
A Generalization of Sleep Sets Based on Operator Sequence Redundancy

Robert C. Holte
University of Alberta, Canada

robert.holte@ualberta.ca

Yusra Alkhazraji
University of Freiburg, Germany

alkhazry@informatik.uni-freiburg.de

Martin Wehrle
University of Basel, Switzerland

martin.wehrle@unibas.ch

Abstract

Pruning techniques have recently been shown to speed up
search algorithms by reducing the branching factor of large
search spaces. One such technique is sleep sets, which were
originally introduced as a pruning technique for model check-
ing, and which have recently been investigated on a theoret-
ical level for planning. In this paper, we propose a gener-
alization of sleep sets and prove its correctness. While the
original sleep sets were based on the commutativity of op-
erators, generalized sleep sets are based on a more general
notion of operator sequence redundancy. As a result, our ap-
proach dominates the original sleep sets variant in terms of
pruning power. On a practical level, our experimental evalua-
tion shows the potential of sleep sets and their generalizations
on a large and common set of planning benchmarks.

Introduction
Depth-first search methods such as IDA∗ (Korf 1985) have
difficulty in domains with many alternative paths to the same
state. Pruning techniques aim to overcome this by identify-
ing operators that need not be applied at a given search node
because doing so is certain to produce a state that can be
reached by a different path that is no more costly than the
current one. This can greatly reduce the search time without
sacrificing the optimality of the solution found.

One such pruning technique is sleep sets (Godefroid
1996; Wehrle and Helmert 2012). Sleep sets use the com-
mutativity of operators as the basis for pruning decisions. A
different technique, move pruning (Holte and Burch 2014),
is based on a much richer notion of operator sequence re-
dundancy than commutativity, but is limited to pruning rela-
tively short operator sequences whereas sleep sets can prune
arbitrarily long sequences. Consequently, move pruning and
sleep sets are incomparable in terms of pruning power: there
exist operator sequences that one of them can prune, but the
other cannot, and vice versa (Holte and Burch 2014).

The first contribution of this paper is an evaluation and
comparison of sleep sets and move pruning on a large set of
benchmark problems from the international planning com-
petitions. We show that both pruning methods substantially
improve IDA∗’s search time and that neither method dom-
inates the other in terms of search time. The second con-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tribution is that we provide several generalizations of sleep
sets based on the richer notion of operator sequence redun-
dancy used by move pruning. These generalizations strictly
dominate the original concept of sleep sets in terms of prun-
ing power, while preserving completeness and optimality
of tree search algorithms like IDA∗. We show that in do-
mains where the more general kinds of redundancy exist,
search time is substantially reduced by using the more gen-
eral methods. Our experiments also show that, in contrast
to generalized sleep sets and move pruning, only the basic
sleep set method is faster than IDA∗ in terms of total time
(i. e., search time + preprocessing time) due to its relatively
low computational overhead.

Formal Preliminaries
As in SAS+ (Bäckström and Nebel 1995) and PSVN (Holte,
Arneson, and Burch 2014), we define a search problem us-
ing finite domain variables. States are represented as a map-
ping of each variable to a value of its domain. Operators
are state transformers, consisting of a precondition and an
effect. In this paper, we consider SAS+ operators, where
preconditions and effects both consist of variable/value pairs
(indicating the required variable values in the preconditions,
and the new variable values after applying the operator, re-
spectively). The empty operator sequence is denoted ε. If A
is a finite operator sequence then |A| denotes the length ofA
(the number of operators in A, |ε| = 0), cost(A) is the sum
of the costs of the operators in A (cost(ε) = 0), pre(A) is
the set of states to which A can be applied, and A(s) is the
state resulting from applying A to state s ∈ pre(A). We
assume the cost of each operator is non-negative. A path
from state s to state t is an operator sequence A such that
s ∈ pre(A) and A(s) = t. A prefix of A is a nonempty ini-
tial segment of A (A1...Ak for 1 ≤ k ≤ |A|) and a suffix is
a nonempty final segment ofA (Ak...A|A| for 1 ≤ k ≤ |A|).
A left-pointing arrow over an operator sequence denotes the
prefix consisting of all operators in the sequence except the
last. If |A| ≥ 1,

←−
A = A1 . . . A|A|−1;←−ε is defined to be ε.

If O is a total order on operator sequences, B >O A in-
dicates that B is greater than A according toO. Throughout
this paper we identify an operator o with the operator se-
quence of length 1 that consists of only o.

Definition 1. A total order, O, on operator sequences is

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

3291

nested if ε <O Z for all Z 6= ε, and B >O A implies
XBY >O XAY for all A,B,X, and Y .

Definition 2. A length-lexicographic orderO is a total order
on operator sequences based on a total order of the opera-
tors o1 <O o2 <O For operator sequences A and B,
B >O A iff either |B| > |A|, or |B| = |A| and ob >O oa,
where ob and oa are the leftmost operators where B and A
differ (ob in B, oa in the corresponding position in A).

Every length-lexicographic order is a nested order. A
total order on operators induces a length-lexicographic or-
der on operator sequences. We will use the same symbol
(O) to refer to both the order on operators and the length-
lexicographic order on operator sequences it induces.

Definition 3. Given a nested order, O, on operator se-
quences, for any pair of states s, t define min(s, t) to be
the least-cost path from s to t that is smallest according to
O. min(s, t) is undefined if there is no path from s to t.

Throughout this paper, the sequence of operators compris-
ingmin(s, t) is o1o2 . . . o|min(s,t)|. The prefix ofmin(s, t)
consisting of the first i operators is denoted Pi (P0 = ε), and
Qi denotes the suffix of min(s, t) starting at the ith opera-
tor (Q|min(s,t)|+1 = ε). Hence, min(s, t) = PiQi+1 =
Pi−1oiQi+1 for all i, 1 ≤ i ≤ |min(s, t)|. Note that oi is
the last operator in Pi.

Sleep Sets
We use Wehrle and Helmert (2012)’s formulation of sleep
sets, adapted to our notation.

Definition 4. Operators p1 and p2 are commutative (or
commute), denoted p1 on p2, iff the following conditions
hold for every state s:

1. s ∈ pre(p1) and s ∈ pre(p2) =⇒ p1(s) ∈ pre(p2) and
p2(s) ∈ pre(p1) and p1(p2(s)) = p2(p1(s))

2. s ∈ pre(p1) and s /∈ pre(p2) =⇒ p1(s) /∈ pre(p2)
3. s ∈ pre(p2) and s /∈ pre(p1) =⇒ p2(s) /∈ pre(p1).

A sleep set is associated with an operator sequence and is
defined recursively based on an operator order O.

Definition 5. A set ss(P) for an operator sequence P is a
sleep set iff the following hold: ss(ε) := ∅ (the empty set),
and, for the non-empty sequence P = σp, ss(P) := {o |
(p on o) and (o <O p or o ∈ ss(σ))}.

In the context of searching for a (least-cost) path from
state s to state t, sleep sets are used as a pruning technique as
follows. If P is an operator sequence and p is an operator in
ss(P), then p will not be applied after P , i. e., the sequence
Pp and all its extensions, will not be considered as solutions.
The following theorem shows that this use of sleep sets is
safe in the sense that for any state s and any state t reachable
from s, it preserves at least one least-cost path from s to t
(namely, min(s, t)).

Theorem 1. For any states s and t (reachable from s), ok /∈
ss(Pk−1) for all k (1 ≤ k ≤ |min(s, t)|).

This is a special case of the general theorem (Theorem 7)
proven below.

Our implementation of sleep sets has a preprocessing
(one-time) step, and a computation that occurs for each node
generated (the “run-time” step). In the preprocessing step,
the commutativity, o1 on o2, of every pair of operators o1, o2
is tested and the result stored in a Boolean table named
commutes , i. e. commutes[o1, o2] is true iff o1 on o2. Com-
mutativity of operators o1 and o2 is checked syntactically
on the operator definitions and holds if the variables writ-
ten by o1’s effect are disjoint from the variables of o2’s pre-
condition, and vice versa, and both o1’s and o2’s effects do
not set a common variable to a different value. This step is
quadratic in the number of operators. In the run-time step,
if state s′ is reached by operator sequence Po, then ss(Po)
is computed by scanning through the operators that are in
ss(P) or precede o in the orderO, and adding operator o′ to
ss(Po) iff commutes[o, o′]. This step is linear in the num-
ber of operators. When expanding s′, only the operators that
do not belong to ss(Po) are applied.

Operator Sequence Redundancy
The notion of operator sequence redundancy we build upon,
and its use for move pruning, were first introduced by Tay-
lor and Korf (1993) and later generalized by Holte and
Burch (2014).
Definition 6. Operator sequence B is redundant with op-
erator sequence A, denoted with A ≤ B, iff the following
conditions hold:

1. cost(B) ≥ cost(A)
2. pre(B) ⊆ pre(A)
3. s ∈ pre(B)⇒ B(s) = A(s)

In addition, we writeA ≡ B to denote thatA is equivalent
to B, i. e., that A ≤ B and B ≤ A.
Theorem 2 (Holte and Burch, 2014). Let O be any nested
order on operator sequences and B any operator sequence.
If there exists an operator sequence A such that B is re-
dundant with A and B >O A, then B does not occur as a
consecutive subsequence in min(s, t) for any states s, t.

Holte and Burch’s move pruning works as follows. If P
is an operator sequence, p an operator, and there exists an
operator sequence A such that Pp >O A and move pruning
analysis establishes that Pp ≥ A, then, just like with sleep
sets, p will not applied after P . Theorem 2 shows that move
pruning is safe in the sense that for any state s and any state
t reachable from s, it preserves at least one least-cost path
from s to t (namely, min(s, t)).

Similar to sleep sets, our implementation of move pruning
has two parts, a preprocessing step, and run-time step. As in
Holte and Burch (2014)’s implementation, the user specifies
a length L and the preprocessing step generates all operator
sequences of length L or less and tests each sequence with
all the sequences that precede it in the order O. The redun-
dancy test for a given pair of operator sequences is the same
complexity as the commutativity test done for sleep sets.
This step is quadratic in the number of operator sequences
of length L or less, not in the number of operators, and so
is considerably more expensive than the preprocessing step
for sleep sets even when L = 2. The redundancy relation

3292

is computed for all pairs of operator sequences of length L
or less and stored in a Boolean table named redundant . For
example, for L = 2, redundant [o1, o2] is true iff there ex-
ists an operator sequence B of length 2 or less such that
B ≤ o1o2 and B <O o1o2. In the run-time step, if state s′
is generated by applying operator o to state s, then operator
o′ is applied in s′ iff redundant [o, o′] is false . This check
takes constant time per operator.

As discussed by Holte and Burch (2014), the pruning
power of sleep sets and move pruning is incomparable. On
the one hand, sleep sets can prune more than move pruning
because sleep sets propagate information along paths: for a
path Pp, an operator o is contained in ss(Pp) if o and p are
commutative, and o <O p or o has been in ss(P) already.
This recursive nature can propagate o from ss(P) to ss(Pp)
and, by the same reasoning, o can be propagated in a sleep
set an arbitrary distance. Move pruning does not perform
such propagations. The following example, which has previ-
ously already been discussed by Wehrle and Helmert (2012)
and Holte and Burch (2014), illustrates this more clearly:
consider a sequence that consists of operators o1, o2 and c
which are ordered o2 <O c <O o1 by both techniques. Sup-
pose c is commutative with both o1 and o2, then sequences
o1o2c, o1co2, and co1o2 are equivalent. Given the order-
ing, sleep sets will preserve sequence co1o2 and prune the
other two sequences. Move pruning will explore both o1o2c
and co1o2 and prune only o1co2. On the other hand, move
pruning can be more powerful than sleep sets because it can
handle sequences of length L > 2. In addition, move prun-
ing with L = 2 computes a redundancy relation that is not
restricted to the same operators on both side of the inequal-
ity, such as o1o2 ≡ o3o4, and strict redundancies such as
o1o2 < o2o1.

Throughout this paper we assume that the operator se-
quence order used for redundancy analysis is the length-
lexicographic order induced by the operator order used to
define sleep sets, and hence we use O for both.

Evaluation of Sleep Sets and Move Pruning
We implemented sleep sets and move pruning within the
Fast Downward planning system (Helmert 2006). We eval-
uate these pruning techniques with IDA∗, with cycle de-
tection, using the LM-Cut heuristic (Helmert and Domsh-
lak 2009), which is the state-of-the-art admissible planning
heuristic, on all the planning benchmarks from the interna-
tional planning competitions up to 2011 that contain the fea-
tures required by LM-Cut (1396 problem instances drawn
from 44 domains). In the following, IDA∗SS refers to IDA∗

with pruning based on sleep sets, and IDA∗MP refers to
IDA∗ with move pruning. The evaluation is performed on
Intel Xeon E5-2660 CPUs that run at 2.2 GHz, with a time
limit of 30 minutes (for the total of search time and prepro-
cessing time) and a memory limit of 2 GB per run. For move
pruning we set L = 2. Times that are less than or equal to
0.1 seconds are shown in the plots as 0.1.

The plots in Figure 1 compare IDA∗ (y-axis) and IDA∗SS
(x-axis) in terms of the number of nodes generated (left)
and search time (preprocessing time not included) in sec-
onds (right) using logarithmic scales. Each point repre-

10−1 101 103 105 107 109

10−1

101

103

105

107

109

109

109

IDA*SS

ID
A
*

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

104

104

IDA*SS

ID
A
*

Figure 1: IDA∗ (y-axis) vs. IDA∗SS (x-axis). Left: Number
of nodes generated. Right: Search time.

sents a single problem instance. Points above the diagonal
are instances for which IDA∗SS outperformed IDA∗. To
easily gauge how much better/worse one algorithm is than
another, reference lines are shown for y=2x, y=10x, and
y=50x. Points at the very top of the plot are instances that
were solved by IDA∗SS but not by IDA∗ because the latter
exceeded the time limit.

We see that there are many instances in which IDA∗SS
and IDA∗ generate exactly the same number of nodes. These
are instances in which none of the operators commute or
the operators that do commute are not encountered during
search. On most of the other problem instances, IDA∗SS
generates substantially fewer nodes, in some cases as much
as 3 orders of magnitude fewer. The search time plot (right)
shows that the reduction in the number of nodes generated
translates into comparable reductions in search time.

Figure 2 is the same format as Figure 1 but compares
IDA∗MP (y-axis) to IDA∗SS (x-axis). The points at the
top of the plot are instances for which the memory required
by move pruning’s redundancy table exceeded the memory
limit but the sleep set commutativity table did not.1 We
see that in the vast majority of the instances, exactly the

1Currently, the redundancy table is precomputed in its entirety.
In practice, one would not abort search when the memory limit was
reached but would instead record as much information as memory
allowed and base move pruning on that partial information. In the
worst-case this would give a performance equal to IDA∗’s.

10−1 101 103 105 107 109

10−1

101

103

105

107

109

109

109

IDA*SS

ID
A
*M

P

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

104

104

IDA*SS

ID
A
*M

P

Figure 2: IDA∗MP (y-axis) vs. IDA∗SS (x-axis). Left:
Number of nodes generated. Right: Search time.

3293

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

104

104

IDA*

ID
A
*S
S

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

104

104

IDA*

ID
A
*M

P

Figure 3: Total time for IDA∗ (x-axis) vs. IDA∗SS (left plot,
y-axis) and IDA∗MP (right plot, y-axis).

same number of nodes were generated. These are cases
in which there was no commutativity or operator sequence
redundancy (for L=2), or where the two methods detected
exactly the same redundancy. When the methods produce
different results, move pruning is superior to sleep set prun-
ing in some cases (points below the diagonal) and inferior
in others. This is to be expected if the set of problem in-
stances is truly representative because move pruning detects
more kinds of redundancy than just commutativity, but does
not pass information forward along a path the way sleep sets
do. The search time plot (right) shows that the difference
in the number of nodes generated translates into comparable
differences in search time.

The conclusions from the data presented so far is that
both pruning methods substantially improve IDA∗’s perfor-
mance and that neither pruning method dominates the other.
There is, however, one additional consideration, and that
is the time required for preprocessing. Figure 3 shows the
total time (search time + preprocessing time) required to
solve each instance by IDA∗ (x-axis in both plots), whose
total time is its search time, IDA∗SS (left plot, y-axis), and
IDA∗MP (right plot, y-axis). IDA∗SS’s preprocessing time
is small enough that its total time is less than IDA∗’s in most
cases (points below the diagonal) and its “coverage” (i. e.,
the number of problem instances that could be solved within
the resource limits) is much better than IDA∗’s (570 com-
pared to 477, where all instances that could be solved by
IDA∗SS, but not by IDA∗ are due to exceeding the time
limit). The opposite is true for IDA∗MP. Its total time is
worse than IDA∗’s in the majority of the instances, and is of-
ten more than an order of magnitude larger. Consequently,
its coverage is worse than IDA∗’s (443 compared to 477).
Move pruning is most appropriate when its preprocessing
step, which is independent of the search goal and start state,
can be reused across many instances.

Generalized Sleep Sets
Commutativity of operators, the basis for defining sleep sets,
is a very restricted type of operator sequence redundancy.
We now show that sleep sets can be defined in terms of much
richer notions of operator sequence redundancy. We present
this theoretical work in a series of definitions of successively
greater generality. We do this because, as the definitions get

more general, the computational complexity of the prepro-
cessing and/or run-time step increases and we might get bet-
ter overall performance using a less general definition. Fur-
thermore, whether a generalized definition is beneficial de-
pends on the properties of the problem domain, so it could
happen that any one of the generalized sleep set definitions
could be the method of choice in a particular domain.

Because the “or” in Definition 5 (o <O p or o ∈ ss(σ))
reflects very different situations, we separate them and refer
to them as “anchor points” and “relay points” respectively.
Definition 7. A on-anchor point for operator o′ in operator
sequence p1 . . . pn is an index i′ (1 ≤ i′ ≤ n) for which
o′ on pi′ and o′ <O pi′ .

Informally, anchor points for an operator o′ describe po-
sitions where o′ is added to the sleep set. The operators of a
(generalized) sleep set that are not anchor points we call re-
lay points, since their role is to relay operator o′ to an earlier
point in the sequence.
Definition 8. A on-relay point for operator o′ in operator
sequence p1 . . . pn is an index i′ (2 ≤ i′ ≤ n) for which
o′ on pi′ , and (i′ − 1) is a on-anchor point or on-relay point
for o′ in p1 . . . pi′−1.

Definition 9. A set gsson(P) for an operator sequence P is
a generalized sleep set with respect to on iff the following
hold: gsson(ε) = ∅, and, if |P | = n > 0, gsson(P) = {o | n
is a on-anchor or on-relay point for o in P}.

This definition is equivalent to Definition 5, i. e.
gsson(P) = ss(P) for all operator sequences P . We will
base our subsequent definitions of generalized sleep sets on
Definition 9. They will differ only in replacing on in the
definitions of anchor and relay points by successively more
general types of operator sequence redundancy.

Beyond Commutativity
The first generalization of sleep sets is based on the observa-
tion that it is not necessary for o′ and pi′ to be commutative,
but only that o′pi′ ≤ pi′o

′. The following definitions are
based on this observation; in them on is generalized to ≤.
Definition 10. A≤-anchor point for operator o′ in operator
sequence p1 . . . pn is an index i′ (1 ≤ i′ ≤ n) for which
o′pi′ ≤ pi′o′ and o′ <O pi′ .

Definition 11. A ≤-relay point for operator o′ in operator
sequence p1 . . . pn is an index i′ (2 ≤ i′ ≤ n) for which
o′pi′ ≤ pio

′ and (i′ − 1) is an ≤-anchor point or ≤-relay
point for o′ in p1 . . . pi′−1.

Definitions 7 and 8 are special cases of these definitions
because A on B ⇒ AB ≤ BA (and also BA ≤ AB).

Flexible Leapfrogging
The definitions just given use the fact o′pi′ ≤ pi′o

′ to
leapfrog o′ over pi′ to get a new operator sequence that is
equal or superior to the sequence we started with from a re-
dundancy point of view. There is no reason to require pi′
to remain unchanged when o′ leapfrogs over it, the proper-
ties that are required will still hold if pi′ is replaced by some
other operator, or even ε, as long as the resulting sequence

3294

is equal or superior to the sequence we started with from a
redundancy point of view. Formally, we generalize the re-
quirement that o′pi′ ≤ pi′o

′ to ∃y s.t. o′y ≤ pi′o
′, where y

can be an operator or ε.
Similarly, we do not require o′ to be preserved when it

leapfrogs over pi′ , it could be changed to some other oper-
ator z. The definitions of anchor and relay points based on
these ideas are as follows.

Definition 12. A flexible ≤-anchor point for operator o′ in
operator sequence p1 . . . pn is an index i′ (1 ≤ i′ ≤ n) for
which ∃y, an operator or ε, and ∃z, an operator or ε s.t.
zy ≤ pi′o′ and z <O pi′ .

Definition 13. A flexible ≤-relay point for operator o′ in
operator sequence p1 . . . pn is an index i′ (2 ≤ i′ ≤ n) for
which ∃y, an operator or ε, and operator z s.t. zy ≤ pi′o

′

and (i′ − 1) is a flexible ≤-anchor or flexible ≤-relay point
for z in p1 . . . pi′−1.

Definitions 10 and 11 are special cases of these defini-
tions in which y = pi′ and z = o′.

Long Distance Leapfrogging
The aim of the final generalization is to allow sleep
sets to take advantage of redundancy information such as
o′p1 . . . pn ≤ p1 . . . pno′ when o′pi 6≤ pio′ for all i (1 ≤ i ≤
n). In other words, we want o′ to be able to leapfrog over
entire sequences in a single bound (“long distance leapfrog-
ging”), rather than having it go through a sequence one op-
erator at a time. The definitions of anchor point and relay
point that permit long distance leapfrogging are as follows.

Definition 14. A long distance ≤-anchor point for operator
o′ in sequence p1 . . . pn is an index i′ (1 ≤ i′ ≤ n) for
which there exist an index k (1 ≤ k ≤ i′), and an operator
sequence Y such that

(A1) Y ≤ pk . . . pi′o′, and

(A2)
←−
Y <O pk . . . pi′ .

Definition 15. A long distance≤-relay point for operator o′
in sequence p1 . . . pn is an index i′ (2 ≤ i′ ≤ n) for which
there exist an index k (2 ≤ k ≤ i′), operator z, and operator
sequence Y such that

(R1) zY ≤ pk . . . pi′o′,
(R2) |Y | ≤ |pk . . . pi′ |, and
(R3) (k− 1) is a long distance ≤-anchor or long distance

≤-relay point for z in p1 . . . pk−1.

Definitions 12 and 13 are special cases of these definitions
in which k = i′ and Y here is y in those definitions.

Proof that Generalized Sleep Sets are Safe
The theorems in this section show that pruning with gener-
alized sleep sets based on long distance ≤-anchor and relay
points is safe. For brevity, we write “anchor” and “relay”
points to denote their long distance variants. The theorems’
proofs use the following lemmas.

Lemma 3. The relation “≤” is transitive.

Proof. Let A,B,C be operator sequences such that A ≤ B
and B ≤ C. We show that A ≤ C.

First, cost(A) ≤ cost(C) because cost(A) ≤ cost(B) ≤
cost(C). Second, pre(A) ⊇ pre(C) holds because of
pre(A) ⊇ pre(B) ⊇ pre(C). Third, s ∈ pre(C) ⇒
A(s) = C(s) holds because s ∈ pre(C) ⇒ s ∈ pre(B),
C(s) = B(s), and s ∈ pre(B)⇒ B(s) = A(s). Therefore
C(s) = A(s) and hence, A ≤ C.

Lemma 4. Let A and B be any operator sequences such
that A ≤ B, and let C be any operator sequence. Then
AC ≤ BC and CA ≤ CB.

Proof. We exemplarily show that AC ≤ BC (the proof
for CA ≤ CB is analogous). For this, we will show
that cost(AC) ≤ cost(BC), pre(AC) ⊇ pre(BC), and
s ∈ pre(BC)⇒ AC(s) = BC(s).

Firstly, cost(AC) = cost(A) + cost(C) ≤ cost(B) +
cost(C) = cost(BC).

Secondly, s ∈ pre(BC) ⇒ s ∈ pre(B) and B(s) ∈
pre(C). Because A ≤ B it follows that s ∈ pre(A) and
A(s) ∈ pre(C), i.e. that s ∈ pre(AC).

Thirdly, s ∈ pre(BC) ⇒ BC(s) and AC(s) are both
defined. BC(s) = C(B(s)) = C(A(s)) = AC(s).

Lemma 5. Let O be any length-lexicographic order on
operator sequences, and A,B,X, Y and Z any operator
sequences such that A <O B and |X| ≤ |Y |. Then
ZAX <O ZBY .

Proof. If |A| < |B| or |X| < |Y | then |ZAX| < |ZBY |
and therefore ZAX <O ZBY . On the other hand, if |A| =
|B| and |X| = |Y |, then |ZAX| = |ZBY |. If oa and ob
are the leftmost operators where A and B differ (oa is in
A and ob is in the corresponding position in B), they are
also the leftmost operators where ZAX and ZBY differ.
Because A <O B we have oa <O ob and hence ZAX <O
ZBY .

Theorem 6. For any length-lexicographic order on opera-
tor sequences O, any n ≥ 1, any non-empty operator se-
quence P = p1 . . . pn, and any operator p ∈ gss(P), there
exists an operator sequence P ′ such that
(P1) P ′ ≤ Pp,
(P2)

←−
P ′ <O P

Proof. By induction on n.
Base case: n = 1. Because gss(ε) = ∅, n cannot be a relay
point for p in P , it must be an anchor point. Therefore there
exist k and Y such that A1 and A2 hold with i′ = n = 1
and o′ = p. Because n = 1, we must have k = 1. Setting
P ′ := Y satisfies the requirements of the theorem because
P1 and P2 are exactly A1 and A2, respectively.

Inductive case: Assuming the theorem is true for all m,
1 ≤ m ≤ n, we must prove it is true for n + 1. Let P =
p1 . . . pn+1 be any operator sequence of length n + 1 and p
any operator such that p ∈ gss(P).

If n + 1 is an anchor point for p in P there exist k and
Y such that A1 and A2 hold with i′ = n + 1 and o′ = p.
Setting P ′ := p1 . . . pk−1Y satisfies the requirements of the
theorem for the following reasons.

3295

P1: P1 follows directly from A1 and Lemma 4 (by
prepending p1 . . . pk−1 to both sides of the A1 inequality).

P2: If Y is not the empty sequence, then
←−
P ′ is equal to

p1 . . . pk−1
←−
Y and P2 follows directly fromA2 and Lemma 5

(by prepending p1 . . . pk−1 to both sides of the A2 inequal-
ity). If Y is the empty sequence, then P2 holds trivially be-
cause

←−
P ′ = p1 . . . pk−2 is a prefix of P .

If n+1 is not an anchor point for p in P it must be a relay
point, in which case there exist k, z, and Y such thatR1, R2,
and R3 hold with i′ = n + 1 and o′ = p. From R3 and
the inductive hypothesis, there exists an operator sequence
P ′ = p′1 . . . p

′
|P ′| such that

(P1) P ′ ≤ p1 . . . pk−1z,

(P2)
←−
P ′ <O p1 . . . pk−1.

Setting P ′ := P ′Y satisfies the requirements of the theo-
rem for the following reasons.

P1: We need to show that P ′ ≤ Pp, i. e., that P ′Y ≤ Pp.
From P1, we have P ′ ≤ p1 . . . pk−1z. By Lemma 4
(appending Y to both sides of the inequality) this implies
P ′Y ≤ p1 . . . pk−1zY . By R1 and Lemma 4 (prepend-
ing p1 . . . pk−1 to both sides of the inequality), we have
p1 . . . pk−1zY ≤ p1 . . . pk−1pk . . . pn+1p = Pp. By the
transitivity of “≤” (Lemma 3) we have P ′ = P ′Y ≤ Pp,
i.e. P1 is true.

P2: We need to show that
←−
P ′ <O P , i.e. that

←−−
P ′Y <O P .

Let M =
←−−
(qY), where q is the last operator in P ′

if P ′ 6= ε, and q = ε if P ′ = ε. Then |M | =

|←−−(qY)| ≤ |Y |. Combining this with R2, we get |M | ≤
|pk . . . pn+1|. Using this fact in Lemma 5 together with the

inequality
←−
P ′ <O p1 . . . pk−1 from P2 we have

←−
P ′M <O

p1 . . . pk−1pk . . . pn+1 = P . But
←−
P ′M =

←−−−
(P ′Y), hence P2

is true.

The following proves the safety of generalized sleep sets.

Theorem 7. For any length-lexicographic order on opera-
tor sequences O and any states s and t (reachable from s),
ok /∈ gss(Pk−1) for all k, 1 ≤ k ≤ |min(s, t)|.

Proof. It is true if k = 1, since P0 = ε and gss(ε) = ∅. For
k ≥ 2, we will derive a contradiction from ok ∈ gss(Pk−1).
If ok ∈ gss(Pk−1) then, by Theorem 6, there exists an oper-
ator sequence P ′ such that
(P1) P ′ ≤ Pk−1ok = Pk,
(P2)
←−
P ′ <O Pk−1.

Let P = P ′Qk+1. From P1 and Lemma 4 (append-
ing Qk+1 to both sides of the inequality), we have P =
P ′Qk+1 ≤ PkQk+1 = min(s, t). In particular, P is a
least-cost path from s to t. Let q = the last operator in P ′
if P ′ 6= ε, and q = ε if P ′ = ε. From P2, and Lemma 5
(appending qQk+1 to the lefthand side of the inequality and
okQk+1 to the righthand side) we get P ′Qk+1 <O PkQk+1,
i.e. P <O min(s, t). These two facts about P contradict
min(s, t) being the least-cost path that is smallest accord-
ing to O.

Relationship to Move Pruning
To see the very close connection between move pruning and
long distance ≤-anchor points (Def. 14), we define move
pruning in terms of “move pruning points”.

Definition 16. A move pruning point for operator o′ in op-
erator sequence p1 . . . pn is an index i′ (1 ≤ i′ ≤ n) for
which there exist an index k (1 ≤ k ≤ i′) and an operator
sequence W such that

(MP1) W ≤ pk . . . pi′o′, and
(MP2) W <O pk . . . pi′o

′.

If n is a move pruning point for o′ in P = p1 . . . pn, then
move pruning would refuse to apply o′ after P , just as sleep
sets would refuse to apply o′ after P if nwas an anchor point
for o′ in P . There are two differences between move pruning
points and long distance ≤-anchor points.

First, while move pruning allows O to be any nested or-
der, sleep sets require it to be a length-lexicographic or-
der. Although there do exist nested orders that are not
length-lexicographic, in practice move pruning always ap-
plies a length-lexicographic order, so overall, this will not
give move pruning a practical advantage over sleeps sets.

The second difference is more interesting. Let B =
pk . . . pi′o

′. Definition 16 requires W <O B (MP2), but
Definition 14 requires

←−
W <O

←−
B (A2). The latter implies the

former (Lemma 5) but not vice versa (e.g. ab <O ac could
be true but a <O a is always false). Changing A2 in Def-
inition 14 to zY <O pk . . . pi′o

′ would render Theorems 6
and 7 false. The reason can be traced back to Definition 13,
which allows an arbitrary operator z to be substituted for o′
at a relay point. As a result, generalized sleep sets dominate
the original version of sleep sets in terms of pruning power,
but not move pruning (at least not on a theoretical level). We
believe it is possible to restrict the definition of relay point
(Definition 15) so that it is safe to allow any move pruning
point to be an anchor point. That would make generalized
sleep sets dominate both sleep sets and move pruning. To
summarize, generalized sleep sets and move pruning are in-
comparable to each other in terms of pruning power. Move
pruning can be more powerful since the definition of move
pruning points is weaker than long distance≤-anchor points,
and hence can lead to more pruning than sleep sets in some
cases. On the other hand, like sleep sets, generalized sleep
sets can propagate operators along paths of arbitrary length,
thereby pruning paths that cannot be pruned by move prun-
ing. Deciding which technique is more suitable than the
other depends mainly on the domain of choice.

Experiments with Generalized Sleep Sets
We repeated the experiment of the earlier section using the
most general of the sleep set definitions. We restricted the
redundancy analysis to operator sequences of length L = 2
or less, which makes long distance leapfrogging conceptu-
ally the same as flexible leapfrogging (called IDA∗GSS in
the following). Figure 4 shows the results in the same for-
mat as Figure 1. In the vast majority of the cases IDA∗GSS
(y-axis) generates exactly the same number of nodes as
IDA∗SS (x-axis), meaning that in those problem instances,

3296

the generalized method does not find any redundancies ex-
cept the commutativity that basic sleep sets find. In the
other problem instances, we see the number of nodes gener-
ated by IDA∗GSS can be substantially smaller, by as much
as an order of magnitude. For example, in the largest task
solved by both techniques in domains from the IPC-11, this
is the case in Elevators (10,136,319 nodes with IDA∗SS vs.
1,045,250 nodes with IDA∗GSS), Openstacks (7,253,474
vs. 1,066,192), Transport (2,474,615 vs. 783,932) and
Woodworking (3,644,753 vs. 1,181,201). The overhead for
using the more general method is higher than the overhead
for basic sleep sets, which is reflected in the search time plot
in the points with x ≤ 101 being slightly above the diag-
onal. The preprocessing time for IDA∗GSS is comparable
to the one for IDA∗MP which, as we saw in the first ex-
periment, is so large that these methods have worse cover-
age than plain IDA∗ (421 and 443, respectively, compared to
477). Hence, they are most appropriate when their prepro-
cessing steps, which are independent of the search goal and
start state, can be reused across many instances. To illustrate
this, we have calculated for each domain a value (which we
call the breakeven point) that represents the number of in-
stances that would need to be solved such that the prepro-
cessing starts paying off. Suppose solving a single problem
without the preprocessing takes time t0, on average, solv-
ing it after doing the preprocessing takes time t1 seconds,
and the preprocessing itself takes time t2. To solve N prob-
lems takes timeN×t0 without preprocessing and takes time
t2 + N × t1 with preprocessing. The breakeven points are
the values of N when N × t0 = t2 +N × t1. In several do-
mains, the values of N are relatively small (< 50), showing
that the precomputation can amortize rather quickly.

Finally, we also ran experiments with L = 3, which re-
sulted in some additional pruning and, of course, higher pre-
processing time again.

Note that the preprocessing times for all the methods in-
creases with the number of operators and these planning do-
mains have a large number of operators because they are
fully grounded. If the domains were encoded directly in a
language that did not require full grounding of the opera-
tors, such as PSVN (Holte, Arneson, and Burch 2014), the
preprocessing times would be much smaller.

10−1 101 103 105 107 109

10−1

101

103

105

107

109

109

109

IDA*SS

ID
A
*G

S
S

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

104

104

IDA*SS

ID
A
*G

S
S

Figure 4: IDA∗GSS (y-axis) vs. IDA∗SS (x-axis). Left:
Number of nodes generated. Right: Search time.

Conclusions
We have given the first evaluation of sleep sets and move
pruning on the benchmark planning domains. Our experi-
ments show that both methods substantially reduce the num-
ber of nodes generated and search time of IDA∗ and that the
preprocessing time for sleep sets is small enough that IDA∗

with sleep set pruning usually is faster than IDA∗ even when
preprocessing time is taken into account. For move pruning,
the preprocessing time is sufficiently large that it is best used
when the preprocessing can be amortized over many prob-
lem instances. Furthermore, we have provided a generalized
notion of sleep sets based on operator sequence redundancy
and showed that the generalized definitions can further im-
prove the performance of sleep sets. The increased com-
putational overhead suggests that generalized sleep sets are
particularly suited for formalisms like PSVN where opera-
tors are not fully grounded. It will be interesting to further
investigate this direction in the future.

Acknowledgments
This work was supported by the Natural Science and En-
ginerring Research Council of Canada (NSERC), by the
Swiss National Science Foundation (SNSF) as part of
Robert Holte’s visit to the University of Basel and as
part of the project “Safe Pruning in Optimal State-Space
Search (SPOSSS)”, and by the German Research Founda-
tion (DFG) as part of the Transregional Collaborative Re-
search Center “Automatic Verification and Analysis of Com-
plex Systems”.

References
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Godefroid, P. 1996. Partial-Order Methods for the Verifi-
cation of Concurrent Systems – An Approach to the State-
Explosion Problem, volume 1032 of Lecture Notes in Com-
puter Science. Springer-Verlag.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. ICAPS 2009, 162–169.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Holte, R. C., and Burch, N. 2014. Automatic move pruning
for single-agent search. AI Communications 27(4):363–383.
Holte, R. C.; Arneson, B.; and Burch, N. 2014. PSVN Man-
ual (June 20, 2014). Technical Report TR14-03, Computing
Science Department, University of Alberta.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.
Taylor, L. A., and Korf, R. E. 1993. Pruning duplicate nodes
in depth-first search. In Proc. AAAI 1993, 756–761.
Wehrle, M., and Helmert, M. 2012. About partial order
reduction in planning and computer aided verification. In
Proc. ICAPS 2012.

3297

