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Abstract

This paper is about two related decision theoretic prob-
lems, nonparametric two-sample testing and indepen-
dence testing. There is a belief that two recently pro-
posed solutions, based on kernels and distances between
pairs of points, behave well in high-dimensional set-
tings. We identify different sources of misconception
that give rise to the above belief. Specifically, we differ-
entiate the hardness of estimation of test statistics from
the hardness of testing whether these statistics are zero
or not, and explicitly discuss a notion of ”fair” alter-
native hypotheses for these problems as dimension in-
creases. We then demonstrate that the power of these
tests actually drops polynomially with increasing di-
mension against fair alternatives. We end with some the-
oretical insights and shed light on the median heuristic
for kernel bandwidth selection. Our work advances the
current understanding of the power of modern nonpara-
metric hypothesis tests in high dimensions.

1 Introduction
Nonparametric two-sample testing and independence test-
ing are two related problems of paramount importance in
statistics. In the former, we have two sets of samples and
we would like to determine if these were drawn from the
same or different distributions. In the latter, we have one set
of samples from a multivariate distribution, and we would
like to determine if the joint distribution is the product of
marginals or not. The two problems are related because an
algorithm for testing the former can be used to test the latter.

More formally, the problem of two-sample or homogene-
ity testing can be described as follows. Given m samples
x1, ..., xm drawn from a distribution P supported on X ⊆
Rd and n samples y1, ..., yn drawn from a distribution Q
supported on Y ⊆ Rd, we would like to tell which of the
following hypotheses is true:

H0 : P = Q vs. H1 : P 6= Q

Similarly, the problem of independence testing can be de-
scribed as follows. Given n samples (xi, yi) for i ∈
{1, ..., n} where xi ∈ Rp, yi ∈ Rq , that are drawn from a
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joint distribution PXY supported on X × Y ⊆ Rp+q , we
would to tell which of the following hypotheses is true:

H0 : PXY = PX × PY vs. H1 : PXY 6= PX × PY
where PX , PY are the marginals of PXY w.r.t. X,Y .

In both cases, H0 is called the null hypothesis and H1

is called the alternate hypothesis. Both problems are con-
sidered in the nonparametric setting, in the sense that no
parametric assumptions are made about any of the afore-
mentioned distributions.

A recent class of popular approaches for this problem
(and a related two-sample testing problem) involve the use
of test statistics based on quantities defined in reproduc-
ing kernel Hilbert spaces (RKHSs) (Gretton et al. 2012a;
Eric, Bach, and Harchaoui 2008; Gretton et al. 2005; Fuku-
mizu et al. 2008) that are computed using kernels evaluated
on pairs of points. A related set of approaches were devel-
oped in parallel based on pairwise distances between points,
as exemplified for independence testing by distance correla-
tion, introduced in (Székely, Rizzo, and Bakirov 2007) and
further discussed or extended in (Székely and Rizzo 2009;
Lyons 2013; Székely and Rizzo 2013; Sejdinovic et al.
2013). We summarize these in the next subsection.

This paper is about existing folklore that these methods
“work well” in high-dimensions. We will identify and ad-
dress the different sources of misconception which lead to
this faulty belief. One of the main misconceptions is that
while it is true for the normal means problem, estimating
the mean of Gaussian is harder than deciding whether the
mean is non-zero or not, this is not true in general. Indeed,
the test statistics that we will deal with have the opposite
behavior - they have low estimation error that is indepen-
dent of dimension, but the decision problem of whether they
are nonzero or not gets harder in higher dimensions, caus-
ing the tests to have low power. Indeed, we will demonstrate
that against a class of “fair” alternatives, the power of both
sets of approaches degrades with dimension for both types
of problems (two-sample or independence testing).

The takeaway message of this paper is - kernel and dis-
tance based hypothesis tests do suffer from decaying power
in high dimensions (even though the current literature is of-
ten misinterpreted to claim the opposite). We provide some
mathematical reasoning accompanied by solid intuitions as
to why this should be the case. However, settling the issue
completely and formally is important future work.
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Two-Sample Testing using kernels
Let k : X×X → R be a positive-definite kernel correspond-
ing to RKHS Hk with inner-product 〈., .〉k - see (Schölkopf
and Smola 2002) for an introduction. Let k correspond to
feature maps at x denoted by φx ∈ Hk respectively satisfy-
ing φx(x′) = 〈φx, φ′x〉k = k(x, x′). The mean embedding
of P is defined as µP := Ex∼Pφx whose empirical estimate
is µ̂P := 1

n

∑n
i=1 φxi . Then, the Maximum Mean Discrep-

ancy (MMD) is defined as
MMD2(P,Q) := ‖µP − µQ‖2k

where ‖.‖k is the norm induced by 〈, ., 〉k, i.e. ‖f‖2k =
〈f, f, 〉k for every f ∈ Hk. The corresponding empirical
test statistic is defined as

MMD2
b(P,Q) := ‖µ̂P − µ̂Q‖2k =

1

n2

n∑
i=1

n∑
j=1

k(xi, xj)

+
1

m2

m∑
i=1

m∑
j=1

k(yi, yj)−
2

mn

n∑
i=1

m∑
j=1

k(xi, yj). (1)

The subscript b indicates that it is a biased estimator of
MMD2. The unbiased estimator is calculated by excluding
the k(xi, xi), k(yi, yi) terms from the above sample expres-
sion, let us call that MMD2

u. It is important to note that ev-
ery statement/experiment in this paper about the power of
MMD2

b qualitatively holds true for MMD2
u also.

Independence Testing using distances
The authors of (Székely, Rizzo, and Bakirov 2007) introduce
an empirical test statistic called (squared) distance covari-
ance which is defined as

dCov2n(X,Y ) =
1

n2
tr(ÃB̃) =

1

n2

n∑
i,j=1

ÃijB̃ij . (2)

where, Ã = HAH, B̃ = HBH where H = I − 11T /n is
a centering matrix, and A,B are distance matrices for X,Y
respectively, i.e.Aij = ‖xi−xj‖, Bij = ‖yi−yj‖. The sub-
script n suggests that it is an empirical quantity based on n
samples. The corresponding population quantity turns out to
be a weighted norm of the difference between characteristic
functions of the joint and product-of-marginal distributions,
see (Székely, Rizzo, and Bakirov 2007).

The expression in Equation 2 is different from the pre-
sentation in the original papers (but mathematically equiva-
lent). They then define (squared) distance correlation dCor2n
as the normalized version of dCov2n:

dCor2n(X,Y ) =
dCov2n(X,Y )√

dCov2n(X,X)dCov2n(Y, Y )
.

One can use other distance metrics instead of Euclidean
norms to generalize the definition to metric spaces, see
(Lyons 2013). As before, the above expressions don’t
yield unbiased estimates of the population quantities, and
(Székely and Rizzo 2013) discusses how to debias them.
However, as for MMD, it is important to note that ev-
ery statement/experiment in this paper about the power of
dCor2n qualitatively holds true for dCov2n, and both their
unbiased versions also.

The relationship between kernels and distances
As mentioned earlier, the two problems of two-sample and
independence testing are related because any algorithm for
the former yields an algorithm for the latter. Indeed, corre-
sponding to MMD, there exists a test statistic using kernels
called HSIC, see (Gretton et al. 2005), for the independence
testing problem. The sample expression for HSIC looks a
lot like Eq.(2), except where A and B represent the pair-
wise kernel matrices instead of distance matrices. Similarly,
corresponding to dCov, there exists a test statistic using dis-
tances for the two-sample testing problem, whose empirical
statistic matches that of Eq.(1), except using distances in-
stead of kernels. This is not a coincidence. Informally, for
every positive-definite kernel, there exists a negative-definite
metric, and vice-versa, such that these quantities are equal;
see (Sejdinovic et al. 2013) for more formal statements.

When a characteristic kernel, see (Gretton et al. 2012a)
for a definition, or its corresponding distance metric is used,
the population quantities corresponding to all the test statis-
tics equals zero iff the null hypothesis is true. In other words
MMD = 0 iff P = Q, dCor = dCov = 0 iff X,Y are
independent. It suffices to note that this paper will only be
dealing with distances or kernels satisfying this property.

Permutation testing and power simulations
A permutation-based test for any of the above test statistics
T proceeds in the following manner :

1. Calculate the test statistic T on the given sample.
2. (Independence) Keeping the order of x1, ..., xn fixed, ran-

domly permute y1, ..., yn, and recompute the permuted
statistic T. This destroys dependence between xs, ys and
behaves like one draw from the null distribution of T.

2’. (Two-sample) Randomly permute them+n observations,
call the firstm of them your xs and the remaining your ys,
and now recompute the permuted statistic T. This behaves
like one draw from the null distribution of the test statistic.

3. Repeat step 2 a large number of times to get an accurate
estimate of the null distribution of T. For a prespecified
type-1 error α, calculate threshold tα in the right tail of
the null distribution.

4. Reject H0 if T > tα.
This test is proved to be consistent against any fixed alter-

native, in the sense that as n → ∞ for a fixed type-1 error,
the type-2 error goes to 0, or the power goes to 1. Empiri-
cally, the power can be calculated using simulations as:

1. Choose a distribution PXY (or P,Q) such that H1 is true.
Fix a sample size n (or m,n).

2. (Independence) Draw n samples, run the independence
test. (Two-sample) Draw m samples from P and n from
Q, run the two-sample test. A rejection ofH0 is a success.
This is one trial.

3. Repeat step 2 a large number of times (conduct many in-
dependent trials).

4. The power is the fraction of successes (rejections of H0)
to the total number of trials.

Note that the power depends on the alternative PXY or P,Q.
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Paper Organization
In Section 2, we discuss the misconceptions that exist re-
garding the supposedly good behavior of these tests in high
dimensions. In Section 3, we demonstrate that against fair
alternatives, the power of kernel and distance based hypoth-
esis tests degrades with dimension. In Section 4, we provide
some initial insights as to why this might be the case, and the
role of the bandwidth choice (when relevant) in test power.

2 Misconceptions about power in
high-dimensions

Hypothesis tests are typically judged along one metric - test
power. To elaborate, for a fixed type-1 error, we look at how
small type-2 error is, or equivalently how large the power is.
Further, one may also study the rate at which the power im-
proves to approach one or degrades to zero (with increasing
number of points, or even increasing dimension). So when a
hypothesis test is said to “work well” or “perform well”, it is
understood to mean that it has high power with a controlled
type-1 error.

We believe that there are a variety of reasons why peo-
ple believe that the power of the aforementioned hypothesis
tests does not degrade with the underlying dimension of the
data. We first outline and address these, since they will im-
prove our general understanding of these tests and guide us
in our experiment design in Section 3.

Claims of good performance
A proponent of distance-based tests claims, on Page 17 of
the tutorial presentation (Székely 2014), that “The power of
dCor test for independence is very good especially for high
dimensions p,q”. In other words, not only does he claim that
it does not get worse, but it gets better in high dimensions.
Unfortunately, this is not backed up with evidence, and in
Section 3, we will provide evidence to the contrary.

Given the strong relationship between kernel-based and
distance-based methods described in the introduction, one
might be led to conclude that kernel-based tests also get bet-
ter, or at least not worse, in high dimensions. Again, this is
not true, as we will see in Section 3.

Estimation of MMD2 is independent of dimension
It is proved in (Gretton et al. 2012a) that the rate of conver-
gence of the estimators of MMD2 to the population quantity
is O(1/

√
n), independent of the underlying dimension of

the data. Formally, suppose 0 ≤ k(x, x) ≤ K, then with
probability at least 1− δ, we have

|MMD2
b(p, q)−MMD2(p, q)|

≤2

((
K

n

)1/2

+

(
K

m

)1/2
)(

1 + log

(
2

δ

))
.

A similar statement is also true for the unbiased estimator.
This error is indeed independent of dimension, in the sense
that in every dimension (large or small), the convergence rate
is the same, and the rate does not degrade in higher dimen-
sions. This was also demonstrated empirically in Fig. 3 of
(Sriperumbudur et al. 2012a).

However, one must not mix up estimation error with test
power. While it is true that estimation does not degrade with
dimension, it is possible that test power does (as we will
demonstrate in Section 3). This leads us to our next point.

Estimation vs Testing
In the normal means problem, one has samples from a Gaus-
sian distribution, and we have one of two objectives - either
estimate the mean of the Gaussian, or test whether the mean
of the Gaussian is zero or not. In this setting, it is well known
and easily checked that estimation of the mean is harder than
testing if the mean is zero or not.

Using this same intuition, one might be tempted to assume
that hypothesis testing is generally easier than estimation, or
specifically like that Gaussian mean case that estimation of
the MMD is harder than testing if the MMD is zero or not.

However, this is an incorrect assumption, and the intuition
attained from the Gaussian setting can be misleading.

On a similar note, (Székely and Rizzo 2013) note that
even when P,Q are independent, if n is fixed and d → ∞
then the biased dCor → 1. Then, they show how to form
an unbiased dCor (called udCor) so that udCor → 0 as
one might desire, even in high dimensions. However, they
seem to be satisfied with good estimation of the population
udCor value (0 in this case), which does not imply good
test power. As we shall see in our experiments, in terms of
power, unbiased udCor does no better than biased dCor.

No discussion about alternatives
One of the most crucial points for examining test power with
increasing dimension is the choice of alternative hypothesis.
Most experiments in (Gretton et al. 2012a; Székely, Rizzo,
and Bakirov 2007; Gretton et al. 2005) are conducted with-
out an explicit discussion or justification for the sequences
of chosen alternatives. For example, consider the case of
two-sample testing below. As the underlying dimension in-
creases, if the two distributions “approach” each other in
some sense, then the simulations might suggest that test
power degrades; conversely if the distributions “diverge”
in some sense, then the simulations might suggest that test
power does not actually degrade much.

Let us illustrate the lack of discussion/emphasis on the
choice of alternatives in the current literature. Assume P,Q
are spherical Gaussians with the same variance, but differ-
ent means. For simplicity, say that in every dimension, the
mean is always at the origin for P . When P and Q are
one-dimensional, say that the mean of Q is at the point 1 -
when dimension varies, we need to decide (for the purposes
of simulation) how to change the mean of Q. Two possible
suggestions are (1, 0, 0, 0, ..., 0) and (1, 1, 1, 1, ..., 1), and it
is possibly unclear which is a fairer choice. In Fig. 5A of
(Gretton et al. 2012a), the authors choose the latter (verified
by personal communication) and find that the power is only
very slowly affected by dimension. In experiments in the ap-
pendix of (Gretton et al. 2012b), the authors choose the for-
mer and find that the power decreases fast with dimension.
Fig. 3 in (Sriperumbudur et al. 2012a) also makes the lat-
ter choice, though only for verifying estimation error decay
rate. In all cases, there is no justification of these choices.
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Our point is the following - when n is fixed and d increas-
ing, or both are increasing, it is clearly possible to empir-
ically demonstrate any desired behavior of power (i.e. in-
creasing, fairly constant, decreasing) in simulations, by ap-
propriately changing the choice of alternatives. This raises
the question - what is a good or fair choice of alternatives
by which we will not be misled? We now discuss our pro-
posal for this problem.

Fair Alternatives
We propose the following notion of fair alternatives - for
two-sample testing as dimension increases, the Kullback
Leibler (KL) divergence between the pairs of distributions
should remain constant, and for independence testing as di-
mension increases, the mutual information (MI) between
X,Y should remain constant.

Our proposal is guided by the fact that KL-divergence
(and MI) is a fundamental information-theoretic quantity
that is well-known to determine the hardness of hypothesis
testing problems, for example via lower bounds using vari-
ants of Fano’s inequality, see (Tsybakov 2010). By keeping
the KL (or MI) constant, we are not making the problem ar-
tificially harder or easier (in the information-theoretic sense)
as dimension increases.

Let us make one point clear - we are not promoting the
use of KL or MI as test statistics, or saying that one should
estimate these quantities from data. We are also not com-
paring the performance to MMD/HSIC to the performance
of KL/MI. We are only suggesting that one way of calibrat-
ing our simulations, so that our simulations are fair repre-
sentations of true underlying behavior, is to make parameter
choices so that KL/MI between the distributions stay con-
stant as the dimension increases.

For the aforementioned example of the Gaussians, the
choice of (1, 0, 0, 0, ..., 0) turns out to be a fair alternative,
while (1, 1, 1, ..., 1) increases the KL and makes the prob-
lem artificially easier. If we fix n, a method would work
well in high-dimensions if its power remained the same ir-
respective of dimension, against fair alternatives. In the next
section, we will demonstrate using variety of examples, that
the power of kernel and distance based tests decays with in-
creasing dimension against fair alternatives.

3 Simple Demonstrations of Decaying Power
As we mentioned in the introduction, we will be working
with characteristic kernel. Two such kernels we consider
here are also translation invariant - Gaussian k(x, y) =

exp
(
−‖x−y‖

2

γ2

)
and Laplace k(x, y) = exp

(
−‖x−y‖γ

)
,

both of which have a bandwidth parameter γ. One of the
most common ways in the literature to choose this band-
width is using the median heuristic, see (Schölkopf and
Smola 2002), according to which γ is chosen to be the me-
dian of all pairwise distances. It is a heuristic because there
is no theoretical understanding of when it is a good choice.

In our experiments, we will consider a range of bandwidth
choices - from much smaller to much larger than what the
median heuristic would choose - and plot the power for each

of these. The y-axis will always represent power, and the x-
axis will always represent increasing dimension. There was
no perceivable difference between using biased and unbi-
ased MMD2, so all plots apply for both estimators.

(A) Mean-separated Gaussians, Gaussian kernel
Here P,Q are chosen as Gaussians with covariance matrix I .
P is centered at the origin, whileQ is centered at (1, 0, ..., 0)
so that KL(P,Q) is kept constant. A simple calculation
shows that the median heuristic chooses γ ≈

√
d - we run

the experiment for γ = dα for α ∈ [0, 1]. As seen in Fig-
ure 1, the power decays with d for all bandwidth choices.
Interestingly, the median heuristic maximizes the power.
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Figure 1: MMD Power vs d of for mean-separated Gaussians
using Gaussian kernel with bandwidths dα, α ∈ [0, 1].

(B) Mean-separated Laplaces, Laplace kernel
Here P,Q are both the product of d independent univariate
Laplace distributions with the same variance. As before, P is
centered at the origin, while Q is centered at (1, 0, 0, ..., 0) -
Section 4 shows that this choice keeps KL(P,Q) constant.
Here too, the median heuristic chooses γ on the order of√
d, and again we run the experiment for γ = dα for α ∈

[0, 2]. Once again, note that the power decays with d for all
the bandwidth choices. However, this is an example where
the median heuristic does not maximize the power - larger
choices like γ = d, d2 work better (see Figure 2).
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Figure 2: MMD Power vs d for mean-separated Laplaces
using Laplace kernel with bandwidths dα, α ∈ [0, 2].
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(C) Non-diagonal covariance matrix Gaussians
Let us consider the case of independence testing and dCor
to show that (as expected) this behavior is not restricted
to two-sample testing or MMD2. Here, P,Q will both be
origin-centered d dimensional gaussians. If they were in-
dependent, their joint covariance matrix Σ would be I . In-
stead, we ensure that a constant number (say 4 or 8) of
off-diagonal entries in the covariance matrix are non-zero.
We keep the number of non-zeros constant as dimension in-
creases. One can verify that this keeps the mutual informa-
tion constant as dimension increases (as well as other quan-
tities like log det Σ, which is the amount of information en-
coded in Σ, and ‖Σ − I‖2F which is relevant since we are
really trying to detect any deviation of Σ from I). Figure 3
shows that the power of dCor, udCor both drop with dimen-
sion - hence debiasing the test statistic does make the value
of the test statistic more accurate but it does not improve the
corresponding power.
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Figure 3: Power vs d of dCor and unbiased dCor (udCor) for
the dependent Gaussians example, with 4 or 8 off-diagonal
non-zeros in the joint covariance matrix.

(D) Differing-variance Gaussians, Gaussian kernel
We take P = ⊗d−1i=1N (0, 1) ⊗ N (0, 4) and Q =
⊗di=1N (0, 1) (both are origin centered). As we shall see in
the next section, this choice keeps KL constant.
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Figure 4: MMD Power vs d for Gaussians differing in vari-
ance using Gaussian kernel with bandwidths dα, α ∈ [0, 1].

It is easy to see in Fig.4 that the power of MMD decays
with dimension, for all choices of the bandwidth parameter.

4 MMD2 vs KL
Here, we shed light on why the power of MMD2 might de-
grade with dimension, against alternatives whereKL is kept
constant. We actually calculate the MMD2 for the aforemen-
tioned examples (A), (B) and (D), and compare it to KL.

It is known that MMD2(p, q) ≤ KL(p, q) (Sriperum-
budur et al. 2012b). We show that it can be smaller than the
KL by polynomial or even exponential factors in d - in all
our previous examples, while KL was kept constant, MMD
was actually shrinking to zero polynomially or exponentially
fast. This discussion will also bring out the role of the band-
width choice, especially the median heuristic.

(A) Mean-separated Gaussians, Gaussian kernel
Some special cases of the following calculations appear in
(Balakrishnan 2013) and (Sriperumbudur et al. 2012a). Our
results are more general, and unlike them we clearly ana-
lyze the role of the bandwidth choice. We also simplify the
calculations to make direct comparisons to KL divergence
possible, unlike earlier work which had different aims.

Proposition 1. Suppose p = N (µ1,Σ) and q = N (µ2,Σ).
Using a Gaussian kernel with bandwidth γ, MMD2 =

2

(
γ2

2

)d/2
1− exp(−∆>(Σ + γ2I/2)−1∆/4)

|Σ + γ2I/2|1/2
.

where ∆ = µ1 − µ2 ∈ Rd.

The above proposition (proved in Appendix A of the full
version1) looks rather daunting. Let us derive a revealing
corollary, which involves a simple approximation by Tay-
lor’s theorem.

Corollary 1. Suppose Σ = σ2I . Using Taylor’s theorem for
1−e−x ≈ x and ignoring−x

2

2 and other smaller remainder
terms for clarity, then the above expression simplifies to

MMD2(p, q) ≈ ‖µ1 − µ2‖2

γ2(1 + 2σ2/γ2)d/2+1
.

Recall that when Σ = σ2I , the KL is given by

KL(p, q) =
1

2
(µ1− µ2)TΣ−1(µ1− µ2) =

‖µ1 − µ2‖2

2σ2
.

Let us now see how the bandwidth choice affects the
MMD. In what follows, scaling bandwidth choices by a
constant does not change the qualitative behavior, so we
leave out constants for simplicity. For clarity in the following
corollaries, we also ignore the Taylor residuals, and assume
d is large so that (1 + 1/d)d ≈ e.
Observation 1 (underestimated bandwidth). Suppose
Σ = σ2I . If we choose γ = σd1/2−ε for 0 < ε ≤ 1/2,
then

MMD2(p, q) ≈ ‖µ1 − µ2‖2

σ2(d1−2ε + 2) exp(d2ε/2)
.

1Full version of the paper can be found at
http://arxiv.org/abs/1406.2083.
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Hence, the population MMD2 goes to zero exponentially
fast in d as exp(d2ε/2), verified in Fig. 5, and is exponen-
tially smaller than KL(p, q).

Observation 2 (median heuristic). Suppose Σ = σ2I . If
we choose γ = σ

√
d, then

MMD2(p, q) ≈ ‖µ1 − µ2‖2

σ2(d+ 2)e
.

Note that when Σ = σ2I , we have E‖xi − xj‖2 ≈
2σ2d+ ‖µ1 − µ2‖2 which is dominated by the first term as
d increases. This indicates that the median heuristic chooses
γ ≈ σ

√
d, verified in Fig.5. Here the population MMD2

goes to zero polynomially as 1/d. This is the largest MMD
value one can hope for, but it is still smaller than the KL
divergence by a factor of 1/d.

Observation 3 (overestimated bandwidth). Suppose Σ =
σ2I . If γ = σd1/2+ε for ε > 0, then

MMD2(p, q) ≈ ‖µ1 − µ2‖2

σ2(d1+2ε + 2) exp(1/2d2ε)
.

Hence, the population MMD2 goes to zero polynomially
as 1/d1+2ε, since exp(1/2d2ε) ≈ 1 for large d. Here too, the
MMD is a factor 1/d smaller than the KL.

We demonstrate in Fig.5 that our approximations are actu-
ally accurate, by calculating the population MMD as a func-
tion of d for each bandwidth choice. The population MMD is
approximated by calculating the empirical MMD after draw-
ing a very large number of samples so that the approximation
error is small.
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Figure 5: MMD2 vs d for mean-separated Gaussians using
Gaussian kernel. The left panel shows behavior predicted by
Observations 1,2 and the right by Observation 3.

(B) Mean-separated Laplaces, Laplace kernel
In the previous example, the median heuristic maximized
the MMD. However, this is not always the case and now
we present one such example where the median heuristic re-
sults an exponentially small MMD. We use Taylor approxi-
mations to yield expressions that are insightful.

Proposition 2. Let µ1, µ2 ∈ Rd. If p = ⊗iLaplace(µ1,i, σ)
and q = ⊗iLaplace(µ2,i, σ), using a Laplace kernel with
bandwidth γ, we have

MMD2(p, q) ≈ ‖µ1 − µ2‖2

2σγ (1 + σ/γ)
d
.

It is proved in Appendix A of the full version and the accu-
racy of approximation is verified in Appendix B of the full
version . It can be checked that

KL(p, q) = e−
‖µ1−µ2‖

σ − 1 + ‖µ1−µ2‖
σ ≈ ‖µ1 − µ2‖2

2σ2

using Taylor’s theorem, e−x ≈ 1− x+ x2/2 + o(x2).
Observation 4 (Small bandwidth or median heuristic). If
we choose γ = σd1−ε for 0 < ε < 1,

MMD2(p, q) ≈ ‖µ1 − µ2‖2

2σ2d1−ε exp(dε)
.

It is easily derived that E‖xi − xj‖2 ≈ 2σ2d so the me-
dian heuristic chooses γ ≈ σ

√
d, experimentally verified

in Fig.6. This time, the median heuristic is suboptimal and
MMD2 drops to zero exponentially in d, also making it ex-
ponentially smaller than KL.
Observation 5. (Correct or overestimated bandwidth) If we
choose γ = σd1+ε, for ε ≥ 0

MMD2(p, q) ≈ ‖µ1 − µ2‖2

2σ2d1+ε exp(1/dε)
.

A bandwidth of γ = σd is optimal, making the denomina-
tor ≈ σ2de, which is still a factor 1/d smaller than KL. An
overestimated bandwidth again leads to a slow polynomial
drop in MMD. This behavior is verified in Fig. 6.
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Figure 6: MMD2 vs d for mean-separated Laplaces using
Laplace kernel. The left panel shows behavior predicted by
Observation 4 and right panel by Observation 5.

(D) Differing-variance Gaussians, Gaussian kernel
Example 3 in Sec. 4.2 of (Sriperumbudur et al. 2012a) has
related calculations, again with a different aim. We again use
Taylor approximations to yield insightful expressions.

Proposition 3. Suppose p = ⊗d−1i=1N (0, σ2)⊗N (0, τ2) and
q = ⊗di=1N (0, σ2). For a Gaussian kernel of bandwidth γ,

MMD2(p, q) ≈ (τ2 − σ2)2

γ4(1 + 4σ2/γ2)d/2−1/2
.

It is proved in Appendix A of the full version and the accu-
racy of approximation is verified in Appendix B of the full
version. It is easy to verify that

KL(p, q) =
1

2
(tr(Σ−11 Σ0)− d− log

(
det Σ0

det Σ1

)
=

1

2
(τ2/σ2 − 1− log(τ2/σ2)) ≈ (τ2 − σ2)2

4σ4
.
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where we used Taylor’s theorem for log x. These calcula-
tions for MMD, KL suggest that the observations made for
the earlier example of mean-separated Gaussians carry for-
ward qualitatively here as well, verified by Fig.7.
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Figure 7: MMD2 vs d for Gaussian distributions with differ-
ing variance using Gaussian kernel. The behavior in boths
panels is very similar to Fig.5 as predicted by Proposition 3.

5 Conclusion
This paper addressed an important issue in our under-
standing of the power of recent nonparametric hypothe-
sis tests. We identified the various reasons why miscon-
ceptions exist about the power of these tests. Using our
proposal of fair alternatives, we clearly demonstrate that
the power of biased/unbiased kernel/distance based two-
sample/independence tests all degrade with dimension.

We also provided an understanding of how a popular
kernel-based test statistic, the Maximum Mean Discrepancy
(MMD), behaves with dimension and bandwidth choice - its
value drops to zero polynomially (at best) with dimension
even when the KL-divergence is kept constant - shedding
some light on why the power degrades with dimension (dif-
ferentiating the empirical quantity from zero becomes harder
as the population value approaches zero).

This paper provides an important advancement in our cur-
rent understanding of the power of modern nonparametric
hypothesis tests in high dimensions. While it does not com-
pletely settle the question of how these tests behave in high
dimensions, it is a crucial first step.
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