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Abstract

We provide a novel, flexible, iterative refinement algo-
rithm to automatically construct an approximate state-
space representation for Markov Decision Processes
(MDPs). Our approach leverages bisimulation metrics,
which have been used in prior work to generate fea-
tures to represent the state space of MDPs. We address a
drawback of this approach, which is the expensive com-
putation of the bisimulation metrics. We propose an al-
gorithm to generate an iteratively improving sequence
of state space partitions. Partial metric computations
guide the representation search and provide much lower
space and computational complexity, while maintaining
strong convergence properties. We provide theoretical
results guaranteeing convergence as well as experimen-
tal illustrations of the accuracy and savings (in time and
memory usage) of the new algorithm, compared to tra-
ditional bisimulation metric computation.

Introduction
Solving large sequential decision problems modeled as
Markov Decision Processes (MDPs) requires the use of ap-
proximations to represent the state space. Popular approx-
imation methods include state aggregation, linear function
approximation and kernel-based methods. In this paper we
are mainly interested in state aggregation, in which the state
space is partitioned into disjoint subsets and values are asso-
ciated with each partition. The goal is to construct a partition
incrementally, in such a way as to provide a good approx-
imation to the true value function. One approach for this
problem is to use bisimulation relations (Givan, Dean, and
Greig 2003), also known as MDP homomorphisms (Ravin-
dran and Barto 2002), or their relaxation as bisimulation
metrics (Ferns, Panangaden, and Precup 2004). Bisimula-
tion metrics in particular are attractive because they allow
quantifying the approximation error for any state space par-
titioning, or more generally, any linear function approxi-
mator (Comanici and Precup 2012). However, bisimulation
metric computation is very expensive (in the worst case,
more expensive than performing dynamic programming in
the original state space). Indeed, recent work (Ferns and Pre-
cup 2014) has shown that computing the metric amounts to
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solving an MDP resulting from a coupling of the state space
with itself; such a coupling has size quadratic in the number
of states.

In this paper, we tackle this problem by proposing a sig-
nificant improvement in how bisimulation metrics are com-
puted. While we present our results in the context of MDPs,
the algorithmic ideas can also benefit the verification com-
munity, which relies on bisimulation metrics in order to au-
tomatically verify the concordance of a model with a speci-
fication.

Our approach constructs an iteratively improving se-
quence of state space partitions, which converges in the limit
to the bisimulation relation, just like previous algorithms.
We prove that at each step the error of the value function
computed over this partition (compared to the true optimal
value function) is bounded. Since at each step, the value
function approximation is computed over partitions rather
than states, this approach can generate substantial space and
computation time savings, as illustrated in our experiments
described later.

The second contribution of the paper consists in an algo-
rithm for asynchronous updates of the metric and the rep-
resentation. We provide theoretical conditions which allow
computational effort to be focused on parts of the state space
where changes are happening rapidly, similar to success-
ful asynchronous or distributed dynamic programming tech-
niques such as Bertsekas and Tsitsiklis (1996), Bertsekas
and Castanon (1989), Moore and Atkeson (1993) . Empir-
ical results illustrate the use of heuristics that can substan-
tially speed up the computation.

Markov Decision Processes
An MDP is a tuple (S,A, P,R) where S is a finite state
space S, A is a finite action space, P is a transition prob-
ability function P : S × A × S → [0, 1], with P ass′ giving
the probability that the system will end up in state s′ when
the action a is performed in state s, and R : S × A → R is
the immediate reward function, with Ras giving the immedi-
ate reward for performing action a in state s.

The main objective of MDP solvers is to compute value
functions for different policies, i.e., strategies for choosing
actions. A policy is denoted by π : S×A→ [0, 1] where πas
is the probability of choosing action a in state s. We will de-
fine below the value function of π, which is dependent on a
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discount factor γ (0 ≤ γ < 1),Rπs =
∑
a π

a
sR

a
s , and Pπss′ =∑

a π
a
sP

a
ss′ . The value function is given by the following ex-

pectation over sample trajectories X1, X2, X3, ..., Xn, ...:

V π(s)=E

[ ∞∑
i=1

γi−1RπXi
|X1=s

]
=Rπs + γ

∑
s′

Pπss′V
π(s′)

Most algorithms for solving MDPs either use the model
(R,P ) to find V π if it is available and allowed by the size
of the problem, or estimate V π using samples (s, a, r, s′). In
both cases, the computation of V π is performed in the space
FS of real valued functions over S, i.e., FS :={f : S → R}.

The Bellman equation is a well-known result characteriz-
ing the value function V π ∈ FS as the fixed point of the
following map Tπ : FS → FS given by

Tπ(f) = Rπ + γPπ(f)

withRπ ∈ FS , Rπ(s) =
∑
a π

a
sR

a
s

Pπ : FS → FS ,Pπ(f)(s) =
∑
a,s′ π

a
sP

a
ss′f(s′) (1)

The value V ∗ associated with the best policy is the fixed
point of the nonlinear Bellman optimality operator T ∗:

T ∗(f) = max
a

(Ra + γPa(f)) (2)

whereRa and Pa are associated with the policy choosing a
deterministically.

Linear value functions
In most cases, working with the original representation is
unfeasible due to the large size of the state space. It is
common to work instead with restrictions over the space
of functions, Φ ⊂ FS , for which searching for V π (or
its approximation) becomes computationally feasible. It is
also quite common to work with linear subspace Φ =
span(φ1, φ2, ..., φk), for some set of linearly independent
finite subset Φ of F of dimension k � S.

Accurate representations: If one wants V π to be an
element of Φ, then it is sufficient to guarantee the accu-
racy of the reward and transition models: Rπ ∈ Φ and
∀f ∈ Φ, Pπ(f) ∈ Φ. Several methods have been devel-
oped to obtain accurate representations for a given policy
π(Parr et al. 2008b; 2008a). The methods described later in
this paper are designed to provide accuracy for the model of
any given policy.

Approximate representations: Given a Φ, linear fixed
point methods such as TD, LSTD, LSPE (Sutton 1988;
Bradtke and Barto 1996; Yu and Bertsekas 2006) can be
used to find the least squares fixed point approximation V πΦ
of V π , which is the fixed point of the alternate operator TπΦ :

TπΦf := ΠΦ(Rπ + γPπf)

where ΠΦ is the orthogonal projection operator on Φ. Us-
ing the fact that ΠΦ is itself linear, it is not hard to show
that TΦ

π f = ΠΦRπ + γΠΦPπf ; therefore, V πΦ is the
fixed point of the Bellman operator over the linear model
(RπΦ,PπΦ) := (ΠΦRπ,ΠΦPπ). For computational details
using linear models for evaluation, see Parr et al. (2007;
2008) .

Bisimulation relations and metrics

Probabilistic bisimulation is an equivalence relation between
states of a process due to Larsen and Skou (1991). It was ex-
tended to MDPs with rewards by Givan et al. (2003); the
metric analogue is due to Desharnais et al. (1999, 2004) and
the extension of the metric to include rewards is from Ferns
et al. (2004). Suppose we are given an equivalence relation
∼ on the state space S. We say that∼ is a strong probabilis-
tic bisimulation relation if the following two conditions are
satisfied for any equivalent pair s ∼ s′ and any choice of ac-
tion a ∈ A: 1. Ras = Ras′ ; 2. P as = P as′ , as probability
measures over equivalence classes of ∼. The apparent cir-
cularity in this definition can be resolved by a fixed-point
argument (Larsen and Skou 1991). The crucial point is that
the immediate behaviour of bisimilar states is the same and
it stays the same indefinitely.

Note that any equivalence relation ∼ determines a rep-
resentation B∼ = {φi}mi=1, where m is the number of
equivalence classes of ∼ and each φi is the characteris-
tic function over equivalence class i. For notational con-
venience, let B∼ ∈ {0, 1}m×|S| be the matrix whose
columns are the φi’s. It is not hard to check that BT e = e
(where e(s) = 1,∀s). Let δs be the characteristic func-
tion that is equal to 1 at state s and 0 for all other states.
Given any matrix M , Mδs and δTsM are the column and
row respectively corresponding to s. Note that s ∼ s′

iff Bδs = Bδs′ (i.e., s and s′ have the same represen-
tation). Another way to characterize a strong probabilistic
bisimulation relation ∼ is through the following conditions:{
Ra ∈ colspan(B∼) ∀a
Paφ ∈ colspan(B∼) ∀a,∀φ ∈ B∼

Note that checking whether f ∈ colspan(B∼) is equivalent
to checking that f(s) = f(s′) for all pairs s ∼ s′, as B∼
consists of characteristic functions of equivalence classes.

Bisimulation metrics provide relaxations of bisimulation
relations, which assign non-negative values to all pairs of
states. Two states are bisimilar iff their distance is zero. For
other pairs of states that are not bisimilar, the metric quan-
tifies how different the states are from each other. Bounds
relating bisimulation metrics to value functions have been
derived in Ferns et al. (2004). The metric presented in their
work is based on the Monge-Kantorovich metric Td(µ, ν)
for comparing two probability distributions µ and ν using a
ground distance d:

Λ(µ, ν) =
{
λ ≥ 0 s.t. λe = µ and λT e = ν

}
Td(µ, ν) := maxλ∈Λ(µ,ν)

∑
s,s′(δ

T
s λδs′)(δsdδs′)

Note that Ferns et al. (2004) does not use couplings; this
more recent view is expressed in Ferns and Precup (2014).
However, the definition using couplings is much more con-
venient for proving the results in the following sections.
Note that Td(µ, ν) is 0 if and only if µ and ν match as mea-
sures over classes of states at distance d equal to 0. One can
use similar measures to compare the reward model, and we
use the L1 measure in the definition below (but any norm on
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R could equally be used):

F (d)(s, s′):= max
a

(
|Ra(s)−Ra(s′)|+γTd(δTs Pa, δTs′Pa)

)
d∗:= supn F

n(0)

Two theoretical results about F allow one to compute d∗ it-
eratively: first, the collection of pseudo-metrics is equipped
with an order, making it a complete lattice1; secondly, F is
shown to be a monotone map. Therefore, Fn(0) increases
to the solution d∗, and d∗ is a fixed point of F . Moreover,
it is not hard to see that if we relate states s and s′ iff
d∗(s, s′) = 0, then the corresponding relation is a bisimula-
tion. Additionally, Ferns et al. (2004) state bounds which al-
low one to assess the quality of representations determining
partitions over the state space2. Given such a representation
B, if one computes the value function V ∗B as the fixed point
of Tπ

∗

B instead of the fixed point of T ∗, the approximation
error is bounded as follows:

|V ∗B(s)− V ∗(s)| ≤δ
T
s ΠBd

∗δs
1− γ

+
γmaxs′ δ

T
s′ΠBd

∗δs′

(1− γ)2
(3)

Note that for representations that are based on characteristic
functions, projection amounts to averaging. That is,

δTs ΠBf =
∑
i φi(s)(φ

T f)/(φTφ)

Hence, the value function approximation bounds depend on
δTs ΠBd

∗δs, the average d∗ distance from a state s to all
other states that have the same representation . It should
be mentioned that these bounds are presented in terms of
state aggregation maps in Ferns et al. (2004). See Parr et al.
(2008) for a more detailed discussion on why solving a lin-
ear fixed-point solution (i.e., finding the fixed point of T ∗B)
amounts to the same solution as solving a linear-model so-
lution of an aggregate model (i.e., finding the fixed point
of T ∗ over the aggregate model). Note that these bounds
are minimized by aggregating states which are “close” in
terms of the bisimulation distance d∗, i.e., states that are
close to being bisimilar. It should also be noted that V ∗B∼
is exactly V ∗ when B∼ represents a bisimulation relation.
This is because d∗ is a pseudo-metric for which distance
between states with the same representation is 0, and as a
consequence δTs ΠB∼d

∗δs = 0.
Similar bounds for normalized features can be found

in Comanici and Precup (2011). Moreover, their work
presents ways of generating feature-based representations
using spectral analysis methods with bisimulation metrics as
ground metrics. We now proceed to analyze alternative char-
acterizations of d∗ and describe a new algorithmic frame-
work for computing d∗.

1A complete lattice is a partially ordered set for which every
subset has a greatest lower bound and a least upper bound. This
is a crucial property in proving convergence to a fixed point of a
monotone operator over such a space.

2A representation φ(s) ∈ {0, 1} determines a partition if∑
i φi(s) = 1, ∀s. The classes of the partition are determined

by the sets {{s | φ(s) = 1} | φ ∈ B}

Iterative refinement algorithm
In this section we will characterize d∗ through a series of
metrics over compact representations of the original MDPs.
To achieve this, we will first define partitions and show how
one can use these compact representations to compute iter-
atively improving approximations to d∗. A partition B is a
basis {φi}mi=1 such that φi ∈ {0, 1} and

∑
i φi(s) = 1,∀s ∈

S. We will also use B to denote the matrix whose columns
are the elements in B.

Let d̂∗ = supnB
T
n dnBn, where dn are metrics over a

sequence of partitions Bn, defined inductively as follows:
• B0 = {e} (e(s) = 1 for every s)
• Bn is a partition such that{

Ra ∈ colspan(Bn) ∀a
Paφ, φ ∈ colspan(Bn) ∀a,∀φ ∈ Bn−1

• Define the metric dn based on the Monge-Kantorovich
metric over partition Bn−1 with ground metric dn−1. For
φ, φ′ ∈ Bn, if φ(s) = 1 and φ′(s′) = 1, then

dn(φ, φ′) = maxa(|Ra(s)−Ra(s′)|
+ γTdn−1

(δTs PaBT , δTs′PaBT ))

Note that Bn is purposely defined so that the value
dn(φ, φ′) is the same for any choice of states s and s′

with representations φ and, respectively φ′.
Theorem 1. Given the sequence {Bn, dn}∞n=1 defined
above, it follows that BTn dnBn = Fn(0). Then

d∗ = supnB
T
n dnBn.

This result is key in designing the new algorithm.

Proof. First, we will prove that for a partition B,
Td(Bµ,Bν) = TBT dB(µ, ν)

As mentioned before, the Monge-Kantorovich metric is an
optimization function over the set of “couplings” of two
measures. Remember that the set of couplings Λ(µ, ν) is
the set of maps λ such that λe = µ and λT e = ν. Before
we continue, it is helpful to point out a few properties of B
which will make the derivation much simpler: BT e = e; if
φ(s) = 1, Bδs = δφ. Now, given λ ∈ Λ(µ, ν),

BλBT e = Bλe = Bµ

(BλBT )T e = BλT e = Bν

Therefore BλBT ∈ Λ(Bµ,Bν). Now,∑
s,s′ δ

T
s λδs′δ

T
s (BT dB)δs′

=
∑
φ,φ′

∑
s,s′ φ(s)φ′(s′)δTs λδs′(Bδs)

T d(Bδs′)

=
∑
φ,φ′ δ

T
φ dδφ′

∑
s,s′ φ(s)δTs λδs′φ

′(s′)

=
∑
φ,φ′(δ

T
φ dδφ′)(δ

T
φBλB

T δφ′)

TBT dB(µ, ν) = inf
λ∈Λ(µ,ν)

∑
s,s′ δ

T
s λδs′δ

T
s (BT dB)δs′

= inf
λ∈Λ(µ,ν)

∑
φ,φ′(δ

T
φ dδφ′)(δ

T
φBλB

T δφ′)

≥ inf
λ̄∈Λ(Bµ,Bν)

∑
φ,φ′(δ

T
φ dδφ′)(δ

T
φ λ̄δφ′) = Td(Bµ,Bν)
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Algorithm 1 partition declust
Given a partition B and one of its elements φ ∈ B, we
want to find Bφ. We initialize it as Bφ ← ∅.
for all s with φ(s) = 1 do

for all φ′ ∈ Bφ do
choose s′ with φ′(s′) = 1
if ∀a,∀φ′′ ∈ B, (Paφ′′)(s) = (Paφ′′)(s′)
then φ′(s) ← 1 {An equivalent condition can be

used when declustering based on reward}
end for
if φ′(s) = 0, ∀φ′ ∈ Bφ
then add a new element φ̂ to Bφ and set φ̂(s) = 1

end for

So Td(Bµ.Bν) ≤ TBT dB(µ, ν). Now we will prove the
opposite. Define B̂µ(s, φ) := φ(s)µ(s)/(Bµ)(φ). Note that
BB̂µ = I and B̂µBµ = e. Now let λ ∈ Λ(Bµ,Bν),

B̂µλB̂
T
ν e = B̂µλB̂

T
ν B

T e = B̂µλe = B̂µBµ = µ

(B̂µλB̂
T
ν )T e = B̂νλ

T B̂Tµ e = ν

Therefore B̂µλB̂Tν ∈ Λ(µ, ν). Now,∑
φ,φ′ δ

T
φ λδφ′δ

T
φ dδφ′

=
∑
φ,φ′(δ

T
φ λδφ′δ

T
φ dδφ′)(δ

T
φBB̂µδφ)(δTφ′B̂

T
ν B

T δφ′)

=
∑
φ,φ′

(δTφ λδφ′δ
T
φ dδφ′)

∑
s,s′

φ(s)φ(s′)(δTs B̂µδφ)(δTφ′B̂
T
ν δs′)

=
∑
φ,φ′

δTφ dδφ′
∑
s,s′
φ(s)φ(s′)(δTs B̂µ(δφδ

T
φ λδφ′δ

T
φ′)B̂

T
ν δs′)

=
∑
s,s′(δ

T
s B

T dBδs′)(δ
T
s B̂µλB̂

T
ν δs′)

Td(Bµ,Bν) = inf
λ∈Λ(Bµ,Bν)

∑
φ,φ′ δ

T
φ λδφ′δ

T
φ dδφ′

= inf
λ∈Λ(Bµ,Bν)

∑
s,s′(δ

T
s B

T dBδs′)(δ
T
s B̂µλB̂

T
ν δs′)

≥ inf
λ̄∈Λ(µ,ν)

∑
s,s′(δ

T
s B

T dBδs′)(δ
T
s λ̄δs′) = TBT dB(µ, ν)

Next, we can prove by induction that BTn dnBn = Fn(0).
We skip the base case which is trivial. Assuming the state-
ment holds for n, let φ, φ′ ∈ Bn+1 such that φ(s) = 1 and
φ′(s′) = 1.

(BTn+1dn+1Bn+1)(s, s′) = dn+1(φ, φ′)

= max
a∈A

(|Ra(s)−Ra(s′)|+ γTdn(δTs PaBT , δTs′PaBT ))

= max
a∈A

(|Ra(s)−Ra(s′)|+ γTBT
n dnBn

(δTs Pa, δTs′Pa))

= max
a∈A

(|Ra(s)−Ra(s′)|+ γTFn(0)(δ
T
s Pa, δTs′Pa))

= Fn+1(0)(s, s′)

Now we have the desired result, which is:
d∗ = supn F

n(0) = supnB
T
n dnBn

Algorithm 2 Synchronous declustering
B1 ← partition_declust of {S} based on reward
while we seek a better approximation: i = 1 · · ·∞ do
Bi+1 ← ∅
for all φ ∈ Bi do

add partition_declust of φ using transition
P over Bi to Bi+1

end for
end while

Based on the result of the theorem above, one can com-
pute d∗ using an iterative algorithm which generates parti-
tion refinements Bn and computes a metric over these par-
titions. Refining Bn to Bn+1 can be done efficiently using
Algorithm 1 (note that this algorithm is presented for the
transition map only, but it is easily modifiable to decluster
based on the reward function). The complexity of comput-
ing dn given dn−1 depends on the following terms: φTφ, the
size of the block corresponding to φ;Bφ, the set of blocks in
Bn containing states in φ; Bn, the size of the partition after
n iterations:
O(
∑
φ∈Bn−1

(φTφ)|Bφ||A|+ |Bn|2|Bn−1|2 log |Bn−1||A|)
The first term of the sum accounts for the construction ofBn
and the second part of the sum accounts for the computation
of the metric dn. As n approaches∞, the update algorithm
runs in O(|A|(|S||B∼| + |B∼|4 log |B∼|)), which is an up-
per bound for the update at any step. See Algorithm 3 for
a simple asynchronous version of Algorithm 2 that attempts
to maintain the computational cost away from the latter up-
per bound. Later in the paper we will discuss heuristics for
choosing the update classes B ⊂ Bn in a way that main-
tains desirable convergence properties, similar to the asyn-
chronous approach proposed in Comanici et al. (2012).

Value function approximation
In this section we will analyze approximation errors when
using the derived partitions to represent the value function
(or the model) as opposed to using the original state space
representations. Just as the optimal Bellman operator (Equa-
tion 2), it is not hard to prove (Ferns, Panangaden, and Pre-
cup 2004) that the bisimulation metric operator is also a con-
traction mapping and that

||d∗ − Fn(0)||∞ < γn maxa ||Ra||∞
This result can be used to derive a bound for the approxima-
tion error induced when using intermediate partitions Bn.
This bound is dependent on M := maxa ||Ra||∞,∣∣V ∗Bn

(s)− V ∗(s)
∣∣ ≤ γnM

1− γ
+
γn+1M

(1− γ)2
=

γnM

(1− γ)2

which is a special case of Equation 3. As far as non-
optimal policies are concerned, one can provide approxi-
mation bounds on a set of polices representable by Bn.
That is, if πa(·) := π(·, a) ∈ FS has the property that
span{πa : a ∈ A} ⊂ colspan(Bn), then one can easily
verify in Equation 1 that ΠBn

Rπ = Rπ and ΠBn
Pπf =

Pπf, ∀f ∈ colspan(Bn−1). Note that the set of all open-
loop policies satisfy this property. Using again the fact that
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the Bellman operator is a contraction mapping,

||V πBn
− V π||∞=||(TπBn

)n(0)− V π||∞≤γn max
a
||Ra||∞

Asynchronous partitioning
In this section, we present an asynchronous partition algo-
rithm. Just as in the previous section, we generate a sequence
of partitions and metric over these, with the property that the
corresponding metrics can be transformed to a sequence of
metrics converging to the desired Kantorovich-based fixed
point bisimulation metric.

Let d̂∗ = supnB
T dnB, where dn are metrics over a se-

quence of partitions Bn, define inductively as follows:

• B1 is a partition such that ∀a,Ra ∈ colspan(B1).
• Bn is a partition that is built based on two (chosen) el-

ements φn,1 and φn,2 in Bn−1. The partition Bn should
satisfy the property that φ(s) = φ′(s),∀φ ∈ Bn iff

− φ(s) = φ(s′) ∀φ ∈ Bn−1 and

− if φi,1(s) + φi,1(s′) + φi,2(s) + φi,2(s′) = 2,

then ∀a ∈ A,∀φ ∈ Bn−1, (Paφ)(s) = (Paφ)(s′)

• Define the metric dn based on the Kantorovich metric
over partitionBn−1 with ground metric dn−1. For φ, φ′ ∈
Bn and s, s′ such that φ(s) = 1, φ′(s′) = 1, we define
dn(φ, φ′) as

if φn,1(s) + φn,2(s) + φn,1(s′) + φn,2(s′) = 2,

max
a

(|Ra(s)−Ra(s′)|+ γTdn−1
(δTs PaBT , δTs′PaBT ))

else dn−1(φ̂, φ̂′) for φ̂, φ̂′ ∈ Bn−1 with φ̂(s)=1, φ̂′(s′)=1

Note that this metric is well defined: the choice of states in
s, s′ with φ(s) = 1 and φ(s′) will not make any difference
in either cases. This is guaranteed in the construction of
the partitionBn, where we make sure that states for which
the distance gets updated using the Kantorovich metric
are mapped the same way in Bn−1 only if transitions to
elements of Bn−1 are the same.

Theorem 2. (Comanici, Panangaden, and Precup 2012)
Given a sequence {Ki}∞i=1 of subsets of S × S such
that each pair from S is represented infinitely often (i.e.,⋂∞
n=1

⋃∞
i=nKi=S × S), and hn is defined inductively as

hn(s, s′) =

{
hn−1(s, s′) if (s, s′) 6∈ Kn

F (hn−1)(s, s′) if (s, s′) ∈ Kn
,

then supn hn = d∗.
Theorem 3. Let {Bn, φn,1, φn,2, dn}∞i=1 be a sequence of
partitions and metrics generated under the strategy de-
scribed above. If for every pair s, s′ ∈ S,∑n

i=1 max (0, φi,1(s)+φi,2(s)+φi,1(s′)+φi,2(s′)−1)→∞

then d∗ = supnB
T
n d

nBn.

Proof. We will use Theorem 2 in Comanici et al. (2012).
For this, we will show that hn := BTn dnBn can be com-
puted using the algorithm in the paper cited. That is, at
each time step, let Kn be the subset of pairs for which

Figure 1: Asynchronous computation: A plot of the ap-
proximation error in the value function computation (L∞
norm) as the size of the alternative representation is in-
creased. This particular plot was generated on a Puddle
World of size 4900.

Algorithm 3 Asynchronous declustering
B1 ← partition_declust of {S} based on reward
while we seek a better approximation: i = 1 · · ·∞ do

Use a heuristic to select subset B ∈ Bi. Set Bi+1 ←
Bi \B
for all φ ∈ B do

add partition_declust of φ using transition
P over Bi to Bi+1

end for
end while

∑
j=1,2 φi,j(s) +

∑
j=1,2 = 2.

If (s, s′) ∈ (S × S) \K, by definition

hn+1(s, s′) := (BTn+1dn+1Bn+1)(s, s′)

= (BTn dnBn)(s, s′) = hn(s, s′)

Now, for (s, s′) ∈ K, by definition

hn+1(s, s′) := (BTn+1dn+1Bn+1)(s, s′)

= maxa(|Ra(s)−Ra(s′)|+ γTdn(δTs PaBT , δTs′PaBT ))

= maxa(|Ra(s)−Ra(s′)|+ γTBT
n dnBn

(δTs Pa, δTs′Pa))

= max
a

(|Ra(s)−Ra(s′)|+ γThn
(δTs Pa, δTs′Pa))

= F (hn)(s, s′)

Note also that

(s, s′) ∈ K iff
∑
j=1,2 φi,j(s) +

∑
j=1,2 φi,j(s

′)− 1 > 0

Therefore, we are guaranteed that every pair of states is se-
lected infinitely often. The requirements of Theorem 2 are
satisfied, so the algorithm in this section will compute the
equivalent of an asynchronous bisimulation metric compu-
tation.
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Figure 2: Puddle World - computing the metric. Left: A plot of the runtime as a function of state space size when computing the
metric. We performed a comparison to previous work, where metrics are computed over the state space: the runtime jumps from
129 seconds on a 400 states environment, to 1375 seconds on 1600 states. Right: The number of features in the intermediate
steps of the algorithm. We ran the algorithm for state spaces as large as 19600 states, but the number of features did not change
substantially for sizes larger than 6400 states.

Empirical illustration
One implication of the theoretical results presented in the
previous sections is that the computational complexity of
computing bisimulation based representations and corre-
sponding metrics is mostly dependent on the intrinsic com-
plexity of the reward function and transition models. To il-
lustrate this, we computed bisimulation metrics using the
procedure presented in Algorithm 2 over a series of MDPs
that increases in size, but whose structure remains the same.
That is, we vary the number of states in the original MDP,
but not the main task, which is to find the path from any point
to a given corner by avoiding the negative rewards obtained
when navigating through a puddle in the middle of the en-
vironment. More states result in a finer discretization of the
original continuous puddle world problem. The well known
Puddle World problem has a state space consisting of a grid
(of varying size for the purpose of illustration); the actions
available are labeled by the 4 main compass directions, and
they achieve movement in the corresponding direction with
probability 0.85, keep the state unchanged with probability
0.05, and move in a random direction with probability 0.1.
Note that the grid has margins, which bounce back transi-
tions that would take the agent outside the grid. The reward
is dependent on the position of the state compared to a given
puddle (Boyan and Moore 1995).

The left panel of Figure 2 shows the runtime of computing
bisimulation metrics over partitions, for up to 14 iterations
of Algorithm 2. Computation time stays roughly the same
once the state space exceeds 4900 states. This is because
the feature representation stays relatively unchanged in size
and the metric computation is performed over the set of fea-
tures and not over the entire state space. The right panel of
Figure 2 shows the number of features obtained when com-
puting bisimulation metrics using the procedure described
in this paper. The key finding is that after a point, the num-
ber of features found is roughly constant even as the state
space increases. This is because the complexity of the re-
ward function and the transition system remains unchanged,
and in particular, this domain is fairly simple.

To illustrate the importance of the asynchronous parti-
tion/metric update, we fixed the size of the Puddle World
and we compared the value function approximation error
as a function of the size of intermediate representations. In
this case, for each partition we performed dynamic program-
ming to compute the value function. In the asynchronous al-
gorithm, we used a heuristic which selects first the largest
block in order to update the partition/metric. This comes
from the intuition that it would be advantageous to seek
a representation that is as uniform as possible, instead of
having a mix of large and small partitions. As can be seen
in Figure 1, the asynchronous algorithm obtains representa-
tions of better quality in much earlier stages of the iterative
framework. Note that we did not list the running time, as the
time spent on obtaining such representations is relatively the
same. As already discussed, runtime complexity is mostly
dependent on the desired representation size.

Conclusion and future work
We presented two new ways of describing bisimulation met-
rics from a theoretical perspective, and we used these to de-
sign novel iterative refinement algorithms. These algorithms
provide substantial improvement in terms of time and mem-
ory usage, and more flexibility in terms of guiding the search
for alternative state space representations for MDPs. As il-
lustrated, the methods we propose are not nearly as sensitive
to the size of the state space of the problem.

The approach presented in this paper opens the door to
more specialized strategies to finding bisimulation-based
MDP representations. We illustrated the advantage of using
heuristic based search strategies, but the strategy we used
(which attempts to keep the size of state partitions roughly
the same) is very simple, and it is likely that more sophisti-
cated approaches would work better. For example, one could
try strategies similar to prioritized sweeping, which focus on
areas of the state space where the metric is changing dras-
tically. Investigating more sophisticated heuristics and ap-
plying them to larger problems is a worthwhile direction for
future work.
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