
Transition Constraints for Parallel Planning

Nina Ghanbari Ghooshchi1, Majid Namazi1, M.A.Hakim Newton2, Abdul Sattar2
1Computer Engineering Department, Urmia University, West Azarbaijan, Iran

2Institute for Integrated and Intelligent Systems (IIIS), Griffith University, Australia
{n.ghanbari, m.namazi}@urmia.ac.ir, {mahakim.newton, a.sattar}@grffith.edu.au

Abstract
We present a planner named Transition Constraints for Paral-
lel Planning (TCPP). TCPP constructs a new constraint model
from domain transition graphs (DTG) of a given planning
problem. TCPP encodes the constraint model by using table
constraints that allow don’t cares or wild cards as cell val-
ues. TCPP uses Minion the constraint solver to solve the con-
straint model and returns the parallel plan. Empirical results
exhibit the efficiency of our planning system over state-of-
the-art constraint-based planners.

Introduction
Constraint-based planners translate a planning problem into
a constraint satisfaction problem (CSP) and then apply CSP
techniques. These planners thus allow to take advantage of
enhanced propagation machineries and better pruning mech-
anisms in CSP to solve planning problems. However, in
terms of performance, constraint-based planners do not yet
match the state-of-the-art heuristic search planners. One key
reason is that with the increase of plan length, the impact
of propagation and pruning reduces greatly. Another main
reason is that we still need a suitable constraint model that
allows the best exploitation of the advanced CSP techniques.
In this paper, we develop a new constraint model for plan-
ning problems to leverage the advancements in CSP.

Considerably little work has been done in solving plan-
ning problems by using CSP techniques. The first constraint
models for planning problems were designed manually (van
Beek and Chen 1999). Other models have been proposed in
(Do and Kambhampati 2001), (Lopez and Bacchus 2003),
and (Ghallab, Nau, and Traverso 2004). Most of these mod-
els translate the so called planning graph structures (Blum
and Furst 1995) into CSPs with a view to generating parallel
plans. Following the propositional nature of PDDL language
(Ghallab et al. 1998), these planners mostly use Boolean
variables and constraints with logical formulas.

Based on Fast Downward’s (Helmert 2006) use of SAS+
formalism that is a member of the Simplified Action Struc-
ture family (Bäckström and Nebel 1995), constraints of a
planning problem are encoded by table constraints (Barták
and Toropila 2008). This has showed a great improve-
ment in the efficiency. Inclusion of symmetry breaking,

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

singleton consistency, lifting and nogood learning has fur-
ther improved the performance (Barták and Toropila 2009a;
2009b). Recent constraint-based planners (Cesta and Fratini
2008; Verfaillie, Pralet, and Lemaı̂tre 2010; Barták 2011a)
are based on time lines. The planner in (Gregory, Long,
and Fox 2010) uses dominance constraints, and another one
in (Judge and Long 2011) applies goal and variable/value
heuristics and uses meta-CSP variables.

Inspired by the SAT-based planner SASE (Huang, Chen,
and Zhang 2010) that exploits the structural information
of SAS+ formalism, we develop a new constraint model
for planning problems. Our planner named Transition Con-
straints for Parallel Planning (TCPP) extracts domain transi-
tion graphs (DTG) from the SAS+ representation and trans-
lates them into constraint models. We follow (Barták and
Toropila 2008) to choose table constraints in our encoding
model. Table constraints are efficient when the number of
valid assignments is small with respect to the total number
of assignments. However, we additionally and more impor-
tantly use don’t cares or wild cards in table cells to allow
a compact representation for many constraints that would
otherwise need consideration of all possible combination
of certain column values. To solve the encoded constraint
problem, we use Minion the constraint solver (Gent, Jeffer-
son, and Miguel 2006) that can handle table constraints with
don’t cares through algorithms for short support enabled
general arc consistency propagation. This improves the ef-
ficiency of our planner over the state-of-the-art constraint-
based planners on a set of standard benchmark domains.

The rest of the paper is organised as follows: next two sec-
tions discuss constraint-based planning and DTGs; the fol-
lowing section describes our new constraint model and our
new constraint-based planner; the last two sections present
our experimental results and conclusions.

Constraint-Based Planning
Besides the most successful family of forward chaining
heuristic search planners, an alternative approach developed
for planning is based on translation of the problem into a
different formalism such as satisfiability (SAT) or CSP and
then using respective solution techniques. One key issue in
this approach is that SAT or CSP requires a static problem
model whereas in planning the plan length is not known be-
forehand. A typical solution (Kautz and Selman 1992) to this

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

3268



is to impose a fixed bound n on makespan (also called hori-
zon) and translate the problem of finding a plan of makespan
n as a SAT/CSP problem. If a plan is found, it is extracted;
otherwise, a new horizon bound n+ 1 is tried.

Most of the CSP-based planners produce sequential plans
(Barták and Toropila 2008; Gregory, Long, and Fox 2010;
Judge and Long 2011) and some other produce partially-
ordered plans (Vidal 2004) and parallel plans (Barták 2011a;
Do and Kambhampati 2001; Lopez and Bacchus 2003).
Partial-order and parallel planners avoid examining symmet-
rical plans while the sequential planners do not. Symmetrical
plans remain the same after changing action orderings. Ex-
ploring symmetrical plans is waste of time and also equiva-
lence checking is time consuming.

Constraint Models from Planning Graph: A dynamic
CSP model in (Do and Kambhampati 2001) uses variables
to represent the propositions at each level of the planning
graph (Blum and Furst 1995) with the domains being ac-
tions supporting these propositions. Constraints used are ac-
tion mutex, fact mutex, and subgoal activation constraints. A
constraint model in (Lopez and Bacchus 2003) uses Boolean
variables to represent the facts and actions at each level with
constraints between variables being logical formulas that en-
code the initial state, goal state, preconditions and effects
of actions and frame axioms. Another constraint model in
(Ghallab, Nau, and Traverso 2004) uses Boolean variables.

Constraint Models from Multi-Valued Representa-
tion: Multi-valued representation of a planning problem
leads to fewer variables with larger domains where domain
filtering normally pays off. Further, the set of logical con-
straints from the original models can be encapsulated into
combinatorial constraints with an extensionally defined set
of admissible tuples. These constraints filter out more in-
consistencies than the original logical constraints and the
propagation loop can significantly reduce execution time. In
(Barták 2011a), the idea of DTG is used but a finite state
automata is considered for each state variable. A plan is an
intersection of these automata. In this model, CSP variables
are considered for states and actions in each time step and
constraints are used in encoding the arcs of the automata
and to synchronise the paths between different automata. In
(Barták 2011b), a different encoding of DTG is proposed.
Rather than encoding states and their changes via actions,
the transitions between the actions are encoded directly and
the state variables are omitted completely.

Domain Transition Graphs
The language used in the representation of a planning prob-
lem is an important factor in the efficiency of the formu-
lation. The most common language used in describing plan-
ning problems is PDDL (Ghallab et al. 1998). Since this lan-
guage is propositional, it is not suitable for encoding plan-
ning problems as CSPs. An alternative approach is SAS+
formalism (Bäckström and Nebel 1995) in which planning
problems are represented by multi-valued state variables.
This formalism became popular after being used in Fast
Downward planner (Helmert 2006). By using this language,
mutually exclusive predicates do not appear in the state de-

scription. Extracting structural information such as DTGs is
also straightforward in this representation.

To describe this formalism, we will use a simple example
from Driverlog Domain (see Figure 1). We restrict this do-
main to the transportation of drivers by trucks. We also omit
packages. In this domain, we have some drivers and trucks.
A driver can change its location by walking or by driving
a truck. There are roads (solid lines) for driving trucks and
footpaths (dotted lines) for drivers to walk. Relevant opera-
tors of this example are also listed in the figure.

Figure 1: A driverlog problem instance in SAS+.

In our example, we have four locations named: A, B, C,
D; one driver d; and one truck t. The initial and goal states
of the problem are depicted in Figure 1. To represent this
example in SAS+ formalism, we need 2 state variables d-
loc and t-loc for the locations of d and t respectively and a
variable t-occ to denote whether the truck is occupied by a
driver. Domains of these variables are shown in the figure.

Figure 2: DTGs for the example in Figure 1.

From the SAS+ representation of a planning problem, we
extract a DTG (Helmert 2006) for every state variable to
show how these variables can change their values. For ev-
ery value that a state variable can take, there is one vertex
in its DTG. The edges describe how the values of the state
variables change. If there is an action having a precondition

3269



v = d and an effect v = d′, we have an arc from the ver-
tex with value d to the vertex with value d′. If an action has
v = d′ as its effect but no precondition relating to variable
v, then in the original DTG, there is an edge from every ver-
tex to the vertex representing the value d′. In our version of
DTGs, we simplify this by using a vertex with value ‘-’ to
denote a don’t care value and draw an arc from this vertex
to the vertex with value d′. Nevertheless, if any of the transi-
tions is based on the value of other variable, that is if a con-
dition such as v′ = d′′ is also included in the precondition
of the action, this condition is mentioned on the transition
edge. Actions responsible of changes are also included on
the edges. DTGs for the example in Figure 1 are in Figure 2.

Our Constraint-Based Planner

We propose a new constraint model for parallel planning.
In our model, DTGs extracted from the SAS+ representa-
tion of the planning problem are directly translated into table
constraints. The main difference between this model and the
state-of-the-art constraint-based planners is that we do not
use any CSP-variables for actions taking place at each time.
Our planner TCPP has three steps: Translation and Prepro-
cessing, CSP Encoding and Solving, and Plan Decoding.

Translation & Preprocessing: An input PDDL prob-
lem is translated into a problem in SAS+ with multi-valued
variables and corresponding instantiated actions (Helmert
2009). The SAS+ problem is preprocessed and DTGs are
extracted by using our own extractor program similar to
the one in the Fast-Downward planner (Helmert 2006). The
DTGs used in our planner are slightly different than those
used in Fast-Downward planner. For every action changing
the value of a variable, we have an edge from the initial value
of the variable to its final value while in Fast-Downward
planner, not all of these edges are included.

CSP Encoding & Solving: In this step, a fixed bound n
is imposed on the makespan. Then, the problem of finding a
plan of makespan n is encoded as a CSP problem by using
the DTGs. The encoded CSP problem is then solved by a
CSP-solver. If a plan is not found for makespan n, the value
of n is increased by one time unit and the process continues
until a plan is found or a given time limit exceeds. To find
the first length to start with, in each DTG, we look for the
shortest path from the variable’s value in the initial state of
the problem to the value in its goal state and we choose the
maximum of the shortest path lengths. Further details on our
encoding and the solver being used are later in the paper.

Plan Decoding: The resultant plan is extracted from the
solution returned by the CSP solver. To determine the ac-
tions at time τ , we look at the values of variables at time τ
and τ + 1 to see which one is changed. For every variable
that changes its value, we look at its corresponding DTG to
see which edges are responsible for this change. From the
actions on these edges, the one having its preconditions sat-
isfied at time τ and effects matching at time τ +1 is selected
as a valid action. It is possible to have more than one action
for each time τ . Thus our formulation allows parallel plans.

Our New Encoding
Procedure 1 in our planner translates the planning problem
of makespan n to a CSP with the help of DTGs. Assume the
planning problem has m state variables in its multi-valued
representation. For every state variable vi and for any time
step 0 ≤ τ ≤ n, we have a CSP variable viτ , which can take
any value from vi’s domain. Therefore, we have m(n + 1)
CSP variables in our model. Procedure 1 uses four kinds
of constraint: initial state constraints, goal state constraints,
transition constraints, and negative constraints. Our contri-
bution is a new encoding of the transition constraints.

Procedure 1 PlanningToCSP(n) // makespan n

//variables: vi, vj , values: p, q, actions: A,B
Foreach (vi, p) in initial state, Add constraint eq(vi0, p)
Foreach (vi, p) in goal state, Add constraint eq(vin, p)
For timestep τ = 0 to n− 1 do

Foreach vi, Add transition constraint tc(viτ )
Foreach pair (A,B) : A is inconsistent with B

Add a negative parallelism constraint
Foreach pair (vi = p, vj = q) in mutex groups

Add a negative mutex table mt(vi, p, vj , q)

Initial and Goal State Constraints
Initial state constraints are simple constraints specifying the
values of variables at time 0. Since the initial state is fully
specified, we need m constraints for the values of the vari-
ables v00 , v

1
0, . . . , v

m−1
0 . The goal state is encoded in the

same way with the difference that it is not fully specified.

Transition Constraints
For every DTG of a given problem, a transition constraint
is added to our model. This constraint encodes all possible
changes in the corresponding variable’s value between time
τ to τ + 1. An edge in a DTG represents a possible way to
change the value of the variable. This change can occur only
if the conditions denoted on the edge are satisfied. The con-
ditions specify the values that other variables should have
so that the action that changes the value of this variable can
occur. Because not all variables necessarily appear on one
edge, the values of variables appearing on the other edges of
the DTG are considered don’t care for this change. Inspired
by the use of tables constraints in (Barták and Toropila 2008)
(although their model is different from ours), we have used
this kind of table constraints to represent transitions.

Consider the DTGs in Figure 2 and their encoding as tran-
sition constraints in Figure 3. Suppose, we want to encode
the DTG of d-loc to a transition constraint. The state vari-
ables involved in this DTG are d-loc itself, t-loc and t-occ.
We need to consider the values of these 3 variables at time
τ and τ + 1. The table used for encoding has 6 columns
d-locτ , d-locτ+1, t-locτ , t-locτ+1, t-occτ , t-occτ+1. After
determining the columns, we have to find the rows of the ta-
ble. Any DTG edge and hence the corresponding action can
change the value of the d-loc and hence adds a table row.

The edge from A to t labeled with c2 in the DTG denotes
the board truck. Due to this edge, d-loc can change from A
to t at time τ if truck t is at location A and is not occupied.

3270



We therefore have the 1st row in the table with values (A,
t, A, A, false, true) for columns (d-locτ , d-locτ+1, t-locτ ,
t-locτ+1, t-occτ , t-occτ+1) respectively. The 2nd row cor-
responds to the edge from t to A with label c1; notice that
t-occτ is ‘-’ because t-occ is not a precondition of the cor-
responding action disembark truck. The 7th row in the table
represents the walk action and thus the edge from C to D.
The driver can change his location by walking between C
and D. In this case, variables t-loc and t-occ can take any
values and are thus considered don’t care. Considering the
three cases above, we can determine the table rows 1-10.
Lastly, the driver can stay at the same location between suc-
cessive times. We therefore have table rows 11-15 with d-loc
having the same value at time τ and τ +1 and the other vari-
ables having don’t cares as their values.

TC for d-loc
d-loc t-loc t-occ
τ τ + 1 τ τ + 1 τ τ + 1

A t A A F T
t A A A - F
B t B B F T
t B B B - F
C t C C F T
t C C C - F
C D - - - -
D C - - - -
A D - - - -
D A - - - -
A A - - - -
B B - - - -
C C - - - -
D D - - - -
t t - - - -

TC for t-occ
t-occ d-loc t-loc
τ τ + 1 τ τ + 1 τ τ + 1

F T A t A A
F T B t B B
F T C t C C
- F t A A A
- F t B B B
- F t C C C
F F - - - -
T T - - - -

TC for t-loc
t-loc d-loc

τ τ + 1 τ τ + 1

A B t t
B A t t
B C t t
C B t t
A A - -
B B - -
C C - -

Figure 3: Encoding domain transitions in DTGs in Figure 2
using table constraints. In the figure, Driver: d; Truck: t; Lo-
cations: A, B, C, D; Boolean: T, F; loc: location; occ: occu-
pied; TC: transition constraint; ‘-’: don’t care; τ : time step.

Procedure 2 encodes a DTG into a table constraint. We
first determine the columns in the table (see Step 1). For
a state variable vi with DTG Gi, the table T iτ at time τ
has columns viτ , viτ+1, v

j
τ s, vjτ+1s, where vjs are variables

appearing on all edges of Gi. Each transition constraint is
therefore a k-ary constraint where k = 2(l + 1) and l is the
number of variables appearing on the edges of Gi. Next, we
extract the rows of the table for each edge in the Gi (see
Step 2). Suppose (p, q) is an edge in Gi and tr is the corre-
sponding row to be added to the table. With respect to the
edge, Row tr will have appropriate values in the relevant
columns and don’t cares ‘-’ in the irrelevant columns. Be-
cause of edge (p, q), clearly, viτ is p and viτ+1 is q; note p
could be ‘-’ in the Gi.

Procedure 2 tc(viτ ) // transition-constraint

Gi: DTG for vi, T iτ : table for transitions of viτ
V = {vi} ∪ {vx : vxappears on an edge in Gi}

1. Foreach vk ∈ V , T iτ has two columns vkτ and vkτ+1

2. Foreach edge (p, q) in Gi // p, q are values of vi

tr: a new row in T iτ , each col has don’t care ‘-’
tr[viτ ] = p, tr[viτ+1] = q // note p could be ‘-’
// Modify tr in the following ways
Foreach condition vx = r on the edge (p, q)

apq: the action associated with edge (p, q)
If vx only in precondition of apq

tr[viτ ] = tr[viτ+1] = r
ElseIf vx both in precond and effect of apq

Assume vx ← s in effect of apq
tr[viτ ] = r and tr[viτ+1] = s

ElseIf vx only in effect of apq i.e. r = ‘-’
tr[viτ+1] = s where vx ← s in effect of apq

3. Foreach value p in domain of vi
tr: a new row in T iτ , each col has don’t care ‘-’
// Modify tr in the following ways
tr[viτ ] = tr[viτ+1] = p

We now consider every condition vx = r on the edge
and three cases to determine other relevant column values.
Assume apq is the action corresponding to the edge (p, q).

1. vx only in apq’s precondition: In this case, vx is a pre-
vailing condition for apq and remains the same at time τ
and τ + 1 ensuring that during the execution of apq , vx’s
value does not change by any other action.

2. vx in apq’s precondition and effect both: Assuming
vx ← s is in the effect, the values of vx at time τ and
τ + 1 in this case are trivially r and s respectively.

3. vx only in apq’s effect i.e. r is ‘-’: In this case, we need
to specify the value of vx only at time τ + 1, which we
assume is s. At time τ , the value of vx is don’t care ’-‘.

Lastly, to allow vi’s value to be the same between successive
time steps τ and τ+1, we need one row for each value in the
vi’s domain assuming don’t care values for other variables
in the row (see Step 3 in Procedure 2).

To summarise, we have mn transition constraints for a
problem where m is the number of DTGs and n is the current
makespan. Also, the number of rows in the table constraint
for a DTG is e + d where e is the number of edges in the
DTG and d is the domain size of the variable.

Negative Constraints
While we need positive transition constraints to encode al-
lowable changes, we also need negative constraints to pre-
vent inconsistent changes from happening at the same time
and between mutex groups in the SAS+ representation. We
have two kinds of negative constraint in our encoding, mutex
constraints and parallelism constraints.

Mutex Constraints: In the SAS+ representation of a
planning problem, sometimes there are mutex groups con-
taining a number of variable-value pairs that are mutually
exclusive with each other. To ensure that no pair of these

3271



occurs at the same time, we use mutex constraints. These
constraints are 2-ary negative constraints. To summarise, for
each mutex pair (vi = p, vj = q) in mutex groups, we call
procedure mt(vi, p, vj , q) to add a table with columns viτ , v

j
τ

and a row with column values p, q.
Parallelism Constraints: Not all instantiated actions can

occur at the same time in a parallel plan. Two instantiated
actions are inconsistent in the sense that they can not oc-
cur at the same time if there is a common state variable in
their preconditions and effects and the values are conflicting.
More precisely instantiated actions A and B are inconsistent
if any of the four conditions hold (Barták 2011b):

1. Preconditions of A, B share a variable with conflicting values.
∃(vi = p) ∈ pre(A)∃(vj = q) ∈ pre(B)[vi = vj ∧ p 6= q]

2. A variable in A’s effect also appears in B’s effect.
∃(vi ← p) ∈ eff(A)∃(vj ← q) ∈ eff(B)[vi = vj ]

3. A variable in A’s effect appears in B’s precondition.
∃(vi ← p) ∈ eff(A)∃(vj = q) ∈ pre(B) : [vi = vj ]

4. A variable in B’s effect appears in A’s precondition.
∃(vi ← p) ∈ eff(B)∃(vj = q) ∈ pre(A) : [vi = vj ]

Our model automatically prevents Case 1 from happening.
It also automatically prevents Cases 2, 3 and 4 from happen-
ing but only when p 6= q. When p = q, we need negative
constraints to ensure that instantiated actions A and B never
happen at the same time. These negative constraints involve
all state variables in the preconditions and effects of A and B
and the tuples provide the non-allowed values of the corre-
sponding CSP variables at time steps τ and τ +1. Construc-
tion of these negative tuples is similar to the construction of
tuples for the edges in DTGs.

Theorem 1 Our constraint encoding of a SAS+ problem is
sound. Solving such a constraint problem for the lowest pos-
sible time horizon leads to an optimal parallel plan.

We do not provide the proof of the above theorem. How-
ever, the proof can be easily constructed by finding the corre-
spondence of the transition constraints and the negative con-
straints with the semantics of the planning language and the
validity conditions of the plans. The optimality notion comes
from the GraphPlan algorithm (Blum and Furst 1995).

Solving Our CSP Model
To solve the resulting CSP model, we use the open source
constraint solver Minion with singleton arc consistency
and dom/wdeg (conflict) for variable ordering. To the best
of our knowledge, Minion is the only solver that imple-
ments SHORTSTR2 propagation (Jefferson and Nightingale
2013). SHORTSTR2 is an efficient and effective general
purpose propagation algorithm for exploiting short supports.
A support in a constraint for a domain value of a variable is
a justification that the value may still form part of an assign-
ment that satisfies the constraint. Some constraints can be
satisfied by a short assignment that is assigning only a few
of their variables. After the short assignment, the constraint
doesn’t care about the values of the rest. A short assign-
ment that satisfies the constraint is called a short support.
Because of don’t-care values in our table constraints, we use

Minion with SHORTSTR2. We selected singleton arc con-
sistency and dom/wdeg in Minion by testing various options.
Without arc consistency, the CPU time increases in most do-
mains. Also, dom/wdeg was apparently found to be the best
option when tried on a number of problems. To use Gener-
alised Arc Consistency (GAC) propagation implemented in
all solvers, we need to expand all the don’t-care values in our
constraints. As a result, the number of valid assignments in-
creases and the efficiency of GAC propagation severely de-
creases. In our encoding, the number of valid assignments is
fewer than the number of all possible assignments. Exploit-
ing SHORTSTR2 which works on constraints with don’t-
care values, our planner thus becomes very efficient.

Experimental Results
We ran experiments on a PC with Intel 3.5GHz CPU, 8GB
memory limit and 30 minute timeout. Our time measurement
starts from the input PDDL to the output plan. We tested
our planner on 12 domains from past International Planning
Competition (IPC) STRIPS versions. We compare our plan-
ner with two constraint-based planners Constance (Gregory,
Long, and Fox 2010) and PaP2 (Barták 2011b). We choose
these planners because they represent the current state of the
art of constraint based planning. Constance is a sequential
planner that performs better than CPT (Vidal and Geffner
2006) and SeP (Barták and Toropila 2008). SeP performs
better than GP-CSP (Do and Kambhampati 2001) and CSP-
plan (Lopez and Bacchus 2003). PaP2 is a parallel planner
that is faster than SeP and PaP1 (Barták 2011a). To check
how TCPP performs compared to the state-of-the-art heuris-
tic search planners, we also run Fast Downward with option
–search astar(lmcut()) and denote it by FDLMC.

Planning Instance Problem Instances Solved
Domains Count Instances Const PaP2 TCPP FDLMC
Airport 15 1-15 0 14 14 15
Blocks 35 4.0-17.0 13 13 32 28
Depot 10 1-10 2 3 7 6
Driverlog 15 1-15 6 13 13 14
Grid 05 0-5 1 1 2 2
Gripper 10 0-10 1 2 2 7
Logistics00 28 4.0-15.1 6 15 24 20
Logistics98 10 0-10 0 5 04 2
Miconic 35 1.0-7.4 27 34 27 35
Rovers 20 1-20 4 11 18 9
Tpp 15 1-15 4 8 10 7
Zenotravel 15 1-15 0 12 12 13
All domains 213 64 131 165 158

Figure 4: Numbers of problem instances solved by planners
when ran with 30-min-timeout on the same computer. Bold-
faced values denote the winner planner in the domain.

In Figure 4, we have reported the number of tested and
solved problem instances in each of the 12 IPC domains. We
observe that in Blocks, Depot, Grid, Logistics00, Rovers,
and TPP domains, TCPP is a clear winner over PaP2 while
PaP2 is a winner on Miconic and Logistics98. Planners PaP2
and TCPP perform similar in other 4 domains. Both TCPP

3272



Figure 5: Top: Time performance by PaP2 and TCPP on 9 domains where TCPP solved at least 5 instances. Bottom-Left: Time
performance of TCPP and FDLMC on 5 domains (comparatively challenging for FDLMC) with instances requiring at least 0.1
second by one of the planners. Bottom-Right: Total number of problems solved over all 12 domains when less-than 30 minute
time-cutoffs are used for each planner on each problem instance in each domain.

and PaP2 solves much more problems than Constance in
most domains. TCPP also wins over FDLMC in Blocks,
Logistics00, Rovers and TPP. To summarise, 213 problems
have been attempted in total in the 12 domains. Constance,
PaP2, and FDLMC can respectively solve 64 (i.e. 30%), 131
(i.e. 61.5%), and 158 (i.e. 74.2%) of them while TCPP can
solve 165 (i.e 77.5%). Clearly, TCPP can solve 16% more
problems than PaP2 and 3.3% more than FDLMC.

Rather than showing the performance at the end of 30-
minute timeout, Figure 5 (Bottom-Right) depicts the total
number of problems solved if certain less-than-30-minute
time-cutoffs are used for each planner on each problem in
each domain. All domains considered together, TCPP is sig-
nificantly better in solving more problems than PaP2 regard-
less of the exact time cutoff (less than 30-minutes) being
used. Interestingly, FDLMC can solve more problems than
TCPP with smaller timeouts, but after few minutes TCPP-
starts solving more problems and wins at the end.

Figure 5 (Top) shows the planners’ performance on prob-
lem instances in 9 domains where TCPP could solve at least
5 instances. For space constraints, we do not show the other
3 domains where performance is similar for both planners.
Note the times on the y-axis are in logarithmic scale. Over-
all, TCPP solves more problems than PaP2 in most domains
and solves problems faster in most domains as well. The
differences in performance is huge in domains such as air-
port, blocks, and depots. In driverlog and zenotravel, TCPP

is consistently better. In logistics00, rover, and tpp, the gap
is narrow but more problems have been solved. TCPP per-
formed worse than PaP2 in Miconic where TCPP solved
fewer instances and was significantly slower as well.

In Figure 5 (Bottom-Left), we compare FDLMC and
TCPP in 5 domains on problem instances where one of the
planners take at least 0.1 second; TCPP clearly outperforms
FDLMC. Just for example, we list few specific instances
where TCPP won over FDLMC, depot-4(11.44sec vs
233.34sec), logistics00-11-0(0.46sec vs 88.36sec), rovers-
8(19.18sec vs 1468.14sec), tpp-7(1.35sec vs 1137.96sec),
zenotravel-12(29.16sec vs 230.48sec). However, FDLMC
solves all airport and miconic problems in negligible time.
Also, in other domains on problem instances that FDLMC
can solve, it solves in much less time than TCPP.

Lastly, we report the maximum number of columns in the
encoded tables as follows: depot 108, blocks 70, tpp 20,
driverlog 18, zenotravel 12, logistics00 16, logistics98 76,
grid 42, gripper 48, miconic 6, airport 440, and rovers 50.

Conclusions
We have presented a new constraint model for parallel plan-
ning. We translate the domain transition graphs of a planning
problem into table constraints with don’t cares and use ad-
vanced constraint solving techniques. Our planner thus out-
performs existing constraint-based planners in terms of so-
lution time and the number of problem instances solved.

3273



References
Bäckström, C., and Nebel, B. 1995. Complexity results for SAS+
planning. Computational Intelligence 11:625–656.
Barták, R., and Toropila, D. 2008. Reformulating constraint mod-
els for classical planning. In Proceedings of the International
FLAIRS Conference, 525–530.
Barták, R., and Toropila, D. 2009a. Enhancing constraint models
for planning problems. In Proceedings of the International FLAIRS
Conference.
Barták, R., and Toropila, D. 2009b. Revisiting constraint models
for planning problems. In International Symposium on Methodolo-
gies for Intelligent Systems, 582–591.
Barták, R. 2011a. A novel constraint model for parallel planning.
In Proceedings of the International FLAIRS Conference.
Barták, R. 2011b. On constraint models for parallel planning: The
novel transition scheme. In Proceedings of the Eleventh Scandina-
vian Conference on Artificial Intelligence, 50–59.
Blum, A. L., and Furst, M. L. 1995. Fast planning through planning
graph analysis. Artificial Intelligence 90(1):1636–1642.
Cesta, A., and Fratini, S. 2008. The timeline representation frame-
work as a planning and scheduling software development environ-
ment. In Proceedings of the 27th Workshop of the UK Planning
and Scheduling Special Interest Group.
Do, M. B., and Kambhampati, S. 2001. Planning as constraint
satisfaction: Solving the planning-graph by compiling it into CSP.
Artificial Intelligence 132:151–182.
Gent, I. P.; Jefferson, C.; and Miguel, I. 2006. MINION: a fast,
scalable, constraint solver. In Proceedings of the European Con-
ference on Artificial Intelligence.
Ghallab, M.; Knoblock, C.; Barrett, A.; Christianson, D.; Fried-
man, M.; Kwok, C.; Golden, K.; Penberthy, S.; Smith, D. E.; Sun,
Y.; and Weld, D. 1998. PDDL: the planning domain definition
language. In Technical Report, Yale University.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated Plan-
ning - Theory and Practice. Elsevier.
Gregory, P.; Long, D.; and Fox, M. 2010. Constraint based plan-

ning with composable substate graphs. In Proceedings of the Eu-
ropean conference on Artificial Intelligence, 453–458.
Helmert, M. 2006. The fast downward planning system. Journal
of Artificial Intelligence Research 26:191–246.
Helmert, M. 2009. Concise finite-domain representations for
PDDL planning tasks. Artificial Intelligence 173(5-6):503–535.
Huang, R.; Chen, Y.; and Zhang, W. 2010. A novel transition based
encoding scheme for planning as satisfiability. In Proceedings of
the Twenty-Fourth National Conference on Artificial intelligence
(AAAI).
Jefferson, C., and Nightingale, P. 2013. Extending simple tabular
reduction with short supports. In Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI).
Judge, M., and Long, D. 2011. Heuristically guided constraint
satisfaction for planning. In Proceedings of the 29th Workshop of
the UK Planning and Scheduling Special Interest Group.
Kautz, H., and Selman, B. 1992. Planning as satisfiability. In
Proceedings of the European Conference on Artificial Intelligence,
359–363.
Lopez, A., and Bacchus, F. 2003. Generalizing graphplan by for-
mulating planning as a CSP. In Proceedings of the 18th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 954–960.
Morgan Kaufmann Publishers.
van Beek, P., and Chen, X. 1999. CPlan: A constraint programming
approach to planning. In Proceedings of the Sixteenth National
Conference on Artificial intelligence, AAAI ’99/IAAI ’99, 585–
590.
Verfaillie, G.; Pralet, C.; and Lemaı̂tre, M. 2010. How to model
planning and scheduling problems using constraint networks on
timelines. Knowledge Engineering Review 25(3):319–336.
Vidal, V., and Geffner, H. 2006. Branching and pruning: An op-
timal temporal POCL planner based on constraint programmming.
Artificial Intelligence 170(3):298335.
Vidal, V. 2004. Branching and pruning: An optimal temporal
POCL planner baed on constraint programming. In Artificial In-
telligence, 570–577.

3274




