
An Efficient Forest-Based Tabu Search Algorithm
for the Split-Delivery Vehicle Routing Problem

Zizhen Zhang,1 Huang He,1 Zhixing Luo,2 Hu Qin,3 Songshan Guo1

1 Sun Yat-Sen University, China
2 City University of Hong Kong, Hong Kong S.A.R

3 Huazhong University of Science and Technology, China
{zhangzizhen@gmail.com}

Abstract

The split-delivery vehicle routing problem (SDVRP) is
a natural extension of the classical vehicle routing prob-
lem (VRP) that allows the same customer to be served
by more than one vehicle. This problem is a very chal-
lenging combinatorial optimization problem and has at-
tracted much academic attention. To solve it, most of
the literature articles adopted heuristic approaches in
which the solution is represented by a set of delivery
patterns, and the search operators were derived from
the traditional VRP operators. Differently, our approach
employs the combination of a set of routes and a forest
to represent the solution. Several forest-based operators
are accordingly introduced. We integrate the new op-
erators into a simple tabu search framework and then
demonstrate the efficiency of our approach by conduct-
ing experiments on existing benchmark instances.

1 Introduction
The split-delivery vehicle routing problem (SDVRP) has
been studied by a number of researches; see (Archetti and
Speranza 2008; 2012) for an overview. The defining char-
acteristic of the SDVRP that distinguishes it from the clas-
sical vehicle routing problem (VRP) is that each customer
can be served by more than one vehicle. Obviously, when
the demand of a customer is lager than the vehicle capac-
ity, it has to be split and the customer has to be visited more
than once. As shown by (Dror and Trudeau 1989), when all
customer demands are less than or equal to the vehicle ca-
pacity, split delivery can also lead to substantial cost savings.
Some real-life applications validating the importance of the
SDVRP can be found in (Mullaseril, Dror, and Leung 1997;
Sierksma and Tijssen 1998; Song, Lee, and Kim 2002).

Many research efforts have been spent in designing
heuristics for the SDVRP and its variants. The first heuris-
tic for the SDVRP was the local search algorithm by (Dror
and Trudeau 1989), which employs two types of problem-
specific local search operators, namely k-split interchange
and route addition. Eighteen years later, (Chen, Golden, and
Wasil 2007) developed a heuristic that combines an MIP
model and a record-to-record travel algorithm for this prob-
lem. (Archetti, Speranza, and Hertz 2006) proposed a tabu

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

search algorithm to solve the k-SDVRP in which the vehicle
capacity, all customer demands and the quantity delivered
to each customer are integer numbers. After analyzing this
tabu search algorithm, we believe that it can also deal with
the SDVRP. Further, (Archetti, Speranza, and Savelsbergh
2008) devised an optimization-based heuristic for the k-
SDVRP based on the algorithm by (Archetti, Speranza, and
Hertz 2006). Most of heuristics were developed for the SD-
VRP with the minimum possible number of vehicles, such as
a scatter search algorithm by (Mota, Campos, and Corberán
2007), two column generation based heuristics by (Jin, Liu,
and Eksioglu 2008) and (Archetti, Bianchessi, and Speranza
2011), an adaptive memory algorithm by (Aleman, Zhang,
and Hill 2010) and a tabu search algorithm with vocabulary
building approach by (Aleman and Hill 2010). (Berbotto,
Garcı́a, and Nogales 2013) proposed a randomized granular
tabu search algorithm for the k-SDVRP with the minimum
possible number of vehicles. (Ho and Haugland 2004) de-
veloped a tabu search algorithm for the SDVRP with time
windows.

In this paper, we propose a novel solution approach for
the SDVRP, where vehicle capacity and customer demands
are not required to be integer numbers, the number of ve-
hicles is not limited to the minimum possible number, and
the customer demands may exceed the vehicle capacity. The
main contributions are threefold. First, we find a novel way
to represent the solutions of the SDVRP, which is the combi-
nation of a set of vehicle routes and a forest. Second, based
on this solution representation, we propose three classes of
neighborhood search operators. Finally, we prove the effec-
tiveness of our solution approach by extensive experiments
on 67 benchmark instances.

2 Problem Description and Properties
The SDVRP is defined on a complete and directed graph
G = (V,E), where V = {0, 1, . . . , n} is the vertex set
and E = {(i, j) : i, j ∈ V, i 6= j} is the edge set. Ver-
tex 0 is known as the depot and the set of remaining ver-
tices VC = {1, . . . , n} denotes the set of n customers. Each
customer i ∈ VC has a positive demand di and each edge
(i, j) has a non-negative travel cost ci,j , where the cost ma-
trix [ci,j] satisfies the triangle inequality. There is a sufficient
number of homogeneous vehicles available each with a ca-
pacityQ. We define a delivery pattern p as a vertex sequence

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

3432

r (i.e., a route) with the quantity δp,i delivered to each visited
customer i. The delivery pattern whose total delivered quan-
tity is less than or equal to the vehicle capacity is feasible.
The SDVRP consists of assigning each vehicle a feasible de-
livery pattern, starting from and ending at vertex 0, such that
all customers are served with the minimum total travel cost.

(Dror and Trudeau 1989) have shown the following two
properties on the optimal solutions of the SDVRP.

Property 1 If the travel cost matrix [ci,j] satisfies the tri-
angle inequality, then there exists an optimal solution to the
SDVRP in which no two vehicles have more than one split
customer in common.

Definition Given k customers i1, i2, . . . , ik and k delivery
patterns p1, p2, . . . , pk, these k delivery patterns contains a
k-split cycle if p1 includes i1 and i2, p2 includes i2 and i3,
. . ., pk−1 includes ik−1 and ik and pk includes ik and i1.

Property 2 If the travel cost matrix [ci,j] satisfies the tri-
angle inequality, then there exists an optimal solution to the
SDVRP that does not include k-split cycle for any k ≥ 2.

The SDVRP solution is a set of delivery patterns while
the solution value is only determined by the underlying set
of vertex sequences. The solutions with the same underlying
set of vertex sequences can be regarded identical since they
must have equivalent solution values. As a result, from now
on we use a set of vertex sequences (i.e., a set of routes in
which the delivery quantity at each visited split customer
is not determined) from which we can derive at least one
feasible SDVRP solution (in the form of a set of feasible
delivery patterns) to represent a feasible SDVRP solution.

Let z be the set of all feasible solutions and Ω ⊆ z be the
set of feasible solutions that contain neither two routes with
more than one customer in common nor any k-split cycle.
According to Properties 1 and 2, Ω must contain at least one
optimal solution. For any solution S′ ∈ z\Ω, there must
exist a solution S ∈ Ω such that S is at least as good as S′.
Thus, we can find optimal SDVRP solutions by only explor-
ing Ω.

Given a solution S = {r1, r2, . . . , rm}, where S ∈ Ω, we
can construct an undirected graph G(S) = (N(S), A(S)).
In the remaining paper, we distinguish between the terms
node and vertex, which are usually considered the same and
are used interchangeably in standard graph terminology; we
specify that node refers to the node in graph G(S), while
vertex refers to the vertex in graph G. The node set N(S)
comprises two types of nodes, namely the route node set
Nr(S) and the customer node setNc(S), where node jk (re-
spectively, ih) in Nr(S) (respectively, Nc(S)) corresponds
to route rk ∈ S (respectively, customer h ∈ VC). The
edge set A(S) contains an edge (jk, ih) only if customer
h is served by route rk. Because Properties 1 and 2 guar-
antee that no cycle can exist in G(S), G(S) may consist
of one or more connected components, each of which is an
unrooted tree, i.e., G(S) should be a forest. For the sake of
convenience, we representG(S) = {T1, T2, . . . , Tg}, where
Tk = {rp, rp+1, . . . , rq} (1 ≤ k ≤ g) is one of the un-
rooted trees. Given a solution S as shown in Figure 1, its
corresponding G(S) = {T1, T2, T3} is displayed in Figure

Figure 1: A solution S = {r1, r2, . . . , r7}.

Figure 2: The graph G(S) derived from the solution S
shown in Figure 1, where the squares and circles represent
the route nodes and customer nodes, respectively.

2, where the squares and circles represent the route nodes
and customer nodes, respectively. It is worth pointing out
that G(S) does not contain the information on the visiting
order of the customers in each route and the quantity deliv-
ered to each customer by each vehicle.

An unrooted tree T is called feasible if we can find a set
of feasible delivery patterns for the routes in T . The solu-
tion S is feasible if all unrooted trees in G(S) are feasible.
Thus, the forest G(S) can be viewed as an auxiliary data
structure to check the feasibility of the solution S. Check-
ing whether an unrooted tree is feasible with respect to the
vehicle capacity restriction can be done by a greedy pro-
cedure, which is described as follows. First, we arbitrarily
select a route node s as the root node, creating a rooted tree.
We illustrate the general form of the rooted tree in Figure
3, where the even (respectively, odd) levels consist of only
route (respectively, customer) nodes, node il,k or jl,k repre-
sents the k-th node at level l. We denote by L(x) the level
of node x, by residual(j) the residual capacity of route j, by
residual(i) the residual demand of customer i, and by ξsi,j
the quantities of customer i’s demand allocated to route j
when node s is selected as the root node. We initially set
residual(j) = Q and residual(i) = di. Next, starting from
the nodes at the deepest level of the rooted tree, we recur-
sively compute ξsi,j by examining all tree nodes as follows.

3433

Figure 3: The general form of the rooted tree, in which the
root is a route node.

For an edge (i, j), nodes i and j must appear in two consec-
utive levels. If L(i) < L(j), we have:

ξsi,j = min
{
residual(i), residual(j)

}
, (1)

residual(i) = residual(i)− ξsi,j , (2)

residual(j) = residual(j)− ξsi,j ; (3)

if L(i) > L(j), we have:

ξsi,j =residual(i), (4)

residual(j) =residual(j)− ξsi,j , (5)

residual(i) =residual(i)− ξsi,j . (6)

The tree nodes at the same level can be selected in any order
and the customer nodes with residual(i) = 0 will not be con-
sidered any more. The unrooted tree is infeasible if a route
node j with negative residual(j) is encountered; otherwise,
the tree under check is feasible. Now we present the detailed
steps of checking the feasibility of the tree T1 shown in Fig-
ure 2 using this greedy procedure as follows. (1) Vehicle 4
fully serves customers 10, 11, 12, 7 and its residual capacity
is 4. Vehicle 3 fully serves customers 8, 9 and its residual
capacity is 3. (2) Vehicle 3 delivers 3 units and vehicle 4 de-
livers 4 units to customer 5. Then, the residual capacities of
vehicles 3 and 4 are both zero, and the residual demand of
customer 5 is 1. (3) Vehicle 2 fully serves customers 2, 4, 6,
and delivers 1 unit to customer 5. Then, its residual capacity
is 1. (4) Vehicle 1 fully serves customers 1, 3 and its residual
capacity is 8. Since the residual capacities of all vehicles are
greater or equal to zero, we can claim that T1 is feasible.

3 Neighborhood Operators and Tabu Search
Algorithm

Neighborhood operators are crucial components that deter-
mine the performance of heuristics. Some neighborhood op-
erators have been used for the SDVRP or its variants by sev-
eral previous articles, including (Dror and Trudeau 1989;

Figure 4: An example solution represented by a set of four
delivery patterns.

Ho and Haugland 2004; Derigs, Li, and Vogel 2010; Ale-
man, Zhang, and Hill 2010; Berbotto, Garcı́a, and Nogales
2013). These operators can be divided into two classes. The
first class includes operators that can be applied to the clas-
sical VRP while the second one contains the operators that
were specifically devised for the characteristic, namely split
delivery, of the SDVRP. All these operators are based on rep-
resenting the feasible solution by a set of delivery patterns.
An example of such solution is shown in Figure 4, whereDi

is the total quantity delivered by delivery pattern i.
To show the limitation of the existing operators, let us

consider two representative operators relocate and 2-split in-
terchange used by (Berbotto, Garcı́a, and Nogales 2013) and
(Dror and Trudeau 1989). In Figure 4, if c1,2 + c2,3− c1,3 >
c5,2 +c2,10−c5,10, then relocating customer 2 from delivery
pattern 1 to delivery pattern 3 at the position between cus-
tomers 5 and 10 can reduce the total travel distance. How-
ever, this is an illegal operation since the capacity restriction
will be violated. We can make this relocation possible by
re-allocating the delivered quantities of the split customers.
For example, we can move from delivery pattern 3 two units
of customer 5’s demand to delivery pattern 2 and three units
of customer 10’s demand to delivery pattern 4, and then re-
locate customer 2 to delivery pattern 3. Analogously, allo-
cating customer 3’s demand into delivery patterns 2 and 4
using 2-split interchange operation also results in an infeasi-
ble solution due to the violation of the vehicle capacity. We
can make this 2-split interchange operation legal by moving
from delivery pattern 4 one unit of customer 10’s demand to
delivery pattern 3.

The above observations tell us that if we have a mecha-
nism to re-allocate the split customers’ demands automat-
ically and freely among all involved delivery patterns, the
relocate and 2-split interchange operators would be capable
of exploring larger solution regions. As shown in Figure 5,
we can liken the customer demands to water and connect
the split customers in different delivery patterns by tubes
via which water can freely flow. Consequently, we do not
need to explicitly fix the delivered quantities at the split cus-
tomers any more. This finding motivates us to represent the
solutions by a set of routes and create forest G(S) to link
together the routes with customers in common.

The neighborhood operators proposed in this paper are
based on the route-based solution S and forest G(S). The

3434

Figure 5: Connecting the split customers in different routes
by tubes.

Figure 6: The path from root node j1 to customer node ik on
graph G(S).

routes preserve the visiting order of the customers, andG(S)
is used to quickly check the feasibility of the resulting so-
lution after a certain operation. For the purpose of quickly
checking the legality of operations, we introduce the follow-
ing concepts:

(1) The maximum residual capacity mrk of route k. Se-
lecting route node k as the root node, mrk is the residual of
vehicle k, which can be obtained using expressions (1) – (6).

(2) The maximum available capacity γi,k of route k be-
fore serving customer i. Suppose customer i is served by a
set of routes {j1, j2, . . . , jk}. When customer i is selected
as the root node, we can obtain γi,jh (1 ≤ h ≤ k) using ex-
pressions (1) – (6). Moreover, we denote the sum of all γi,jh
by γi, which is the total maximum available capacity from
the set of routes.

(3) The capacity saving βj1,jk(x). Let Pj1,ik = {j1, i1,
j2, i2, . . . , jk, ik} be the path from root node j1 to customer
node ik on G(S) (see Figure 6). After decreasing ξj1ik,jk by
x, the value of ξj1ih,jh (1 ≤ h < k) would decrease by x
if min{ξj1ih,jh , ξ

j1
ih+1,jh+1

, . . . , ξj1ik−1,jk−1
} ≥ x; otherwise it

would decrease by min{ξj1ih,jh , ξ
j1
ih+1,jh+1

, . . . , ξj1ik−1,jk−1
}.

The value of mrj1 would increase by βj1,jk(x), where

βj1,jk (x) = min
{
ξj1i1,j1 , ξ

j1
i2,j2

, . . . , ξj1ik−1,jk−1
, x

}
. (7)

(4) The cycle-detection route set Ri,k. The set Ri,k con-
tains all routes that are in the same tree as route k after route
node k and customer node i are disconnected. For exam-
ple, for T1 shown in Figure 2, we have R1,1 = {1, 2, 3, 4},
R5,2 = {2, 1}, R5,3 = {3} and R10,4 = {1, 2, 3, 4}.

We will introduce three new neighborhood operators,
namely relocate, exchange and split. These operators are
based on a set of routes and the legality of all operations
is checked with the aid of forest G(S). With the values of
mrk, γi,k, ξsi,j and Ri,k, we can quickly check whether a
certain operation is legal. That is, we do not need to check
the legality by traversing the resultant tree of a certain oper-
ation. In addition, we denote by VNSC the set of customers

Figure 7: A relocate operation with i ∈ VSC and T1 6= T2.

that have not been split in the current solution. Accordingly,
VSC = VC\VNSC includes those customers that are served
by more than one vehicle.

3.1 The Relocate Operator

The relocate operator selects a customer i from route 1 and
relocates it to a position of route 2. We assume that route 1
(respectively, route 2) is contained in T1 (respectively, T2).
Since two routes (i.e., routes 1 and 2) may be included in the
same or different trees and there are two types of customers
(i.e., the split customers in VSC and the non-split customers
in VNSC), we can divide all relocate operations into the fol-
lowing four types.

Type 1 relocate: i ∈ VSC and T1 6= T2 (see Figure 7).
After relocating customer i from route 1 to route 2 at the po-
sition between customers 2 and 3, the resultant solution S′
and G(S′) are shown in Figures 7 (c) and (d), respectively.
We can use Figure 7(a) and (c) to calculate the distance sav-
ing, and use Figure 7(d) to check the legality of this oper-
ation. The relocate operation shown in Figure 7 is legal if
γi − γi,1 +mr2 ≥ di.

Type 2 relocate: i ∈ VNSC and T1 6= T2. Relocating cus-
tomer i from route 1 to route 2 is legal if di ≤ mr2.

Type 3 relocate: i ∈ VNSC and T1 = T2. Removing cus-
tomer i from route 1 to route 2 increases mr2 by β2,1(di),
where β2,1(di) is defined in expression (7). This relocate op-
eration is legal if mr2 + β2,1(di) ≥ di.

Type 4 relocate: i ∈ VSC and T1 = T2. If route 2 belongs
to Ri,1, the resultant G(S′) does not contain a cycle. This
relocate operation is legal if no cycle appears in G(S′) and
γi − γi,1 +mr2 + β2,1(ξ2

i,1) ≥ di.

3435

3.2 The Exchange Operator
The exchange operator selects two customers and swaps
their positions. Let i1 and i2 denote the selected two cus-
tomers, routes 1 and 2 be the routes containing i1 and i2,
and T1 (respectively, T2) be the tree containing route 1 (re-
spectively, route 2). We can classify the exchange operations
into the folowing six types.

Type 1 exchange: i1, i2 ∈ VNSC and T1 6= T2. This ex-
change operation is legal ifmr1+di1 ≥ di2 andmr2+di2 ≥
di1 .

Type 2 exchange: i1, i2 ∈ VNSC and T1 = T2. Without
loss of generality, we can assume di2 ≥ di1 . Replacing cus-
tomer i2 with customer i1 is equivalent to decreasing ξ1

i2,2
by di2 − di1 . As a result, this exchange operation is legal if
mr1 + β1,2(di2 − di1) +di1 ≥ di2 .

Type 3 exchange: i1 ∈ VSC , i2 ∈ VNSC and T1 6= T2.
Removing customer i1 from route 1 is equivalent to increas-
ing mr1 by ξ1

i1,1
. The resultant T1 is feasible if mr1 + ξ1

i1,1
≥ di2 . Removing customer i2 from route 2 is equivalent
to increasing mr2 by di2 . The resultant T2 is feasible if
γi − γi,1 +mr2 + di2 ≥ di1 .

Type 4 exchange: i1 ∈ VSC , i2 ∈ VNSC and T1 = T2.
Obviously, if Ri1,1 does not contain route 2, the resultant
G(S′) must have a cycle. We further consider the following
two situations: (1) di2 ≤ ξ2

i1,1
and (2) di2 > ξ2

i1,1
. If di2 ≤

ξ2
i1,1

, replacing customer i1 with customer i2 is equivalent
to decreasing ξ2

i1,1
by ξ2

i1,1
−di2 . So mr2 would increase by

β2,1(ξ2
i1,1
−di2). If the new set of routes serving customer i1

can provide sufficient capacity, namely γi1 − γi1,1 +mr2 +
β2,1(ξ2

i1,1
− di2) ≥ di1 , the resulting G(S′) is feasible. If

di2 > ξ2
i1,1

, then customer i1 can be fully served by the new
set of routes. Since replacing customer i1 with customer i2
is equivalent to increasing ξ2

i1,1
by di2 − ξ2

i1,1
, which may

cause the path from route 2 to route 1 infeasible. Let us still
consider the path shown in Figure 6 and define ∆j1

j1,jh
(h =

1, 2, . . . , k + 1) as the maximum increment of ξj1ih,jh that
still keeps the path (j1, i1, j2, i2, . . ., jh, ih) feasible. The
values of ∆j1

j1,jh
can be computed by the following recursive

functions (8) – (9).

∆
j1
j1,j1

= θ
j1
j1

= mrj1 (8)

∆
j1
j1,jh+1

= min

{
θ
j1
jh+1

,∆
j1
j1,jh

+ max

{
0, θ

j1
jh+1

−

max
{

0, dih − (γih − γih,jh
− γih,jh+1

)
}}}

, (9)

where θj1jh+1
is the residual capacity of route jh+1 before

serving its father customer node when node j1 is selected as
the root node. Thus, in this situation, the resultant graph is
feasible if ∆2

2,1 ≥ di2 − ξ2
i1,1

.
Type 5 exchange: i1, i2 ∈ VSC and T1 6= T2. This ex-

change operation is legal if γi1 − γi1,1 + ξ2
i2,2
≥ di1 and

γi2 − γi2,2 + ξ1
i1,1
≥ di2 .

Type 6 exchange: i1, i2 ∈ VSC and T1 = T2. This ex-
change operation replaces two edges in G(S) with two new
ones. Since this operation modifies G(S) considerably, it is

very time-consuming to check its legality. To save compu-
tation time, in our solution approach we do not consider the
exchange operations of this type.

3.3 The Split Operator
The split operation is a tailored operation for the SDVRP,
which replaces the set Ri of routes that serve customer i
with a new set R′i of routes. For each customer i ∈ VC ,
it first computes the distance saving SAV rki of removing i
from route rk in Ri by SAV rki = ci−,i + ci,i+ − ci−,i+ ,
where i− and i+ are the immediate predecessor and suc-
cessor of customer i. Next, it computes the cost CIrki of
inserting customer i into route rk. If rk 6∈ Ri, each posi-
tion in r is examined and the position between customer p
and p+ with the minimal insertion cost is selected, namely
CIrki = cp,i + ci,p+ − cp,p+ . If rk ∈ Ri, we set CIrki =
ci−,i + ci,i+ − ci−,i+ . Let U be the set of all subsets of the
routes in a solution S and thus R′i is an element of U . Since
the size of U is usually very large, we only consider a subset
U ′ of U .

We sort the routes in S based on the increasing value of
CIrki /mrrk if rk ∈ Ri or CIrki /γi,rk if rk /∈ Ri, and then
select the first ten routes to construct a route set S̄. If the
number of routes in S is less than ten, then we set S̄ = S. For
each subset R′ of S̄, we check the legality of inserting cus-
tomer i into each of the routes inR′. First, each pair of routes
in R′ cannot appear in the same connected component after
deleting from G(S) edge (i, rk) for all rk ∈ Ri. Two routes
in the same connected component implies that this inser-
tion will generate a cycle in the resultant graph. Second, the
routes in R′ need to have enough capacity to serve customer
i, i.e.,

∑
rk∈R′(γi,rk1rk∈Ri

+mrrk1rk /∈Ri
) ≥ di, where 1x

is the indicator function. Inserting customer i into each of
routes in R′ generates a candidate solution, where the to-
tal distance saving can be obtained by

∑
rk∈Ri

SAV rki −∑
rk∈R′ CI

rk
i . The split operator selects the best candidate

solution.

3.4 Tabu Search
Tabu search (TS) algorithm (Glover and Laguna 1998) is
a well-known meta-heuristic that has been successfully ap-
plied to a wide variety of routing and scheduling problems,
e.g., (Aleman and Hill 2010; Cai et al. 2013; Ho and Haug-
land 2004). To highlight the effectiveness of our proposed
neighborhood operators, we integrate them into a simple and
standard TS framework without a diversification phrase. In
each iteration, TS always chooses the best allowable neigh-
bor, i.e., the non-tabu neighbor or the tabu neighbor that sat-
isfies the aspiration criterion. The aspiration criterion is that
TS always accepts the tabu solution which is better than the
best known solution so far. Note that the parameters related
to the TS algorithm include only tabu tenure τ and the num-
ber of non-improvement steps η for algorithm termination.

4 Computational Experiments
We conducted experiments on two sets of benchmark SD-
VRP instances to evaluate the performance of our tabu
search algorithm, which are:

3436

• Set 1: This set of 42 instances was derived by (Archetti,
Speranza, and Hertz 2006) from the capacitated VRP
(CVRP) benchmark instances in (Gendreau, Hertz, and
Laporte 1994) by varying the customer demands and
keeping other characteristics unchanged.

• Set 2: This set contains 25 instances and was generated
by (Belenguer, Martinez, and Mota 2000).

Our algorithm was coded in C++ and all experiments were
conducted on a desktop with an Intel i5-2410 2.30 GHz
CPU, 4 GB RAM and Windows 8 Pro 64-bit operating sys-
tem. After conducting some preliminary experiments, the
parameters in our solution approach were fixed as follows:
τ = 0.4n and η = 3000.

We compare our solution approach with the following
existing algorithms: (1) SPLITABU: the tabu search algo-
rithm by (Archetti, Speranza, and Hertz 2006); (2) OH:
the optimization-based heuristic by (Archetti, Speranza, and
Savelsbergh 2008); (3) BPCH: the branch-and-price-and-
cut based heuristic by (Archetti, Bianchessi, and Speranza
2011); (4) RGTS: the randomized granular tabu search
by (Berbotto, Garcı́a, and Nogales 2013); (5) ICA+VND:
the variable neighborhood descent algorithm by (Aleman,
Zhang, and Hill 2010), where the iterated constructive algo-
rithm is employed to create the initial solution; (6) TSVBA:
the tabu search with vocabulary building approach by (Ale-
man and Hill 2010). Because these algorithms were carried
out on different machines, and their results did not contain
the running time information in a unified format, we decide
not to report their running times. In fact, all these algorithms
executed within reasonable time limits.

The instances in Set 1 have been solved by SPLITABU,
OH, BPCH and RGTS. We compare our results with those of
these four algorithms in Table 1, where the columns “Cost”
show the solution costs and the columns “Time” give the
running time. The columns “Gap (%)” display the percent-
age gap between the solution costs of our solution and each
benchmark algorithm; for example, the values of “Gap (%)”
under the block “SPLITABU” is calculated by: (SPLITABU
− Our approach)/Our approach. Moreover, (Archetti, Sper-
anza, and Savelsbergh 2008) did not consider instances px-
110 and (Archetti, Bianchessi, and Speranza 2011) did not
solve instances px-00. So we fill the corresponding cells with
dashes (‘–’). (Berbotto, Garcı́a, and Nogales 2013) applied
the RGTS several times with different parameter settings
to solve the instances with the minimum possible number
of vehicles, the corresponding best results are given in the
block “RGTS”. The rest of blocks report the results of the
instances without any limitation on the vehicle number. The
smallest solution cost in each row is marked in bold. The
last two rows of this table give the numbers of best solutions
found and the average values of “Gap (%)”, respectively.

Compared with these four benchmark algorithms, the per-
centage gaps on the solution costs are 0.75%, 0.38%, 0.13%
and 0.46%, respectively. Although these gaps are all below
1%, considering that the SDVRP was extensively studied in
the last two decades, these improvements brought about by
our approach are substantial. Thus, we can conclude that our
approach outperforms SPLITABU, OH, BCPH and RGTS in

Table 1: Performance comparison on the instances in Set 1.

Instance Our approach SPLITABU OH BPCH RGTS
Cost Time Cost Gap (%) Cost Gap (%) Cost Gap (%) Cost Gap (%)

P1-00 532.0 18 530.8 −0.24 527.7 −0.82 – – 529.2 −0.53
P1-110 461.0 31 462.9 0.40 – – 459.5 −0.33 466.9 1.26
P1-1030 759.8 307 765.3 0.73 758.2 −0.21 770.2 1.37 784.6 3.27
P1-1050 1026.5 210 1,039.1 1.23 1,021.0 −0.53 1,017.2 −0.90 1,025.0 −0.14
P1-1090 1552.1 134 1,512.0 −2.58 1,497.2 −3.53 1,489.4 −4.04 1,503.3 −3.14
P1-3070 1498.1 151 1,503.9 0.39 1,502.0 0.26 1,499.3 0.08 1,503.2 0.34
P1-7090 2191.41 107.6 2,173.6 −0.81 2,166.8 −1.12 2,166.3 −1.15 2,195.7 0.19

P2-00 827.4 320 854.3 3.25 853.6 3.17 – – 864.6 4.50
P2-110 637.0 44 623.9 −2.05 – – 652.9 2.50 629.1 −1.25

P2-1030 1118.1 325 1,134.1 1.43 1,122.9 0.43 1,121.8 0.34 1,146.2 2.52
P2-1050 1525.7 318 1,556.7 2.03 1,548.5 1.50 1,514.4 −0.74 1,550.4 1.62
P2-1090 2358.8 322 2,338.7 −0.85 2,337.8 −0.89 2,318.3 −1.72 2,398.4 1.68
P2-3070 2280.3 406 2,293.5 0.58 2,263.1 −0.75 2,237.2 −1.89 2,240.0 −1.76
P2-7090 3259.0 200 3,285.4 0.81 3,250.4 −0.27 3,258.2 −0.03 3,259.4 0.01
P3-00 847.4 188 841.4 −0.71 840.1 -0.86 – – 846.0 −0.17
P3-110 792.2 87 771.5 −2.62 – – 788.2 −0.50 805.0 1.61
P3-1030 1476.9 326 1,515.2 2.59 1,505.5 1.93 1,447.4 −2.00 1,491.8 1.01
P3-1050 2023.2 318 2,054.1 1.53 2,024.6 0.07 2,040.9 0.88 2,062.5 1.94
P3-1090 3181.3 339 3,155.2 −0.82 3,136.3 −1.42 3,127.1 −1.71 3,171.6 −0.31
P3-3070 3044.1 325 3,070.9 0.88 3,055.5 0.37 3,030.7 −0.44 3,091.3 1.55
P3-7090 4441.7 300 4,470.7 0.65 4,452.6 0.25 4,467.6 0.58 4,465.0 0.53
P4-00 1081.6 426 1,070.9 −0.99 1,055.1 −2.45 – – 1,059.7 −2.02
P4-110 953.0 369 947.1 −0.62 – – 984.7 3.32 979.7 2.80

P4-1030 2060.4 375 2,101.8 2.01 2,093.3 1.60 2,066.5 0.30 2,093.2 1.59
P4-1050 2910.8 394 2,991.6 2.78 2,977.0 2.27 2,917.8 0.24 2,943.5 1.12
P4-1090 4681.7 389 4,674.1 −0.16 4,659.9 −0.47 4,678.5 −0.07 4,652.1 −0.63
P4-3070 4483.4 372 4,496.9 0.30 4,465.5 −0.40 4,438.8 −0.99 4,460.2 −0.52
P4-7090 6459.8 300 6,482.2 0.35 6,462.8 0.05 6,523.2 0.98 6,511.5 0.80

P5-00 1342.5 477 1,340.4 −0.16 1,338.4 −0.30 – – 1,368.8 1.96
P5-110 1126.6 449 1,148.3 1.93 – – 1,268.8 12.62 1,158.1 2.79

P5-1030 2525.0 418 2,585.8 2.41 2,582.6 2.28 2,596.9 2.85 2,571.0 1.82
P5-1050 3542.5 429 3,624.2 2.31 3,594.0 1.45 3,568.2 0.73 3,592.8 1.42
P5-1090 5700.7 500 5,715.8 0.27 5,710.2 0.17 5,673.2 −0.48 5,798.4 1.71
P5-3070 5585.1 438 5,571.1 −0.25 5,549.8 −0.63 5,560.3 −0.44 5,556.0 −0.52
P5-7090 8255.4 300 8,392.1 1.66 8,355.5 1.21 8,410.4 1.88 8,319.4 0.77
P11-00 1048.3 177 1,057.0 0.82 1,057.0 0.82 – – 1,043.9 −0.42

P11-110 1119.2 344 1,055.3 −5.71 – – 1,071.6 −4.25 1,099.3 −1.78
P11-1030 2953.1 344 3,060.5 3.64 3,017.9 2.20 2,983.8 1.04 2,939.4 −0.46
P11-1050 4298.4 345 4,502.6 4.75 4,476.4 4.14 4,259.9 −0.89 4,301.5 0.07
P11-1090 7206.2 358 7,350.1 2.00 7,117.2 −1.23 6,995.9 −2.92 6,967.5 −3.31
P11-3070 6858.1 354 7,168.3 4.52 7,126.8 3.92 6,822.3 −0.52 6,770.1 −1.28
P11-7090 10285.7 300 10,673.3 3.77 10,429.8 1.40 10,376.9 0.89 10,132.5 −1.49
of best 10 – 4 – 7 – 14 – 5 –
Average – – – 0.75 – 0.38 – 0.13 – 0.46

terms of the solution quality when solving the instances in
Set 1.

Tables 2 reports the results of the instances in Set 2, where
the algorithms used to solve these instances can be found in
the first row. Our approach and BPCH solved the instances
without any restriction on the number of vehicles while the
rest of algorithms dealt with the instances with the mini-
mum possible number of vehicles. Since BPCH was unable
to get feasible solutions for instances eil22, eil23, eil30 and
eil33 in Set 3, we fill the corresponding cells in Table 2 with
dashes (‘–’). According to the number of the best solutions
and the average gaps, we can find that our tabu search algo-
rithm achieved the best performance on the instances in Set
2.

Our tabu search algorithm that employs the new neigh-
borhood operators is very simple and standard. However, it
achieved the best average results on 67 benchmark instances;
this proved the effectiveness of the neighborhood operators.

5 Conclusions
In this study, we first represented the SDVRP solution us-
ing the combination of a set of vehicle routes and a for-
est. The vehicle routes are used to calculate the total travel
distance while the forest is used to quickly check the fea-
sibility of the solution. Next, we designed three classes of

3437

Table 2: Performance comparison on the instances in Set 2.

Instance
Our approach BPCH ICA+VND RGTS TSVBA

Cost Time Cost Gap (%) Cost Gap (%) Cost Gap (%) Cost Gap (%)
eil22 375.3 4 – – 375.3 0.00 375.3 0.00 375.3 0.00
eil23 568.6 4 – – 569.8 0.21 598.6 5.28 569.8 0.21
eil30 519.0 7 – – 521.5 0.48 519.7 0.13 505.0 −2.70
eil33 837.1 10 – – 870.4 3.98 843.6 0.79 843.6 0.79
eil51 528.0 23 528.0 0.00 540.8 2.43 524.9 −0.58 527.7 −0.06

eilA76 842.7 191 832.7 −1.18 880.3 4.46 860.9 2.16 853.2 1.25
eilB76 1,017.1 289 1,047.2 2.96 1,059.6 4.18 1,023.2 0.61 1,034.2 1.69
eilC76 754.3 73 765.3 1.46 758.5 0.56 746.3 −1.05 761.6 0.97
eilD76 701.1 57 705.3 0.60 719.4 2.62 702.3 0.17 696.0 −0.73
eilA101 838.8 194 854.0 1.82 854.1 1.83 850.0 1.34 844.2 0.65
eilB101 1,096.1 280 1,119.2 2.11 1,142.0 4.19 1,112.2 1.47 1,112.2 1.47
S51D1 464.8 13 459.5 −1.15 473.2 1.80 459.5 −1.15 468.8 0.85
S51D2 711.9 121 717.2 0.74 732.4 2.87 724.0 1.69 718.7 0.95
S51D3 952.8 215 960.4 0.79 1,001.2 5.08 970.7 1.87 969.8 1.78
S51D4 1,587.8 134 1,569.9 −1.13 1,708.0 7.57 1,614.1 1.66 1,628.2 2.55
S51D5 1,348.8 127 1,339.4 −0.70 1,404.5 4.13 1,381.7 2.44 1,362.2 0.99
S51D6 2,202.2 81 2,182.1 −0.91 2,230.1 1.26 2,213.9 0.53 2,236.2 1.54
S76D1 615.9 33 633.8 2.91 610.2 −0.93 629.6 2.22 613.7 −0.36
S76D2 1,103.6 329 1,104.6 0.09 1,169.8 6.00 1,113.4 0.89 1,128.2 2.22
S76D3 1,449.8 314 1,435.1 −1.02 1,490.1 2.78 1,460.0 0.70 1,472.9 1.59
S76D4 2,108.6 299 2,106.6 −0.09 2,220.9 5.32 2,103.1 −0.27 2,180.1 3.39
S101D1 745.7 223 791.1 6.09 765.5 2.66 791.2 6.11 749.9 0.57
S101D2 1,394.6 327 1,426.2 2.26 1,445.0 3.61 1,415.9 1.53 1,409.0 1.03
S101D3 1,913.3 325 1,911.1 −0.11 1,990.3 4.02 1,907.9 −0.28 1,947.6 1.79
S101D5 2,858.8 374 2,824.2 −1.21 2,999.3 4.92 2,896.0 1.30 2,910.7 1.82
of best 11 – 7 – 2 – 6 – 3 –
Average – – – 0.68 – 3.04 – 1.18 – 0.97

neighborhood search operators, namely relocate, exchange
and split, and integrated them into a simple and standard
tabu search framework. By comparing with six existing al-
gorithms on 67 benchmark instances, we find that our tabu
search algorithm achieved the best solutions on average.
The experimental results show that our approach is an out-
standing algorithm for the SDVRP. Future research can con-
sider adapting our operators and developing more advanced
neighborhood-based meta-heuristics for other vehicle rout-
ing variants that allow split delivery, such as the SDVRP
with time windows or multi-depot SDVRP.

References
Aleman, R. E., and Hill, R. R. 2010. A tabu search with vo-
cabulary building approach for the vehicle routing problem
with split demands. International Journal of Metaheuristics
1(1):55 – 80.
Aleman, R. E.; Zhang, X.; and Hill, R. R. 2010. An adap-
tive memory algorithm for the split delivery vehicle routing
problem. Journal of Heuristics 16(3):441 – 473.
Archetti, C., and Speranza, M. G. 2008. The split delivery
vehicle routing problem: A survey. In Golden, B. L.; Ragha-
van, S.; and Wasil, E. A., eds., The Vehicle Routing Problem:
Latest Advances and New Challenges. Springer, New York.
103 – 122.
Archetti, C., and Speranza, M. G. 2012. Vehicle routing
problems with split deliveries. International Transactions in
Operational Research 19(1-2):3 – 22.
Archetti, C.; Bianchessi, N.; and Speranza, M. G. 2011.
A column generation approach for the split delivery vehicle
routing problem. Networks 58(4):241 – 254.
Archetti, C.; Speranza, M.; and Hertz, A. 2006. A tabu
search algorithm for the split delivery vehicle routing prob-
lem. Transportation Science 64–73.

Archetti, C.; Speranza, M.; and Savelsbergh, M. 2008. An
optimization-based heuristic for the split delivery vehicle
routing problem. Transportation Science 42(1):22–31.
Belenguer, J. M.; Martinez, M. C.; and Mota, E. 2000. A
lower bound for the split delivery vehicle routing problem.
Operations Research 48(5):801 – 810.
Berbotto, L.; Garcı́a, S.; and Nogales, F. J. 2013. A ran-
domized granular tabu search heuristic for the split delivery
vehicle routing problem. Annals of Operations Research In
press.
Cai, Y.; Zhang, Z.; Guo, S.; Qin, H.; and Lim, A. 2013.
A tree-based tabu search algorithm for the manpower al-
location problem with time windows and job-teaming con-
straints. In Proceedings of the Twenty-Third international
joint conference on Artificial Intelligence, 496–502. AAAI
Press.
Chen, S.; Golden, B.; and Wasil, E. 2007. The split deliv-
ery vehicle routing problem: Applications, algorithms, test
problems, and computational results. Networks 49(4):318–
329.
Derigs, U.; Li, B.; and Vogel, U. 2010. Local search-based
metaheuristics for the split delivery vehicle routing prob-
lem. Journal of the Operational Research Society 61:1356 –
1364.
Dror, M., and Trudeau, P. 1989. Savings by split delivery
routing. Transportation Science 23(2):141 – 145.
Gendreau, M.; Hertz, A.; and Laporte, G. 1994. A tabu
search heuristic for the vehicle routing problem. Manage-
ment science 1276 – 1290.
Glover, F., and Laguna, M., eds. 1998. Tabu Search.
101 Philip Drive, Assinippi Park, Norwell, Massachusetts
02061, USA: Kluwer Academic Publishers.
Ho, S. C., and Haugland, D. 2004. A tabu search heuristic
for the vehicle routing problem with time windows and split
deliveries. Computers & Operations Research 31(12):1947
– 1964.
Jin, M.; Liu, K.; and Eksioglu, B. 2008. A column genera-
tion approach for the split delivery vehicle routing problem.
Operations Research Letters 36(2):265 – 270.
Mota, E.; Campos, V.; and Corberán, A. 2007. A new meta-
heuristic for the vehicle routing problem with split demands.
In van Hemert, J., and Cotta, C., eds., Evolutionary Com-
putation in Combinatorial Optimization, Lecture Notes in
Computer Science 4446. Springer, Berlin. 121 – 129.
Mullaseril, P.; Dror, M.; and Leung, J. 1997. Split-delivery
routeing heuristics in livestock feed distribution. Journal of
the Operational Research Society 48(2):107 – 116.
Sierksma, G., and Tijssen, G. A. 1998. Routing helicopters
for crew exchanges on off-shore locations. Annals of Oper-
ations Research 76:261 – 286.
Song, S. H.; Lee, K. S.; and Kim, G. S. 2002. A practical
approach to solving a newspaper logistics problem using a
digital map. Computers and Industrial Engineering 43(1-
2):315 – 330.

3438

