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Abstract

Backdoors are a powerful tool to obtain efficient algo-
rithms for hard problems. Recently, two new notions
of backdoors to planning were introduced. However,
for one of the new notions (i.e., variable-deletion) only
hardness results are known so far. In this work we im-
prove the situation by defining a new type of variable-
deletion backdoors based on the extended causal graph
of a planning instance. For this notion of backdoors sev-
eral fixed-parameter tractable algorithms are identified.
Furthermore, we explore the capabilities of polynomial
time preprocessing, i.e., we check whether there exists
a polynomial kernel. Our results also show the close
connection between planning and verification problems
such as Vector Addition System with States (VASS).

1 Introduction
Classical planning has been an intensively studied field of AI
for decades. Until today, planning remains a challenging task
due to its high computational complexity. Even propositional
STRIPS planning with unbounded plan length is PSPACE-
complete. This hardness has led to an intensive study of
tractable fragments such as in the work by Bylander (1994)
and by Bäckström and Nebel (1995).

The framework of parameterized complexity (Downey and
Fellows 1999) has been successfully used to find tractable
fragments for problems in AI and beyond. For more details
see, e.g., the survey of Gottlob and Szeider (2008). The basic
idea of a parameterized complexity analysis is to find param-
eters capturing the computational hardness in a way such that
the combinatorial explosion can be confined to these parame-
ters. Thus, the runtime is measured not only in terms of the
input size n but also with respect to one or several parameters
k of the instance. The class FPT (fixed-parameter tractable)
contains all problems that can be solved by an algorithm in
time f(k) · nO(1), where n denotes the size of the instance
and f(k) is a computable function depending on parameter
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k only. Such an fpt-algorithm can be considered efficient as
long as the value of the parameter is sufficiently small.

Using these techniques a variety of tractable fragments
in form of fpt-algorithms has been revealed for plan-
ning (Downey, Fellows, and Stege 1999; Bäckström et al.
2012; Bäckström et al. 2013; Kronegger, Pfandler, and Pich-
ler 2013; Kronegger, Ordyniak, and Pfandler 2014). In the
last years the so-called backdoor approach has become a valu-
able tool to obtain fpt-algorithms, e.g., for SAT (Nishimura,
Ragde, and Szeider 2004; Gaspers et al. 2013; Gaspers and
Szeider 2013), QBFs (Samer and Szeider 2009), ASP (Fichte
and Szeider 2011), Argumentation (Dvorák, Ordyniak, and
Szeider 2012), and also for SAS+ planning (Kronegger, Or-
dyniak, and Pfandler 2014). Recently, backdoors were used
to construct parameterized reductions for problems that are
harder than NP (Fichte and Szeider 2013; Pfandler, Rümmele,
and Szeider 2013).

In the backdoor approach, the aim is to find a robust fpt-
algorithm that also performs well on instances that are not
part of the considered tractable base class, but are sufficiently
close to this class. This leads to an algorithm which is applica-
ble to a larger set of instances (when compared to algorithms
for the tractable base class). Usually, the performance of such
an algorithm scales with the distance to the tractable base
class. Solving a problem with the backdoor approach con-
sists of two phases. First, we have to find a backdoor of small
size (detection phase), which can afterwards, in the second
phase, be used as additional information to guide the deci-
sion algorithm for the original problem (evaluation phase). A
challenging task is to find suitable notions of backdoors and
algorithms building upon these notions such that both phases
can be solved efficiently, i.e., by an fpt-algorithm. For plan-
ning, it turned out that backdoors cannot be defined in such
a direct way as it is possible for SAT and related problems.
This is because a suitable notion is needed to describe the
underlying structure of the planning instance.

In the work of Kronegger, Ordyniak, and Pfandler (2014)
the first two backdoors for planning were introduced. These
backdoors measure the number of variables/actions that have
to be deleted such that the underlying causal graph decom-
poses into weakly connected components of small size. Such
instances of constant component size are known to be effi-
ciently solvable (Chen and Giménez 2010). For the notion
of action-deletion backdoors several fpt-algorithms were ob-
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tained. Among these results is also the first fpt-algorithm
for planning with unbounded plan length that limits neither
the number of variables or actions in the instance. Unfortu-
nately, for variable-deletion backdoors only parameterized
intractability results were shown (W[1]-hardness, to be more
precise). Finding fpt-algorithms also for backdoors based on
variable-deletion would, however, be very desirable since
there are instances for which the notion of deleting variables
is stronger than deleting actions.
Main contributions
• We introduce a new type of a variable-deletion backdoors

based on the underlying extended causal graph. This new
type of backdoor leads to three fpt-algorithms for planning,
i.e., fpt-algorithms both for the detection and evaluation
problem. We complement these results by showing param-
eterized intractability for several evaluation problems.

• In our results we show the close connection between plan-
ning and verification problems, as we build upon Vec-
tor Addition Systems with States (VASS), a formalism
strongly related to Petri-nets, to obtain fpt-results for plan-
ning.

• We present efficient preprocessing algorithms, polynomial
kernels to be more precise, for the detection problems and
rule out their existence for the evaluation problems.

2 Preliminaries
We assume the reader to be familiar with the basics of com-
plexity theory and planning.
Parameterized Complexity. In parameterized algorith-
mics (Downey and Fellows 1999; Flum and Grohe 2006;
Niedermeier 2006; Downey and Fellows 2013) the runtime
of an algorithm is studied with respect to a parameter k ∈ N
and input size n. The most favorable class is FPT (fixed-
parameter tractable) which contains all problems that can be
decided by an algorithm running in time f(k) · nO(1), where
f is a computable function. We call such an algorithm fixed-
parameter tractable (fpt). Formally, a parameterized problem
is a subset of Σ∗ × N, where Σ is the input alphabet. Let
L1 ⊆ Σ∗1 ×N and L2 ⊆ Σ∗2 ×N be parameterized problems.
A parameterized reduction (or fpt-reduction) from L1 to L2

is a mapping P : Σ∗1×N→ Σ∗2×N such that (i) (x, k) ∈ L1

iff P (x, k) ∈ L2, (ii) the mapping can be computed by an fpt-
algorithm w.r.t. parameter k, and (iii) there is a computable
function g such that k′ ≤ g(k), where (x′, k′) = P (x, k).

The class W[1] captures parameterized intractability and
contains all problems that are fpt-reducible to INDEPENDENT
SET when parameterized by the size of the solution. The
class paraNP (Flum and Grohe 2003) is defined as the class
of problems that are solvable by a non-deterministic Tur-
ing machine in fpt-time. In our paraNP-hardness proofs, we
will make use of the following characterization of paraNP-
hardness given by Flum and Grohe (2006), Theorem 2.14:
any parameterized problem that remains NP-hard when the
parameter is set to some constant is paraNP-hard. The follow-
ing relations between the parameterized complexity classes
hold: FPT ⊆ W[1] ⊆ XP, where the class XP contains all
problems solvable in time O(nf(k)) for a computable func-
tion f . Showing W[1]-hardness for a problem rules out the

existence of an fpt-algorithm under the usual complexity
theoretic assumption FPT 6= W[1].

Closely related to the search for fpt-algorithms is the search
for efficient preprocessing techniques. A kernelization al-
gorithm transforms in polynomial time a problem instance
(x, k) of a parameterized problem L into an instance (x′, k′)
of L such that (i) (x, k) ∈ L iff (x′, k′) ∈ L, (ii) k′ ≤ f(k),
and (iii) the size of x′ can be bounded above by g(k), for
functions f and g depending only on k. It is easy to show
that a parameterized problem is in FPT if and only if there
is kernelization algorithm. A polynomial kernel is a kernel
whose size can be bounded by a polynomial in the parameter.

Planning. Let V = {v1, . . . , vn} be a finite set of variables
over a finite domain D and let D+ = D ∪ {u}, where u is a
special “undefined” value not present in D. Then Dn is the
set of total states and (D+)n is the set of partial states over
V and D. Clearly, Dn ⊆ (D+)n. The value of a variable v
in a state s ∈ (D+)n is denoted by s[v] and the projection of
a state s to a set of variables V ′ ⊆ V is denoted by s[V ′]. A
SAS+ instance is a tuple P = 〈V,D,A, I,G〉 where V is a
set of variables, D is a domain, A is a set of actions, I ∈ Dn

is the initial state and G ∈ (D+)n is the (partial) goal state.
Each action a ∈ A has a precondition pre(a) ∈ (D+)n

and an effect eff(a) ∈ (D+)n. We will frequently use the
convention that a variable has value u in a precondition/effect
unless a value is explicitly specified. Let a ∈ A and s ∈ Dn.
Then a is valid in s if for all v ∈ V , either pre(a)[v] = s[v]
or pre(a)[v] = u. Furthermore, the result of a in s is a state
t ∈ Dn defined such that for all v ∈ V , t[v] = eff(a)[v]
if eff(a)[v] 6= u and t[v] = s[v] otherwise. We denote by
V (P), A(P) the set V and A, respectively. Let s0, s` ∈ Dn

and let ω = 〈a1, . . . , a`〉 be a sequence of actions (of length
`). Then ω is a plan from s0 to s` if either (i) ω = 〈〉 and
` = 0, or (ii) there are states s1, . . . , s`−1 ∈ Dn such that
for all 1 ≤ i ≤ `, ai is valid in si−1 and si is the result of
ai in si−1. A state s ∈ Dn is a goal state if for all v ∈ V ,
either G[v] = s[v] or G[v] = u. An action sequence ω is a
plan for P if ω is a plan from I to some goal state. We will
study backdoors for the following problems:

Given a SAS+ instance P and a positive integer k the
problem BOUNDED SAS+ PLANNING is parameterized by
k and asks whether P has a plan of length at most k. The
problem SAS+ PLANNING is defined analogously without a
bound on the plan length k.

Let P = 〈V,D,A, I,G〉 be a SAS+ instance,
V ′ ⊆ V . Then we denote by P[V ′] the SAS+ instance
〈V ′, Dr, Ar, Ir, Gr〉, where Dr is the restriction of D to the
domains of the variables in V ′, Ar are the actions in A whose
preconditions and effects are restricted to the variables in V ′,
and Ir and Gr are the restriction of I and G to the variables
in V ′. We denote by P(V ′) the SAS+ instance obtained from
P[V ′] after deleting all actions that correspond to actions in
P with at least one precondition or effect on a variable in
V \ V ′. We write P \ V ′ for the instance P[V \ V ′].
Vector Addition System with States. Let d ∈ N, u ∈ Zd,
and i ∈ {1, . . . , d}. We denote by u[i] the value of the i-th
entry (component) of u and by ||u|| the maximum absolute
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value of any entry of u, i.e., ||u|| = max1≤j≤d |u[i]|. We
also denote by u + v, u − v, and u ≤ v the component-
wise summation, subtraction, and comparison of u and v,
respectively. A d-VASS V is a pair 〈Q,∆〉, where Q is a
non-empty finite set of control points and ∆ ⊆ Q × Zd ×
Q is a finite set of transitions. A V-state s is a pair 〈q, v〉,
where q ∈ Q and v ∈ Nd. We denote by ||s|| the value
||v||. A run in V is a sequence 〈〈q1, v1〉, . . . , 〈qn, vn〉〉 of
V-states such that for every i with 1 ≤ i < n, ∆ contains
a transition 〈qi, v, qi+1〉 with vi+1 = vi + v. We say that
a V-state sG = 〈qG, vG〉 is coverable by a V-state sI =
〈qI , vI〉 in V if there is a covering of sG from sI in V, i.e.,
a run R = 〈〈q0, v0〉, . . . , 〈qn, vn〉〉 in V such that q0 = qI ,
v0 = vI , qn = qG, and vn ≥ vG. We denote by ||∆|| the
maximum ||v|| over all v ∈ Zd such that 〈q, v, q′〉 ∈ ∆ for
some q, q′ ∈ Q.

Theorem 1 (Bozzelli and Ganty (2011), Theorem 1).
Let V = 〈Q,∆〉 be a d-VASS and sI and sG be two
V-states. If sG is coverable from sI in V, then there
is a covering of sG from sI in V of length at most
(|Q| · (||∆||+ ||sG||+ 2))

(3d)!+1.

3 A New Type of Backdoors
The backdoor approach is a powerful tool to obtain fpt-
algorithms for hard problems. This approach comprises two
phases: In the first phase, the detection phase, one needs to
find a certain set, the backdoor, whose size is used to mea-
sure the distance of a given instance to a tractable base class.
After that, in the second phase, which is called the evaluation
phase, the additional information stored in the backdoor set
is used to solve the problem efficiently. The runtime of the
evaluation phase usually depends exponentially on the size
of the given backdoor. Still, we can consider the algorithm
to be efficient as long as the backdoor is reasonably small.
Therefore, the size of the backdoor set is usually considered
as a parameter. In particular, if detection and evaluation are
both fpt, this yields an fpt-algorithm for the whole problem.

Recently, for SAS+ PLANNING the first two notions of
backdoors were introduced (Kronegger, Ordyniak, and Pfan-
dler 2014), where the so-called causal graph (Knoblock 1994;
Brafman and Domshlak 2006; Chen and Giménez 2010;
Bäckström and Jonsson 2013) is used to capture the struc-
ture of the instance. The considered base class contains all
instances for which the size of the largest weakly-connected
component of the underlying causal graph is bounded by a
constant c. For this base class, SAS+ PLANNING is solvable
in polynomial time (Chen and Giménez 2010).

Kronegger, Ordyniak, and Pfandler (2014) considered two
types of backdoors: action-deletion and variable-deletion
backdoors. While for both types detection is fpt, the complex-
ity of evaluation varies among these two types. For the former
type several fpt-algorithms were found. In contrast, for the
latter type only W[1]-hardness results were shown that rule
out the existence of an fpt-algorithm under the usual assump-
tions. Having fpt-algorithms for variable-deletion backdoors
would, however, be beneficial as variable-deletion can be
stronger than action-deletion. This is because, deleting a sin-
gle, central variable can have the same effect as deleting a

large set of actions, which can result in a notably smaller
backdoor.

The goal of this work is to find an improved type of
variable-deletion backdoors, for which detection remains
fpt and for which evaluation becomes fpt. To this end, we
introduce the extended causal graph GE(P) of a SAS+ in-
stance P = 〈V,D,A, I,G〉. GE(P) is a directed graph with
vertices V that contains an arc (v, v′), for distinct v, v′ ∈ V ,
if there is an action a ∈ A with (i) pre(a)[v] 6= u and
pre(a)[v′] 6= u, or (ii) pre(a)[v] 6= u and eff(a)[v′] 6= u,
or (iii) eff(a)[v] 6= u and eff(a)[v′] 6= u. With cc-size(G)
we denote the largest weakly connected component of a di-
graph G. We remark that the notion of the causal graph of
P, denoted by GC(P), is similar to the definition above, with
the difference that it does not add an edge between variables
appearing in the precondition of an action. Therefore, the ex-
tended causal graph is more restrictive and hence the tractable
fragment mentioned above immediately carries over to the
extended causal graph. Furthermore, as studied by Kronegger,
Ordyniak, and Pfandler (2014), this base class can also be
used for BOUNDED SAS+ PLANNING.

In this work, we consider variable-deletion backdoors on
the extended causal graph together with four different set-
tings of planning. We study the SAS+ PLANNING and the
BOUNDED SAS+ PLANNING problem in case of a bounded
or unbounded domain of the variables, as well as, novel
backdoor specific restrictions, such as, instances that do not
contain “mixed actions” (i.e., actions having effects both on
the backdoor set and at least one component). In our analy-
sis, we present fpt-algorithms, and hardness results for the
classes W[1] and paraNP. If a problem is known to be fpt,
the next challenge is to find (or rule out the existence of) a
method for efficient preprocessing, i.e., a polynomial kernel.
Of course this is the most desirable result, as this yields a
versatile polynomial time algorithm that produces a small,
equivalent instance, which can in turn be processed by any al-
gorithm for the problem. The results obtained in this work are
juxtaposed with known results from the literature (Kronegger,
Ordyniak, and Pfandler 2014) in Table 1. Due to space lim-
itations several proof details had to be omitted. The proofs
for results marked with ∗ are provided in the supplementary
material (Kronegger, Ordyniak, and Pfandler 2015).

3.1 Detection
As a first step, we show that detection of our new type of
backdoors remains fpt as it was for the version defined over
the causal graph. Actually, we prove a stronger result, namely,
that there exists a polynomial kernel for the detection prob-
lem. This is good news as this lets hope for very efficient
detection algorithms. We consider the following problem:

c-EXTENDED CAUSAL DETECTION[VARIABLES]
Instance: A SAS+ instance P and a positive integer k.

Parameter: k
Question: Is there a set S of at most k variables of P

such that cc-size(GE(P \ S)) ≤ c?

Throughout the paper, we abbreviate c-EXTENDED CAUSAL
DETECTION[VARIABLES] with c-DET.
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Detection Evaluation
Setting Domain (un)bounded plan len. bounded plan len. unbounded plan length
variable-del. in GC (un)bounded in FPT † W[1]-hard † W[1]-hard †
action-del. in GC

bounded in FPT † in FPT † in FPT †
unbounded in FPT † in FPT † paraNP-hard †

variable-deletion
in GE

bounded
in FPT and in FPT (Thm. 8) sog: in FPT (Cor. 13) and npk (Thm. 16)
pk (Thm. 3) and nma: in FPT (Thm. 15) and npk (Thm. 16)

npk (Thm. 16) in general: in XP (Thm. 10) and npk (Thm. 16)

unbounded in FPT and W[1]-hard and paraNP-hard (Thm. 4)pk (Thm. 3) in XP (Thm. 5)

Table 1: Complexity map. Results marked with † are shown in (Kronegger, Ordyniak, and Pfandler 2014). We use the abbreviation
(n)pk for “(no) polynomial kernel”, sog for “additionally parameterized by the size of the goal” and nma for ”no mixed actions“.

Before we start with our parameterized analysis we need
to show that the detection problem is NP-hard. Inspecting the
NP-hardness proof for variable-deletion backdoors based on
the causal graph (Kronegger, Ordyniak, and Pfandler 2014,
Theorem 2), we observe that the construction does not use
preconditions in the actions. Thus, the result carries over to
backdoors based on the extended causal graph.
Corollary 2. c-DET is NP-hard even for planning instances
with bounded domain.

In the next result we show that the detection problem is
not only fpt when parameterized by the size of the backdoor
but also admits a polynomial kernel.
Theorem 3. c-DET admits a polynomial kernel of size at
most O((k + k(k + c)c)2) and hence is fpt.

Proof. Let 〈P, k〉 be an instance of c-DET over variables
V = V (P). We can construct GE(P) in polynomial time.

W.l.o.g. we can assume that GE(P) is weakly connected,
otherwise a deletion set for GE(P) can be obtained as the
union of deletion sets for every component of GE(P). Further-
more, we can assume that the degree of every vertex of GE(P)
is at most k + c. Assume that this is not the case, i.e., there
is a vertex v of GE(P) with more than k + c neighbors. Then
v has to be contained in the deletion set, because otherwise
the deletion set would have to contain more than k of its
neighbors. Consequently, 〈P \ {v}, k − 1〉 is equivalent to
〈P, k〉. We now show that if 〈P, k〉 is a YES-instance, then
P can have at most k + k(k + c)c variables. So assume that
〈P, k〉 is a YES-instance and let S be a deletion set of size
at most k witnessing this. Because every vertex in S has at
most k + c neighbors and GE(P) is connected, we obtain that
GE(P)\S has at most k(k+ c) components and hence 〈P, k〉
has at most k + k(k + c)c variables. Thus, we can transform
〈P, k〉 in polynomial time into an equivalent instance 〈P′, k′〉
that contains at most k′′ = k + k(k + c)c variables. The
following claim shows that also the number of actions can be
bounded and thus we obtain a polynomial kernel.
Claim 1 (*). There is an equivalent instance 〈P′′, k′〉 with at
most k′′ variables and at most (k′′)2 actions.

3.2 Evaluation
After we have shown that detection is fpt, we turn to the
evaluation problem. Finding an fpt-result for these problems

would hence give an fpt-result for the whole backdoor ap-
proach. This is in particular interesting as no fpt-results for
variable-deletion backdoors are known so far (cf. Table 1).
The evaluation problems are defined as follows:

c-BOUNDED EXTENDED CAUSAL EVALUATION[VARIABLES]
Instance: A SAS+ instance P, a positive integer k,

and a set S of variables of P such that
cc-size(GE(P \ S)) ≤ c.

Parameter: |S|+ k
Question: Does P have a plan of length at most k?

The problem c-EXTENDED CAUSAL EVALUA-
TION[VARIABLES] is defined analogously without a
bound on the plan length k. We abbreviate c-EXTENDED
CAUSAL EVALUATION[VARIABLES], resp. c-BOUNDED
EXTENDED CAUSAL EVALUATION[VARIABLES], with
c-EVAL, resp. c-BOUNDED EVAL.

If neither the plan length nor the domain of the variables
is bounded, evaluation is paraNP-hard. However, if only the
length is bounded we obtain W[1]-hardness and membership
in XP. This yields a polynomial algorithm if the parameter
values are fixed to a constant.
Theorem 4 (*). 2-EVAL is paraNP-hard.

Theorem 5 (*). c-BOUNDED EVAL is W[1]-hard (even if
additionally parameterized by the number of variables) and
in XP.

Proof (sketch). Hardness can be shown by a reduction from
PARTITIONED CLIQUE parameterized by the number of par-
titions, which is known to be W[1]-complete (Pietrzak 2003).
The reduction is similar to the one given in (Kronegger, Ordy-
niak, and Pfandler 2014, Theorem 4) and is therefore omitted.
For XP-membership notice that all possible plans of length k
can be trivially bounded by O(nk), where n is the number
of actions in the SAS+ instance.

The above Theorem shows that c-BOUNDED EVAL is con-
tained in XP. In the following we will show that if we consider
only c-BOUNDED EVAL instances of bounded domain then
this can be improved to an fpt-result. Before showing this,
we need additional definitions.

We say that two instances P1 = 〈V1, D1, A1, I1, G1〉 and
P2 = 〈V2, D2, A2, I2, G2〉 of SAS+ PLANNING are isomor-
phic if there is a bijection ϕ from V1∪D1∪A1 to V2∪D2∪A2
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such that (i) ϕ(v) ∈ V2 for every v ∈ V1, ϕ(d) ∈ D2 for
every d ∈ D1, and ϕ(a) ∈ A2 for every a ∈ A1, (ii) for
every a ∈ A1 and v ∈ V1 it holds that ϕ(pre(a)[v]) =
pre(ϕ(a))[ϕ(v)] and ϕ(eff(a)[v]) = eff(ϕ(a))[ϕ(v)], and
(iii) for every v ∈ V1 it holds that ϕ(I1[v]) = I2[ϕ(v)] and
ϕ(G1[v]) = G2[ϕ(v)].

In the following let P = 〈V,D,A, I,G〉 be a SAS+ PLAN-
NING instance and S be a c-Extended Causal Backdoor of P.
We denote by C(P, S) the set of components of GE(P \ S) .
We say that two components C1 and C2 in C(P, S) are equiv-
alent, denoted by C1 ≡ C2, if there is an isomorphism ϕ
between P(V (C1)∪S) and P(V (C2)∪S) such that ϕ(s) = s
for every s ∈ S.

Let p ∈ N. We denote by E(P, S, p) the SAS+ PLAN-
NING instance obtained from P by removing any compo-
nent in excess of p from C(P, S) for every equivalence class
with respect to ≡. Furthermore, we write E(P, S) to denote
E(P, S, 1). By “removing a component C ∈ C(P, S) from P”
we mean that all variables in V (P) together with all actions
that have at least one precondition or effect in C are removed
from P. Observe that E(P, S, p) is unique up to isomorphism.

We denote by ET(P, S) an arbitrary but fixed ordering of
the components of C(E(P, S), S) and by EV(P, S) the vector
v ∈ N|ET(P,S)| such that for every i with 1 ≤ i ≤ |ET(P, S)|,
we have that v[i] is equal to the total number of components
of C(P, S) that are equivalent to the component ET(P, S)[i].
Observe that a planning instance P′ with c-Extended Causal
Backdoor S′ is equivalent to P if E(P, S) is isomorphic to
E(P′, S′) and EV(P, S) = EV(P′, S′). The following lemma
gives an upper bound on the number of equivalence classes
of the components.

Lemma 6 (*). |ET(P, S)| is at most c · ((|D|+ 1)2(c+|S|)) ·
2(|D|+1)2(c+|S|)

.

Our fpt-algorithms use the following general approach: We
first compute a reduced instance P′ of the form E(P, S, l) for
some l ∈ N that is equivalent to P in fpt time. We then use
the following lemma to show that P′ and hence also P can be
solved in fpt-time. Observe that instead of solving P′ using
brute-force (as it is done in the following lemma) one can use
state-of-the-art planners or even heuristic approaches to solve
P′. This provides a high degree of freedom for the design of
efficient algorithms that use our backdoor set approach.

Lemma 7 (*). Given a SAS+ PLANNING instance P, a
c-Extended Causal Backdoor S of P, and l ∈ N, we can
solve c-EVAL and c-BOUNDED EVAL of E(P, S, l) in time
O(|D|V (E(P,S,l)) + |V | · |ET(P, S)|).

With the help of the above two lemmas it is now relatively
straightforward to prove the following theorem.

Theorem 8 (*). c-BOUNDED EVAL is fpt for instances with
bounded domain.

Given that c-BOUNDED EVAL is fpt for instances with
bounded domain, it becomes natural to ask whether the same
holds for c-EVAL instances of bounded domain. Even though,
we are not able to answer this question in its full generality,
we obtain fpt-algorithms for two natural restrictions of this
problem, i.e., (i) if we consider the size of the goal as an

additional parameter, and (ii) for instances, which do not con-
tain any mixed actions, i.e., actions that have effects both on
S and on some component in C(P, S). Before showing these
two results we need some preparation. In particular, we first
show that c-EVAL is in XP for instances of bounded domain.

We denote by ST(P) an arbitrary but fixed ordering of
all possible (total) states of P. Let s be a (total) state of P
and assume that ET(P, S) = 〈C1, . . . , C|ET(P,S)|〉. Below
we define the vector ESV(P, S, s), which will be important
for the following constructions. The vector contains one
entry for every type of a component and for every possi-
ble state of a component, whose value is equal to the num-
ber of components of the corresponding type being in that
state (in the global state s). We denote by ESV-D(P, S)

the number
∑i≤|ET(P,S)|

i=1 |ST(P(V (Ci)))|. Let i with 1 ≤
i ≤ |ET(P, S)| and z ∈ ST(P(V (Ci))). We denote by
ESV-I(P, S, Ci, z) the number

∑j<i
j=1 |ST(P(V (Cj)))|+ jz ,

where z = ST(P(V (Ci)))[jz]. We denote by ESV(P, S, s)
the vector v ∈ NESV-D(P,S) such that for every i with
1 ≤ i ≤ |ET(P, S)| and every z ∈ ST(P(V (Ci))), we
have that v[ESV-I(P, S, Ci, z)] is equal to the total number
of components C in C(P, S) that are equivalent to Ci and
z = s[V (C)].

We say that two (total) states of the variables of P, s1 and
s2, are equivalent, denoted by s1 ≡S s2, if ESV(P, S, s1) =
ESV(P, S, s2) and s1[S] = s2[S].
Lemma 9 (*). Let P be a SAS+ PLANNING instance and
s1, s2 be two equivalent (total) states of the variables of P.
Then, for any plan from s1 to G in P, there is a plan from s2
to G in P of the same length, and vice versa.

It follows from the above lemma that in order to decide
whether P has a plan (of a certain length) one does not need
to distinguish between equivalent states, i.e., one can build
a compressed version of the state-transition graph of P that
only contains exactly one representative state for every equiv-
alence class. Furthermore, since the equivalence class of
any (total) state s of P can be represented by the vector
v = ESV(P, S, s) plus the partial state p = s[S], the com-
pressed state-transition graph contains at most as many states
as the number of possible vectors v times the number of
partial states p. This leads to the following theorem.
Theorem 10 (*). c-EVAL is in XP for planning instances
with bounded domain.

Next, we present our fpt-results for c-EVAL for instances
with bounded domain. We start by giving an fpt-algorithm
for the case where the goal is only defined on the backdoor
set S (but not on any component). This result is shown by
reducing the c-EVAL problem to the coverability problem for
d-VASS. Then we use a recently obtained result that bounds
the length of runs in a d-VASS (Bozzelli and Ganty 2011) to
solve the aforementioned special case. We want to note that
the reduction is interesting on its own as it applies to c-EVAL
in its full generality and shows a deep connection between
planning and the d-VASS coverability problem, which is
usually merely studied in the context of verification.

Given P and S, we construct a d-VASS V(P, S) = 〈Q,∆〉,
where d = ESV-D(P, S) + 1, and two V(P, S)-states sI and
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sG such that P has a plan if and only if sG is coverable
from sI in V(P, S). In the following we use the abbreviation
P≡ = 〈V≡, D≡, A≡, I≡, G≡〉 to denote the instance E(P, S).
For q ∈ N and v ∈ Nq, we denote by v∗ ∈ Nq+1 the vector
with v∗[i] = v[i] for every 1 ≤ i ≤ q and v∗[q + 1] = 0.

Let s be a (partial) state of P and V ′ ⊆ V . Then, we denote
by Z(P, s, V ′) an arbitrary but fixed ordering of the (total)
states of P(V ′) that are compatible with s[V ′]. The d-VASS
V(P, S) is constructed as follows.
S1 For every state of the variables in S, we add a control

point qs to Q.
S2 For every action a ∈ A(P≡), we distinguish two cases:

– If a has no precondition and no effect on any component
in C(P≡, S), then for every pS ∈ Z(P≡, pre(a), S), we
add the new control point qpS ,a and we add the transi-
tions 〈qpS

, 0, qpS ,a〉 and 〈qpS ,a, 0, qeS 〉 to ∆, where eS
is the result of a in pS on P≡(S).

– otherwise, i.e., if a has at least one precondition
or effect on a component C in C(P≡, S). Then,
for every pS ∈ Z(P≡, pre(a), S) and every pC ∈
Z(P≡, pre(a), V (C)), let eS be the result of a in pS on
P≡(S) and let eC be the result of a in pC on P≡(V (C)).
Then we add a new control point qpS ,a and the transi-
tions 〈qpS

, v1, qpS ,a〉 and 〈qpS ,a, v2, qeS 〉 to ∆, where
v1 ∈ Nd is −1 at the ESV-I(P≡, S, C, pC)-th entry
and 0 on all other entries and v2 ∈ Nd is +1 at the
ESV-I(P≡, S, C, eC)-th entry and 0 on all other entries.

S3 We add a “goal control point” qG to Q, as well as, a
transition 〈qs, 0, qG〉 for every state s ∈ Z(P≡, G≡, S).

S4 Let ET(P≡, S) = {C1, . . . , C|ET(P,S)|}. For every i
with 1 ≤ i ≤ |ET(P≡, S)| such that G≡[V (Ci)] 6=
u, and every g ∈ Z(P≡, G≡, V (Ci)), we add the
transition 〈qG, v, qG〉, where v is the vector with
v[ESV-I(P≡, S, Ci, g)] = −1, v[d] = +1, and all other
entries are 0.

S5 We set sI = 〈qI[S],ESV(P, S, I)∗〉 and sG = 〈qG, vG〉,
where vG[d] is equal to the number of components C in
C(P, S) with G[V (C)] 6= u and all other entries of vG are
set to 0.

Theorem 11. Let P be a SAS+ PLANNING instance with
goal G, S be a c-Extended Causal Backdoor of P, d =
ESV-D(P, S) + 1, and V(P, S) = 〈Q,∆〉 be the d-VASS
obtained from P and S. Furthermore, let sI and sG be
two V(P, S)-states (as defined above) and g be the num-
ber of components C in C(P, S) with G[V (C)] 6= u. Then,
sI and sG satisfy the following properties: (P1) P has a
plan of length at most k if and only if there is a covering
of sG from sI in V(P, S) of length at most 2k + g + 2,
(P2) |Q| ≤ |ST(P(S))| · (1 + |A(P≡)|) + 1, (P3) ||∆|| ≤ 1,
(P4) ||sG|| = g, and (P5) V(P, S) can be constructed in time
O(|ET(P, S)| · (|V |+ (|D|+ 1)2(|S|+c))).

Proof (sketch). Due to space restrictions we only sketch the
proof of (P1). To this end, we need the following claim.

Claim 2 (*). There is a run of length l from sI to some
V(P, S)-state se ∈ { 〈qs, v〉 | s ∈ ST(P(S)) and v ∈ Nd } if
and only if there is a total state s of P and a sequence ω of

actions of length l−1
2 such that s is the result of ω in I and

se = 〈qs[S],ESV(P, S, s)∗〉.
Assume that ω = 〈a1, . . . , ak〉 is a plan for P that results

in the state s. It follows from Claim 2 that there is a run r
from sI to 〈qs[S],ESV(P, S, s)∗〉 of length 2k + 1. Because
s is a goal state, we obtain from S3 that there is a transition
t = 〈qs[S], 0, qG〉. Furthermore, again because s is a goal
state, it follows that the sum of all entries of ESV(P, S, s)
that correspond to a goal state of some component is equal
to g. Hence, we obtain a covering of sG from sI of length
2k+ 1 + 1 + g = 2k+ g + 2, by appending t followed by all
the g applicable transitions of the form 〈qG, v, qG〉 (obtained
from S4) to r.

For the reverse direction assume that r is a covering
of length l of sG from sI in V(P, S). Since all outgoing
transitions from qG are self-loops, we obtain that V(P, S)-
states involving qG only appear (together) at the end of r.
Let se be the last state reached by r before the first oc-
currence of a state involving qG and let l′ be the length
of the subsequence of r from sI to se. Because the only
transitions leading to a state involving qG are from states
in { 〈qs, v〉 | s ∈ ST(P(S)) and v ∈ Nd }, we obtain that
se ∈ { 〈qs, v〉 | s ∈ ST(P(S)) and v ∈ Nd } (see S3).
It follows from Claim 2 that there is a total state s of P
and a sequence of actions ω of length l′−1

2 such that s is
the result of ω in I and se = 〈qs[S],ESV(P, S, s)∗〉. We
claim that ω is a plan of length l−g−2

2 for P. Since the only
transitions leading to qG are of the form 〈qs′ , 0, qG〉 where
s′ ∈ Z(P≡, G≡, S) (see S3), we obtain that s[S] is compat-
ible with G. Let 〈qG, v〉 be the last V(P, S)-state visited by
r. Because r covers sG, we obtain that v[d] ≥ g. Because
all transitions that increase the value of the d-th dimension
in V(P, S) also decrease the value of a dimension that corre-
sponds to some goal state of some component by the same
amount (see S4), it follows that the number of components,
whose state in s is compatible with the goal state, is at least
g. Because g is equal to the total number of components in
C(P, S) for which the goal state is defined (see S5), we ob-
tain that all of these components have reached a goal state
in s. Hence, s is compatible with G. Because exactly g + 1
transitions are executed by r after the state se, we obtain that
l′ = l− 1− g and hence the length of ω is l′−1

2 = l−g−2
2 , as

required.

Theorem 12. c-EVAL is fpt for instances with bounded do-
main and no goals in the components.

Proof. Let I = 〈P, S〉 be an instance of c-EVAL. Further-
more, let V(P, S) be the d-VASS and sI and sG be the two
V(P, S)-states as defined above, where d = ESV-D(P, S)+1.
Because of Proposition 1, we obtain that if sG is coverable
from sI in V(P, S), then there is a covering of sG from sI of
length at most l = (|Q| · (||∆||+ ||sG||+ 2))

(3d)!+1. Using
our assumption that G is not defined on any component in
C(P, S) together with Theorem 11 (P1), we obtain that any
minimal plan for P has length at most l−2

2 .
Because every action in a plan for P can change the state

of at most one component at a time and we assume that there
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are no goals defined on the components of C(P, S), we ob-
tain that P is equivalent to the instance P′ = E(P, S, l−2

2 ).
It follows from Lemma 7 that we can solve P in time
O(|D|V (P′) + |V | · |ET(P, S)|). To see that this is an fpt-
algorithm it only remains to show that V (E(P, S, l−2

2 )) can
be bounded by a function of c, |D|, and |S|. In particular,
because |V (E(P, S, l−2

2 ))| ≤ |S| + c · |ET(P, S)| · l−22 , it
is sufficient to bound |ET(P, S)| and l by a function of c,
|D|, and |S|. By Lemma 6 this clearly holds for |ET(P, S)|.
Furthermore, using our assumption that G is not defined
on any component in C(P, S) together with Theorem 11
(P2, P3, and P4), we obtain that l ≤ (3 · |Q|)(3d)!+1 ≤(
3 ·

(
|ST(P(S))| · (|A(P≡)| + 1) + 1

))(3d)!+1
, where

|A(P≡)| ≤ (|D| + 1)2(c+|S|)|ET(P, S)|, |ST(P(S))| ≤
|D||S|, and d = ESV-D(P, S) + 1 ≤ |ET(P, S)| · |D|c, as
required.

Corollary 13. c-EVAL is fpt for bounded domain and when
additionally parameterized by the size of the goal.

With help of the next lemma we show that c-EVAL is fpt
for bounded domain if there are no mixed actions.
Lemma 14 (*). Let I = 〈P, S〉 be an instance of c-EVAL
that contains no mixed actions. Then I is equivalent to the
c-EVAL instance I′ = 〈P′, S〉, where P′ = E(P, S,m) and
m = maxT∈ET(P,S) |ST(P(V (T )))|.

Proof (sketch). For the forward direction suppose that ω is a
plan for P. The main idea to obtain a plan for P′ is to make
efficient use of the limited amount of components available
and to ensure at the same time that every state of a component
that will be used at a later stage of the plan remains accessible.
Informally, this is achieved by avoiding to keep multiple com-
ponents that are in the same state for as long as possible. In
this way we are able to construct a valid sequence of actions
ω′′ for P′ whose application in I ′ results in a state s′′ such that
(1) s′′[S] is compatible with G′[S], (2) for every component
C in C(P′, S), either s′′[V (C)] = I ′[V (C)] or s′′[V (C)] is
compatible with G′[V (C)], and (3) for every T ∈ ET(P′, S)
there is a component C ∈ C(P′, S) equivalent to T such that
s′′[V (C)] is compatible with G′[V (C)]. The details for the
construction of ω′′ can be found in (Kronegger, Ordyniak,
and Pfandler 2015). Note that ω′′ almost constitutes a plan for
P′. It only remains to show how to extend ω′′ to ensure that
also the components that are still in the initial state after ap-
plying ω′′ to I ′ can reach a goal state. For every C ∈ C(P′, S)
with s′′[V (C)] = I ′[V (C)], we denote by C ′ a component in
C(P′, S) equivalent to C such that s′′[V (C ′)] is compatible
with the goal state (which must exists due to (3)). Then, we
obtain a plan for P′ by applying the following procedure for
every component C ∈ C(P′, S) with s′′[V (C)] = I ′[V (C)]:
For every occurrence of an action a′ in ω′′ that has at least
one effect on C ′, we insert (after the occurrence of a′) the
unique action a in P′(S ∪V (C)) that corresponds to a′. This
concludes the proof of the forward direction.

For the reverse direction suppose that ω′ is a plan for P′.
For every C ∈ C(P, S) \ C(P′, S), we denote by C ′ one of
the components in C(P′, S) that is equivalent to C. Then,
we obtain a plan for P by applying the following procedure

for every component C ∈ C(P, S) \ C(P′, S): For every
occurrence of an action a′ in ω′ that has at least one effect on
C ′, we insert (after the occurrence of a′) the unique action a
in P(S ∪ V (C)) that corresponds to a′.

Theorem 15. c-EVAL is fpt for instances with bounded do-
main and no mixed actions.

Proof. Let I = 〈P, S〉 be an instance of c-EVAL, and
m = maxT∈ET(P,S) |ST(P(V (T )))|. Because of Lemma 14,
it holds that I is equivalent to the instance I′ = 〈P′, S〉, where
P′ = E(P, S,m). It follows from Lemma 7 that we can solve
P in time O(|D|V (P′) + |V | · |ET(P, S)|). Because P′ has at
most |S|+ c · |ET(P, S)| ·m variables, it now follows from
the upper bound on |ET(P, S)| given in Lemma 6 and the
fact that m ≤ |D|c that c-EVAL is fpt.

In contrast to the c-DET problem, for which we showed
a polynomial kernel result, the next result shows that it is
very unlikely that there exists a polynomial kernel for the
evaluation problems c-EVAL and c-BOUNDED EVAL.
Theorem 16 (*). Neither c-EVAL nor c-BOUNDED EVAL
with bounded domain admit a polynomial kernel unless
coNP ⊆ NP/poly. This even holds for c-EVAL without goals
on components and mixed actions.

We want to highlight that the fpt-results of Theorem 12,
Corollary 13 and Theorem 15 do not hold if the causal graph
is considered instead of the extended causal graph. Observe
that for c-EVAL with bounded domain and without goals in
the components (Theorem 12) or additionally parameterized
by the size of the goal (Corollary 13), W[1]-hardness is al-
ready shown in the construction of the proof of Theorem 4
in the work of Kronegger, Ordyniak, and Pfandler (2014).
By small modifications of this construction one can show
W[1]-hardness for c-EVAL with bounded domain but without
mixed actions (Theorem 15). Thus, our notion of backdoors
yields indeed an improvement when compared to the notion
of variable-deletion backdoors considered previously (Kro-
negger, Ordyniak, and Pfandler 2014).

4 Conclusion
We have introduced a new type of variable-deletion back-
doors and have shown three kinds of results for the detection
and evaluation problem in various settings: In three cases
we were able to present (i) fpt-algorithms, which are comple-
mented by (ii) parameterized intractability results. Further-
more, for the problems that are fpt, we have answered the
question (iii) whether efficient preprocessing is possible, i.e.,
whether there is a polynomial kernel. With help of this new
type of backdoor, we could obtain fpt-results for problems,
which remain W[1]-hard under the notion based on the causal
graph. This answers, in particular, one of the open questions
asked in (Kronegger, Ordyniak, and Pfandler 2014).

Since the connection to verification allowed to build upon
results for the VASS formalism, it would be interesting to
closer investigate this connection. This might also help to
solve the open problem whether c-EVAL with bounded do-
main of the variables is fpt. Solving this open problem would
also provide novel insights into the coverability problem for
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VASS. Finally, studying new types of backdoors for planning
is also an interesting direction for further research.
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