in
the number of clauses in A.

The instance of the Max-SAT problem w.r.t. A consists
in delivering the cardinality of any MSS.(A). In the fol-
lowing, we consider the variant of Max-SAT that not only
delivers this cardinality but also one such MSSx(A). We
also make use of the following variant definition of Partial-
Max-SAT.

Definition 4. Let ¥, and Y5 be two sets of clauses. Partial-
Max-SAT (X1, ¥2) computes one cardinality maximal sub-
set of X1 that is satisfiable with ¥5. 37 and X5 are called
the sets of soft and hard constraints, respectively.

These variants of (Partial-)Max-SAT belong to the Opt —
P class of problems (Papadimitriou and Yannakakis 1991),
namely the class of functions computable by taking the max-
imum of the output values over all accepting paths of an N P
machine.

Problem Statement and Basic Examples

In this paper, we are interested in maximal satisfiable subsets
that are computed under a set of assumptive contexts.

Definition 5. @ is an inclusion-Maximal Satisfiable Subset
of A under a set of assumptive contexts I, (® is an AC-
MSSc (A, T') for short), iff

1. ® is a satisfiable subset of A, and

2.Vy eT',® U {v} is satisfiable, and

3.Va € A\ @, & U {a,~} is unsatisfiable for some v € T

Definition 6. @ is an AC-MSS.(A,T) iff @ is an AC-
MSSc(A,T) and 3@’ s.t. & is an AC-MSSc(A,T) and
card(®) < card(®’).

The extraction of one AC-MSS(A,T") is the addressed
problem in this paper. Note that, as is illustrated in the exam-
ple about the robot that needs to handle two incoming con-
tradictory maps, it is sometimes required to extract one AC-
MSS(A,T') where I' € A. Also notice that the elements of
T are used in a pointwise manner: any AC-MSS(A, T') must
be satisfiable together with any ~, taken individually. This
expresses the requirement that each represents an assump-
tive context and that the conjunction of all the assumptive
contexts of I' is not required to be satisfiable.

Let us give very basic examples showing the difficulty in
the use of the computation of MSS(A) to extract one AC-
MSS(A,T'). First, assume that I" is satisfiable: this occurs
when the assumptive contexts are not conflicting. Even in
this simple case, we cannot consider all elements of I' con-
junctively and interpret them as forming one unique global
constraint of consistency that must be respected, as the fol-
lowing simple counter-example illustrates.

Example 1. A = {aV b,d}. AC-MSS(A, {—a, -b}) = A
but AC-MSS(A, {—a A —b}) = {d}.

3712

Indeed, even when the assumptions are not logically mu-
tually conflicting by themselves, they interact with A and
this influences AC-MSS(A, T"). To circumvent this issue, as
is mentioned in the introduction, it would be tempting to ex-
tract for each v € T one MSS(A U {v}) that contains ~; let
U, be the corresponding Co-MSS. Although A\{J, . {¥,}
is satisfiable with every formula « of T, it is not guaranteed
to be an AC-MSS(A,T'), even when T is satisfiable.

Example 2. Let A = {-a V b,=b,d} and T = {a,b}. T
is satisfiable. There are two MSS(A U {a}) that contain
the subset {a}, namely {—a V b,d,a} and {-b,d,a} and
one MSS(A U {b}) that contains the subset {b}, namely
{—a V b,d,b}. Clearly, when {—b,d, a} is extracted as one
MSS(A U {a}), we have that A\ |, cr{ ¥~} (where W is

the Co-MSS corresponding to the selected MSS(A U {~}))
yields {d}. However, {d} is not an AC-MSS(A,T'); there is
a unique AC-MSS(A,T), ie., {—aV b,d}.

When T' is unsatisfiable, this needs not prevent AC-
MSS(A,T') from existing.

Example 3. Let A = {-a V b,—b,d} and T' = {a,b, —a}.
{—a Vv b,d} is the unique AC-MSS(A,T).

The correct direct (brute-force) approach to extract one
AC-MSS(A,T) is thus as follows. First, for every v € T
enumerate all MSSc (A U {v}) that contain +. Then, select
one corresponding Co-MSSc (AU {~}) per 7y, denoted ¥.,,
such that A* = A\ J,cp{V,} exhibits the largest cardi-
nality (when AC-MSS is under consideration) or such that
A* is inclusion-maximal (for AC-MSSc). A* is the result.

Since there can be an exponential number of MSSes in a
set of clauses, the direct approach is intractable in the worst
case, and, as our experimentations will illustrate, in many
expectedly-easier situations.

A Transformational Method

On the contrary, we propose an approach that avoids the ex-
traction of these intermediate Co-MSSes and make a direct
global extraction of one AC-MSS(A,I') in all cases. To this
end, both A and T" are transformed into two other sets of
clauses and a new (but equivalent) problem is generated.

We shall make use, among other things, of an algorithm
that extracts one MSSc (A) that is satisfiable with the con-
junction of the elements of another set of clauses, when
this latter set is satisfiable. Such an algorithm is easily de-
rived from the CMP method from (Grégoire, Lagniez, and
Mazure 2014) or any procedure described in (Marques-
Silva et al. 2013). For convenience purpose, the notation
Extract-MSS(X1,%2) where ¥; and Yo are two sets of
clauses will be used to represent either this algorithm, or,
when cardinality-maximal subsets are under consideration,
Partial-Max-SAT(X1,X5).

Our method makes one call to Extract-MSS, only. It is in-
sensitive to whatever ordering of formulas from I" or A, and
builds the set of hard constraints Y5 to be a satisfiable set.
In addition, the following seemingly contradictory features
also need to be accommodated together, among other things.
On the one hand, each formula v of I' need be treated sep-
arately from the other formulas from I' to ensure that the

resulting MSS is satisfiable with . Hence, this treatment is
local (i.e., performed with respect to). On the other hand,
this local decision has a global impact on the problem since
it impacts the satisfiability of the remaining part of A with
other ~’s. The method satisfies these local and global re-
quirements: it is based on following ideas.

First, note that whenever - is satisfiable with A, ~ is sat-
isfiable with any subset of A and thus with any MSS of
A: hence, no clause needs to be dropped from A in the lo-
cal process that ensures that the extracted MSS is satisfi-
able with ~. In the following, we consider only 7’s such that
A U {7} is unsatisfiable.

For each ~, the extraction of one maximal subset of
clauses that is satisfiable with -y is rewritten as an indepen-
dent sub-problem. To this end, for each ~, a corresponding
set of clauses AU{~} is created; all its variables are renamed
through the use of fresh atoms. All sub-problems are then
linked together as follows, adopting one arbitrary ordering
between clauses in A. An atom ¢; is created and associated
to each clause d; from A. More precisely, each clause ¢ from
A in every sub-problem (i.e., AU{~} that has been renamed
using fresh variables), gets the additional disjunct —e; when
d corresponds to d; in A. Now, all these A U {~} endowed
with the additional disjuncts will form the hard consistency
constraints, i.e., the second parameter in the unique call to
Extract-MSS. The set consisting of all these clauses is sat-
isfiable (just set every ¢; to false). Secondly, the set of unit
clauses {¢; s.t. ¢ € [1..n]} forms the soft constraints, i.e., the
first parameter in the unique call to Extract-MSS. Whenever
a clause ¢; from this set does not belong to the MSS that is
extracted, ¢; from A does not belong to the (global) com-
puted AC-MSS. Indeed, this means that some clause within
the hard constraints that contains the disjunct —¢; actually
requires —¢; to be true, and the corresponding clause is not
to be a member of the AC-MSS under construction.

The Transformational Approach algorithm that is de-
picted below implements this idea. In line 1, the set 3; of
soft clauses is created: it is the set of positive unit clauses €;,
called selectors, that are created for every clause ¢; € A. In
line 2, the set of hard clauses Y is initialized to the empty
set. Yo will gather the sub-problems. In line 3, a copy of A is
created where each clause is weakened by the negation of its
corresponding selector ;. This copy is called A’. Whenever
7; contradicts A (1. 4), A’U{~;} has all its variables (except
the ¢;) renamed (1. 6), thereby representing the sub-problem
®; devoted to finding an MSS satisfiable with «y; (1. 4-7). All
sub-problems are collected in a single set that forms o (1.
7).

Notice that when every -y is satisfiable with A, ¥ is
empty and A is delivered as result; this situation can oc-
cur independently of I" being satisfiable or not. Otherwise (1.
9), an MSS of ¥; that satisfies all the clauses of the global
problem 35 is delivered in W by the call to Extract-MSS.
The final result is the set of all clauses §; of A for which
the corresponding clause ¢; belongs to the set ¥ (which is
the output of the single call to Extract-MSS). Let m be the
number of different formulas in T', n’ the largest number of

clauses encoding one formula of ', n the number of clauses
in A.

3713

Transformational Approach

input : A = {61,...,d,}: asetof n Boolean clauses;
T = {v1,...,vm}: asetof m satisfiable Boolean formulas;
output: one AC-MSS(A,T")
/* 31 will be the set of soft clauses
1 1 < {e;st.i€[l.n]} /» every € is a fresh new atom

*/
*/

/* Yo will be the set of hard clauses */
2 Yo @;
3 A+ {6; V—estd; €A}
4 foreach v; € I"s.t. UNSAT(A U {~;}) do

/% ®; is the sub-problem related to 7j */

5 ;AU {v,};
6 Rename all atoms in @ ; (except the €;) with fresh new atoms;
7 Yo +— 3o U <I>_7‘;
8 if X5 # () then
9 WU < Extract-MSS(X1,32);
10 A<+ {d;st.d; € Aande; € U}
11 return (A);

Property 1. The Transformational Approach computes one
AC-MSS(A,T).

Property 2. The Transformational Approach requires m
calls to a SAT solver on an instance of size O(n + n'), plus
one call to Extract-MSS with a set of hard constraints of con-
sistency of size O(m(n +n’)) and a set of soft constraints
of size O(n).

From a worst-case complexity analysis, an approach that
computes all MSS for each y as one step of the construction
of one AC-MSS(A,T') is clearly intractable since the num-
ber of MSS of a set of clauses can be exponential in the num-
ber of clauses in the set. Property 2 allows the worst-case
complexity of the transformational method to be derived.
For example, when Extract-MSS is related to MSSc com-
putation, the method requires O(m) calls to a SAT-solver
on an instance of size O(n + n'), plus a logarithmic num-
ber of calls to a SAT-solver on an instance of initial size
O(m(n + n')) that is divided by two at each call.

Formal Specification

Formally, the transformational method can be defined as fol-
lows.

Selectors: Let (€;)i—1,... card(a) be a family of Boolean vari-
ables extracted from P \ Atom(A UT)

Copy substitutions: A family of substitutions
(1) j=1,...,card(r), each with domain Atom(A U T')
and codomain P \ Atom(A UT), are defined such that

- Image(u;) N{e; | i = 1,...,card(A)} = 0 for j =
1,...,card(T")

- Image(up) N Image(p) = O whenever h # k

Copies: For j =1,...,card("), let

O, Y {16V e | i =1, card(A)} U {5}

Problem: ExtractMSS(Xq, Xo) where
- 21 = {éi | = 1,...,card(A)}

-3 = Uj:l,...,card(F) (PJ

For) satisfiable, ExtractMSS(©,) is supposed to be such
that its output is both a maximal satisfiable subset of © U Q2
and a superset of 2.

Experimental Study

The goal of the experimental study was to investigate the
actual viability of the transformational approach.

Benchmarks from the planning area as a case study. We
have considered 225 instances of usual benchmarks from
the planning area as a case study. Let us stress that we do
not solve the planning problem in the experimentations. All
we do is “filter” the planning instances so that they become
consistent with each assumptive context. We handled the in-
stances as mere sets of clauses and we did not assign ini-
tial and final states their whole specific roles, since these
concepts are not relevant to the other potential application
domains. If we want to apply the approach in the planning
domain up to computing plans then it would make sense to
slightly adapt the framework so that initial and final states,
fluents, etc. do match their full epistemological roles. For
example, when a goal (final state) contradicts an assump-
tive context, the user might be asked whether or not she (he)
would accept the goal to be transformed so that it becomes
consistent with each of these contexts. The benchmarks A
represent the domain knowledge, as well as the initial and
goal states. For example, A can represent the environment
in which a robot is moving, as well as its initial and goal
states, whereas I' translates some additional assumptive in-
formation: for example v; is indicating that the energy level
of the robot is too low to reach a target whereas 7, asserts
the contrary.

The instances cover a wide range of planning prob-
lems with varying horizon lengths. For example,
“Blocks_right_z” refers to the usual blocks-world problem
involving x blocks. “Bomb_bx_by” is the similar infor-
mation for the problem of neutralizing bx bombs in by
locations. “Coins_px” is about px coins that need to be
tossed for heads and tails so that they all reach the same
state. “Comm_px” corresponds to an IPC5 problem about
communication signals with several stages, packets, and
actions. “Empty-room_dx_dy” is about a robot navigating
in a room of size dr and containing dy objects. “Safe_n”
is about opening a safe with n possible combinations.
“sort_-num_s_x” is about building circuits of compare-and-
swap gates to sort x Boolean variables. “uts_kx” is about a
network routing problem for mobile ad-hoc networks where
a broadcast from an unknown node must reach all nodes; the
topology of the network is partially known and each node in
the graph has a fixed number kx of connected neighbors.

Each A was translated into clausal normal form from its
initial PDDL 1.2 (Planing Domain Definition Language)
and STRIPS format, using H. Palacios’ translator, available
from http://www.plg.inf.uc3m.es/~hpalacio/.

Generation of the assumptive contexts. We have experi-
mented the method with a reasonable maximal value m of

3714

assumptive contexts, namely 10. We considered the worst-
case situation with respect to the grow of the instance size
that is encountered through the transformation: this occurs
when every formula conflicts with A. We have also se-
lected each +y as a set of non-unit clauses that can be proved
satisfiable in a very short time, following the hypothesis
that assumptive contexts are easily shown satisfiable but are
not necessarily mere unit clauses. More precisely, each v
has been generated as follows. An unsatisfiable 3-SAT in-
stance, i.e., an unsatisfiable set of ternary clauses ® was
randomly generated after the satisfiability/unsatisfiability
threshold, using the variables occurring in clauses in A rep-
resenting the initial state. To this end, we used the stan-
dard clauses generator from WALKSAT Version 51 (http:
/lwww.cs.rochester.edu/~kautz/walksat/). Accordingly, the +’s
are intended to represent a series of possibly conflicting in-
formation about the initial state. & was then partitioned into
m subsets of clauses, each of them forming the seed to build
one assumptive context . Each seed was then augmented
with additional random binary clauses until it became un-
satisfiable with A and thus formed the intended ~y. This was
done in such a way that v remains satisfiable. Accordingly,
each v is one satisfiable set of clauses that is unsatisfiable
with A and the set I' = {71, ..., } is itself unsatisfiable.

We believe that this generation model provides ~’s that
can capture reasonably complex items in the target domain.

Hardware, software and time-out. All experimen-
tations have been conducted on Intel Xeon ES5-2643
(3.30GHz) processors with 8Gb RAM on Linux Cen-
tOS. Time limit was set to 60 minutes per test. All
experimentation data, as well as our developed meth-
ods, are available from http://www.cril.fi/fAAAI15-BGL.
For the inclusion-maximal case, we have adapted the
CMP method from (Grégoire, Lagniez, and Mazure
2014) in such a way that it implements Extract-MSS.
We have used CAamMuUs (Liffiton and Sakallah 2008b)
http://sun.iwu.edu/~mliffito/camus/ to enumerate all MSSc and
Co-MSSc. MSUNCORE (Morgado, Heras, and Marques-
Silva 2012) http://logos.ucd.ie/wiki/doku.php?id=msuncore
and MINISAT (Eén and Sorensson 2004) http://minisat.se/
were selected as the Partial-Max-SAT and SAT solvers,
respectively.

Table 1 provides a sample of results (the results for the 225
instances tested for each value of [I'| € {2,3,5,10} are
available from http://www.cril.fr/AAAI15-BGL). All times are
in seconds, rounded down to the immediate strictly lower
integer. In the first column, the instance name is given, fol-
lowed by the size of A in terms of the number of its variables
(#V ars) and clauses (#Clauses), successively. The names
of the instance are postfixed with the planning horizon, writ-
ten p_tz, as “planning problem with ¢x steps as horizon”.
The following parameters about I' are then listed succes-
sively: first, the number of variables in I" (#Var), which
are all the variables from A used to encode the initial state
of the planning problem. Then, the number of formulas (|I'])
and the average size of the +’s (avg |v|) in terms of their
number of clauses are given. Then the table provides the

Instance r Brute force Transformed Inst. |AC-MSSc Tr. Meth.|AC-MSS4 Tr. Meth.

Name (#Vars #Clauses) #Var |T| avg|y||status T avg|#coMss|[#var #hard #soft|status T #rm|status T #rm
blocks_right 2_p_t5 (406 1903) |67 2 236| MO ? ? 2715 3806 1903 OK 0 78 OK 453 43
bomb_b5_t1_p_t2 (240 443) 66 10 78| OK 61 9433 2843 4430 443| OK 0 6/ OK 0 5
bomb_b10_t10_p_t1 (1000 1870) (500 2 1757 MO ? ? 3870 3740 1870 OK 2 6/ OK 2007 4
coins_pO1_p_t3 (536 1419) 112 10 83| MO ? ? 6779 14190 1419 OK 0 8 OK 0 4
coins_p03_p_t2 (368 951) 112 5 157 MO ? ? 2791 4755 951 OK 0 28| OK 840 11
. 112 5 157\ MO ? ? 6715 11775 2355| OK 0 16 OK 63 10
coins-p03-p-t5 (872 2355) 112 10 85| MO 2 ? 11075 23550 2355 OK 0 10, OK 2 6
coins_p05_p_t2 (368 951) 112 5 157\ MO ? ? 2791 4755 951 OK 0 12| OK 196 9
comm_p02_p_t2 (555 1623) 189 10 140 MO ? ? 7173 16230 1623| OK 0 9] OK 5 6
510 2 1786 MO ? ? 19035 24534 12267 OK 1 361 MO ? ?

comm_p05.p-15 (3384 12267) 514 o 366 MO 2 ? 46107 122670 12267| OK 0 15| OK 72 6
emptyroom_d4_g2_p_tl (44 130) |32 10 22| OK 922 37875 570 1300 130 OK 0 9 OK 0 5
emptyroom_d8_g4_p_t3 (244 778)|72 10 51 MO ? ? 3218 7780 778 OK 0 21| OK 97 7
ring2 r6_p_tl (76 215) 54 10 38| MO ? ? 975 2150 215 OK 0 17] OK 11 8
ring2 r6_p_t2 (134 402) 54 2 190 MO ? ? 670 804 402| OK 0 54 OK 0 26
ring_S_p_tl (114 242) 70 3 164 MO ? ? 584 726 242 OK 0 32 OK 148 12
safe_safe_10_p_t5 (166 357) 21 2 75| OK 635 69924 689 714 357 OK 0 241 OK 0 5
safe_safe_30_p_t5 (486 1347) 61 10 43| MO ? ? 6207 13470 1347 OK 0 82| OK 44 17
sort_num_s_3_p_tl (39 106) 27 2 96| MO ? ? 184 212 106] OK 0 19 OK 0 10
sort_num_s_3_p_t4 (129 400) 27 10 30{ MO ? ? 1690 4000 400/ OK 0 12| OK 0 8
sort_num_s_4_p_t5 (486 1810) 88 10 62| MO ? ? 6670 18100 1810 OK 0 21| OK 3353 10
sort_num_s_6_p_t2 (858 3509) 396 3 925/ MO ? ? 6083 10527 3509 OK 0 350 MO ? ?
uts_k1_p_t2 (71 204) 25 5 40| OK 337 29328 559 1020 204 OK 0 8 OK 0 7
uts_k2_p_t5 (530 1903) 81 10 57 MO ? ? 7203 19030 1903| OK 0 200 OK 1114 13
uts_k3_p_t3 (682 2695) 169 10 118 MO ? ? 9515 26950 2695| OK 0 46| MO ? ?

Table 1: Sample of Results.

experimental results for the first step of the “brute force”
method, which extracts for every 7 all Co-MSSc (A U {v})
that do not contain . The columns list the status of this
step (“OK”, or “MO” for memory-out) and the time (“T”)
to run the method and the average number of computed
Co-MSSes (avg |[#CoMSS|) for each . When memory
out happened due to combinatorial blow-up, no informa-
tion about these two parameters could be delivered (hence,
the “?” in the columns). Results about the transformational
methods are provided next. Firstly, the main parameters of
the transformed problem are given, namely the number of
variables in the transformed problem, the number of clauses
of this latter one split between the clauses that are intended
to play the role of hard clauses (#hard) and soft clauses
(#soft), respectively. Secondly, results about computing one
AC-MSSc are given: for every successfully solved instance
(status = “OK”), we list the global time to complete the
transformational method (including the call to Extract-MSS)
and the number of (#rm) clauses that are dropped from A
to yield the extracted AC-MSSc. Thirdly, the last columns
give the same main parameters when one AC-MSS..(A,T)
was to be extracted.

Discussion. As expected, the brute force method to ex-
tract one AC-MSSc (or one AC-MSSy) faced computa-
tional blow-up most of the times: the full list of interme-
diate Co-MSSes was delivered for only 81/900 problem
instances within the 1 hour computation allocated per in-
stance. Not surprisingly, the transformational method that
extracts one AC-MSSc outperformed the brute force one:
all the instances (i.e., 900/900) were solved successfully,
and the average time to compute one AC-MSS was 0.05 sec-
ond, reaching real-time performance (only 2/900 instances

3715

The full table can be found at http://www.cril.fr/AAAI15-BGL

needed more than 2 seconds, namely 4.54 and 2.41 seconds).
Not surprisingly, applying an additional minimal-cardinality
constraint in order to yield one AC-MSS proved less of-
ten feasible. However, 415/900 instances were successfully
solved in this way. For example, the bomb_b10_t1_p_t2 in-
stance involves 1870 clauses and 1000 Boolean variables: it
yielded the second slowest run-time (2.41 seconds) for the
computation of one AC-MSSc. I' was built by using the
500 variables occurring in the description of the initial state
of the planning problem, giving rise to two formulas, each
of them encoded through 1757 clauses on average. Note that
in this respect each + is intended to represent a very elab-
orate assumptive context for the concerned planning prob-
lem. The ratio #hard /#Clauses= 2 since the two ~’s were
built so that they were both contradictory with A. The tenta-
tive enumeration of all Co-MSSes led to memory overflow.
The transformed instance is made of 3740 hard and 1870
soft clauses, making use of 3870 variables. The transforma-
tional method that extracted one AC-MSSy required 2007
seconds to be completed (including the transformation step),
ending with a guaranteed minimal number of 4 clauses to be
rejected from the initial instance. The method that extracted
one AC-MSSc rejected two additional clauses but was very
fast (2.41 seconds rounded down to 2 in Table 1).

The real-time performance reached in the experimenta-
tions should be interpreted as a positive point: the experi-
mental conditions that allow for these results are reasonable
and possibly widespread even outside the planning field. Es-
pecially, the number and size of assumptive contexts and the
limited size of the computed Co-MSSes are all important
criteria: relaxing any of them can lead to possible perfor-
mance degradation. Finally, we believe that although all the

tested instances are related to the same generic domain (i.e.,
planning), these criteria about the “logical structure” of the
instances are also relevant to other potential application do-
mains.

Conclusion and Perspectives

We believe that the results in this paper could open various
promising paths for further research. Firstly, as motivated
in the introduction, the technique from this paper could be
exported to the specific settings of various relevant A.I. sub-
fields and problems, which might however require additional
technical developments. Secondly, as the method circum-
vents the possibly exponential number of MSSes and of Co-
MSSes, it might be fruitful to explore to which extent this
can prove useful in the practical handling of other problems
that usually rely on the enumeration of these latter sets, like
the enumeration of MUSes (Minimal Unsatisfiable Subsets).
Finally, the additional minimization required by the extrac-
tion of cardinality-maximal AC-MSS entails some signifi-
cant computational overhead: in view of the better perfor-
mance of the computation of one AC-MSSc in practical sit-
uations, it might be worth defining and investigating strate-
gies for the approximation of one AC-MSS through the
guided computation and handling of several AC-MSSc.

Acknowledgments

The authors are grateful to the reviewers for their useful
comments and they are indebted to B. Mazure for discus-
sions on the topics of this paper.

References

Alchourroén, C. E.; Gardenfors, P.; and Makinson, D. 1985. On
the logic of theory change: Partial meet contraction and revision
functions. Journal of Symbolic Logic 50(2):510-530.

Ben-Tal, A.; Ghaoui, L. E.; and Nemirovski, A. 2009. Robust
Optimization. Princeton University Press.

Besnard, P., and Hunter, A. 2008. Elements of Argumentation.
MIT Press.

Besnard, P.; Grégoire, E.; Piette, C.; and Raddaoui, B. 2010.
MUS-based generation of arguments and counter-arguments. In
Proceedings of the IEEE International Conference on Informa-
tion Reuse and Integration (IEEE IRI’10), 239-244.

Delgrande, J. P.; Schaub, T.; and Jackson, W. K. 1994. Alter-
native approaches to default logic. Artificial Intelligence 70(1-
2):167-2317.

Dung, P. M. 1995. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic program-
ming and n-person games. Artificial Intelligence 77(2):321—
358.

DX. 2014. 25th International Workshop on Principles of
Diagnosis (DX’14). http://dx-2014.ist.tugraz.at/dx 14 _program_
papers.html (on-line proceedings).

Eén, N., and Sorensson, N. 2004. An extensible SAT-solver. In
Proceedings of the 6th International Conference on Theory and
Applications of Satisfiability Testing (SAT’03). Selected Revised
Papers, volume 2919 of Lecture Notes in Computer Science,
502-518. Springer.

3716

Fermé, E. L., and Hansson, S. O. 2011. AGM 25 years - twenty-
five years of research in belief change. Journal of Philosophical
Logic 40(2):295-331.

Fuhrmann, A., and Hansson, S. O. 1994. A survey of multi-
ple contractions. Journal of Logic, Language, and Information
3(1):39-75.

Grégoire, E.; Lagniez, J.-M.; and Mazure, B. 2014. An ex-
perimentally efficient method for (MSS,CoMSS) partitioning.
In Proceedings of the 28th Conference on Artificial Intelligence
(AAAI'14).

Grégoire, E.; Mazure, B.; and Piette, C. 2007. Boosting a com-
plete technique to find MSS and MUS thanks to a local search
oracle. In Proceedings of the 20th International Joint Confer-
ence on Artificial Intelligence (IJCAI’'07), 2300-2305.

Hamscher, W.; Console, L.; and de Kleer, J., eds. 1992. Read-
ings in model-based diagnosis. Morgan Kaufmann.

Levi, I. 1977. Subjunctives, dispositions and chances. Synthese
34:423-455.

Liffiton, M. H., and Sakallah, K. A. 2008a. Algorithms for
computing minimal unsatisfiable subsets of constraints. Journal
of Automated Reasoning 40(1):1-33.

Liffiton, M., and Sakallah, K. 2008b. Algorithms for com-
puting minimal unsatisfiable subsets of constraints. Journal of
Automated Reasoning 40(1):1-33.

Marques-Silva, J., and Janota, M. 2014. On the query com-
plexity of selecting few minimal sets. Electronic Colloquium
on Computational Complexity (ECCC) 21:31.

Marques-Silva, J.; Heras, F.; Janota, M.; Previti, A.; and Belov,
A. 2013. On computing minimal correction subsets. In Pro-
ceedings of the 23rd International Joint Conference on Artifi-
cial Intelligence (IJCAI’13).

Morgado, A.; Heras, F.; and Marques-Silva, J. 2012. Improve-
ments to core-guided binary search for MaxSAT. In Proceed-
ings of the 15th International Conference on Theory and Appli-
cations of Satisfiability Testing (SAT’12), volume 7317 of Lec-
ture Notes in Computer Science, 284-297. Springer.
Papadimitriou, C. H., and Yannakakis, M. 1991. Optimization,
approximation, and complexity classes. Journal of Computer
and System Sciences 43(3):425 — 440.

Reiter, R. 1980. A logic for default reasoning. Artificial Intel-
ligence 13(1-2):81-132.

Vesic, S. 2013. Identifying the class of maxi-consistent op-

erators in argumentation. Journal of Artificial Intelligence Re-
search (JAIR) 47:71-93.

