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Abstract

The Kalman Filter (KF) is pervasively used to control
a vast array of consumer, health and defense products.
By grouping sets of symmetric state variables, the Rela-
tional Kalman Filter (RKF) enables us to scale the exact
KF for large-scale dynamic systems. In this paper, we
provide a parameter learning algorithm for RKF, and a
regrouping algorithm that prevents the degeneration of
the relational structure for efficient filtering. The pro-
posed algorithms significantly expand the applicability
of the RKFs by solving the following questions: (1) how
to learn parameters for RKF from partial observations;
and (2) how to regroup the degenerated state variables
by noisy real-world observations. To our knowledge,
this is the first paper on learning parameters in relational
continuous probabilistic models. We show that our new
algorithms significantly improve the accuracy and the
efficiency of filtering large-scale dynamic systems.

1 Introduction

Many real-world systems can be modeled by continuous
variables and relationships (or dependencies) among them.
The Kalman Filter (KF) (Kalman 1960) accurately estimates
the state of variables in a linear dynamic system with Gaus-
sian noise given a sequence of control-inputs and observa-
tions. The KF has been applied in a broad range of domains
such as robotics, finance (Bahmani-Oskooee and Brown
2004), and environmental science (P. and Bierkens 2001;
Clark et al. 2008). Given a sequence of observations and lin-
ear dependencies with Gaussian noise between variables, the
KF calculates the conditional probability density of the state
variables at each time step.

Unfortunately, the KF computations are cubic in the num-
ber of state variables, which limits the use of existing ex-
act methods for domains with a large number of state vari-
ables. This has led to the combination of approximation and
sampling in the Ensemble Kalman Filter (Evensen 1994),
and recently to the Relational Kalman Filters (RKFs) over
grouped state variables (Choi, Guzman-Rivera, and Amir
2011; Ahmadi, Kersting, and Sanner 2011). The RKFs
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leverage the ability of relational languages to specify mod-
els with size of representation independent of the size of
populations involved (Friedman et al. 1999; Poole 2003;
Richardson and Domingos 2006; Kersting 2012).

Lifted inference algorithms for relational continuous
models (Wang and Domingos 2008; Choi, Hill, and Amir
2010; Ahmadi, Kersting, and Sanner 2011; Choi and Amir
2012) degenerate (or split) relational structures upon indi-
vidual observations. Lifted RKF (Choi, Guzman-Rivera, and
Amir 2011) maintains relational structure when the same
number of observations are made. Otherwise, it also degen-
erates (possibly rapidly) the relational structure, thus lifted
RKF may not be useful with sparse observations.

The main contributions of this paper are (1) to learn pa-
rameters for RKFs and (2) to regroup the degenerated state
variables from noisy real-world observations with tight error
bounds. To our knowledge, this is the first paper on learning
parameters in relational continuous probabilistic models.

We propose a new learning algorithm for RKFs. We show
that relational learning expedites filtering, and achieves ac-
curate prediction in theory and practice. The key intuition
is that the Maximum Likelihood Estimate (MLE) of RKF
parameters is the empirical mean and variance over state
variables of a group. For partial observations, the param-
eters can be calculated similarly. We show that variances
of degenerated state variables on partial observations con-
verge exponentially under reasonable conditions. Thus, our
approximate regrouping algorithm has bounded errors com-
pared to the exact KF. We show that the RKF with regroup-
ing is more robust against degeneracy than the Lifted RKF
in practice with partial observations.

2 Relational Linear Dynamic Systems
In this section, we define relational linear dynamic systems.
Dependencies among variables are represented using rela-
tional atoms, or just atoms.1 The relational atoms are use-
ful when the joint probability of variables involves common
types of functions. When representing the joint probability
distribution, there are products of the parameterized func-
tions (or potentials).

1For comprehensive definitions, see (Poole 2003;
de Salvo Braz, Amir, and Roth 2005).
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Figure 1: The Republican River Basin covering portions of
east Colorado, northwest Kansas, and southwest Nebraska.
This figure shows two clustered water wells; region1(r1) and
region2(r2). Water wells in each region have the same (linear
Gaussian) relationships with wells in other regions.

Relational atoms represent the set of state variables cor-
responding to all ground substitutions of its parameter vari-
ables. For example, let Xr1(Latitude, Longitude) be an atom
for the (water level of) wells in region1, θ=(40.2N,103W ).
When we substitute Latitude and Longitude with θ,
the atom becomes a state variable Xr1(40.2N, 103W )
which represents the level (or prediction) of well head at
(Latitude=40.2N, Longitude=103W ). Formally, applying a
substitution θ to an atom X(L) yields a new atom X(Lθ)
where Lθ is obtained by renaming the parameter variables
in L according to θ. If θ is a ground substitution, X(Lθ) is
a ground state variable like Xr1(40.2N, 103W ).2 |X(L)| or
just |X| denotes the the number of distinct state variables
generated from X by all substitutions.

A pairwise Gaussian parfactor ((X,X′), φ) is com-
posed of a pair of two atoms (X, X′) and a linear Gaussian
potential φ between two atoms in the following form,

φ(X,X′) ∝ exp

[
− (X−X′ − μ)2

σ2

]
.

For example, a pairwise Gaussian parfactor
φr1,r2(Xr1 , Xr2) represents the linear Gaussian rela-
tionship between two ground variables chosen from region1
and region2 respectively.

A pairwise Gaussian factor, or just a factor, f =
((x,x′), φ) is a pair where φ is a potential function on
(x,x′) from R

2 to R
+ where (x,x′) is a pair of ground

random variables derived by ground substitutions from
(X(Lθ),X′(L′θ′)). A factor f defines a weighting function

2Here, we assume that the ground state variables are univariate,
e.g., domain of x is R. Models with multivariate ground variables
can be handled similarly.

on a valuation (x, x′) = (v, v′): wf (x, x
′) = φ(v, v′). The

weighting function for a parfactor g is the product of the
weighting functions over all of its ground substitutions (fac-
tors), wg(v) =

∏
f∈g wf (v). Hence, a set of parfactors G

defines a probability density,

wG(v) =
1

Z

∏
g∈G

∏
f∈g

wf (v),

where Z is the normalizing constant and f ∈ g means f is a
ground instance of g.3 In this way, we can represent the joint
probability of all random variables (e.g., all wells in region1
and region2).

Relational Transition Models (RTMs) characterize the
dependencies of relational atoms between consecutive time
steps. Xi

t(a) and Xj
t+1(a

′) are relational atoms at time step
t and t + 1 respectively when a and a′ are ground substi-
tutions, e.g., a=(40.2N,98W ),a′=(40.5N,98W ). U i

t (a) is
the control-input information. A RTM takes the following
form,

Xj
t+1(a

′) = Bij
XXi

t(a) +Bij
U U i

t (a) +Gij
RTM , (1)

where Gij
RTM∼N (0, σij

RTM

2
) and N (m,σ2) is the normal

distribution with mean m and variance σ2. Bij
X and Bij

U are
the linear transition coefficients.

In the linear Gaussian representation, the transition mod-
els take the following form,

φRTM (Xj
t+1(a

′)|Xi
t(a), U

i
t (a))

∝ exp

[
− (Xj

t+1(a
′)−Bij

XXi
t(a)−Bij

U U i
t (a))

2

2σij
RTM

2

]
.(2)

The most common transition is the one from the state
Xi

t(a) to the state itself Xi
t+1(a) at the next time step,

Xi
t+1(a) = Bi

XXi
t(a) +Bi

UU
i
t (a) +Gi

RTM . (3)

Relational Observation Models (ROMs) represent the
relationships between the hidden (state) variables, Xi

t(a).
The observations can be made on the directly related vari-
able, Oi

t(a) (direct observations or individual observa-
tions),

Oi
t(a) = Ci

XXi
t(a)+Gi

ROM , Gi
ROM∼N (0, σi

ROM

2
) (4)

Ci
X is the linear coefficient.
ROMs also represent the relationships between the hidden

variables Xi
t(a) and the observations made indirectly on an-

other variable in the atom Oi
t(a

′) where a �=a′ (relational
observations),

Oi
t(a

′) = C ′i
t X

i
t(a) +G′i

ROM , G′i
ROM∼N (0, σ′i

ROM

2
).
(5)

In most cases, it is reasonable to assign the variance
of the direction observation var(Gi

ROM ) to be smaller

3The condition of being a probability density is that at least a
random variable has a prior distribution, see (Choi, Hill, and Amir
2010).
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Figure 2: Samples generated from Relational Linear Models
each with randomly generated parameters. Here, each plot
includes 40 variables represented by four colored atoms with
10 variables each. The x axis is the time step.

value than the variance of relational one var(G′i
ROM ) i.e.

σi
ROM�σ′i

ROM .
For the well example, Xr1

t (40.2N,103W ) will have a
smaller variance (more certain), when an observation is
made at Or1

t (40.2N,103W ) than made at a nearby location
Or1

t (40.5N,103W ). Or1
t (40.2N,103W ) is a direct obser-

vation for Xr1
t (40.2N,103W ) and a relational observation

for Xr1
t (40.5N,103W ). Thus, after an update step, the vari-

ance of Xr1
t (40.2N,103W ) will be significantly reduced

compared to the variance of Xr1
t (40.5N,103W ).

In the linear Gaussian representation, ROMs take the fol-
lowing form,

φROM (Oi
t(a)|Xi

t(a)) ∝ exp

[
− (Oi

t(a)− Ci
XXi

t(a))
2

2σi
ROM

2

]
.

Relational Pairwise Models (RPMs) represent linear de-
pendencies between pairs of relational atoms,

Xi
t(a) = Rij

t X
j
t (a

′) +Gij
RPM , Gij

RPM ∼ N (0, σij
RPM ),

(6)
where Rij

t is the coefficient.
Note that RTMs and ROMs represent the nature of dy-

namic systems (e.g. the state at the next time step depends
on the current time step). A set of RPMs over multiple atoms
is an efficient way to represent the relational structure over a
large number of state variables as shown in Figure 2.

Relational Kalman Filter (RKF) is a filtering proce-
dure with a relational linear dynamic system which is com-
posed of RTMs, ROMs and RPMs. That is, the joint prob-
ability of state variables is represented by the product of
pairwise Gaussian parfactors. Lifted RKF computes the
posterior of the state variables given a prior (current) be-
lief and full or partial observations. The input to the prob-
lem is: (1) relational parfactors (RTMs, ROMs and RPMs);
(2) a current belief over atoms (Xi

0); (3) a sequence of
control-inputs (U i

1, . . . , U
i
T ); and (4) a sequence of obser-

vations (Oi
1, . . . , O

i
T ). The output is the multivariate Gaus-

sian distribution over the atoms (Xi
T ) at each time step T .

The filtering problem is solved by algorithms presented in
(Choi, Guzman-Rivera, and Amir 2011; Ahmadi, Kersting,

and Sanner 2011). In this paper, we focus on the parameter
learning problem.

3 Learning Relational Kalman Filter

The two important parameters of the RKF are the transition
models and observation models. In this section, we present
a learning algorithm that derives the MLEs of RTMs and
ROMs. For simplicity, we will present a solution with fully
observed model. A solution for partial observations can be
derived with a slight modification.

3.1 Algorithm LearningRKF
Algorithm LearningRKF estimates the parameter of RKF
given a sequence of observations such as measurements of
water wells for several years. The overall procedure is simi-
lar to parameter learning for the ground KF. Here, the main
difference is that the coefficients and covariances of RTMs
and ROMs are the block matrices. A subroutine, BlockAver-
age, computes the averages of the diagonal and non-diagonal
entries of an input matrix, and then ouputs a block matrix
where each block includes the empirical means, variances
and covariances in each block. This is essentially parameter
tying (Raedt 2008) step for RKF. In the following sections,
we will show that the block matrix computed by BlockAver-
age is the MLE.

Algorithm 1 LearningRKF

input: a sequence of obs (O1, · · · , OT )
(B,ΣT ,C,ΣO)← (I, I, I, I)
currentLL←∞
repeat

prevLL← currentLL(
B̂,Σ̂T ,Ĉ,Σ̂O

)
←LearnGroundTM(Ot,B,ΣT ,C,ΣO)

(B,ΣT ,C,ΣO)← BlockAverage(B̂, Σ̂T , Ĉ, Σ̂O)
currentLL←∑

t logP (Ot|Xt,B,ΣT ,C,ΣO)
until | prevLL - currentLL | < ε
output: estimated parameters (B,ΣT ,C,ΣO)

3.2 Learning Transition Models

Here, we derive the parameter of the RTMs: linear coeffi-
cient B and Gaussian noise GRTM . It has been shown that
a relational linear dynamic model with RTMs, ROMs and
RPMs can be converted into a linear multivariate models
with block coefficient and covariance matrices (Choi, Hill,
and Amir 2010). Thus, given data, we find the block coeffi-
cient and covariance matrices of RTMs.

Learning Transition Noise means to compute the mean
and the covariance matrix in the following block forms,

μT =

⎡⎢⎢⎣
μ1

μ2

...
μn

⎤⎥⎥⎦ ,ΣT =

⎡⎢⎢⎣
Σ1,1 Σ1,2 · · · Σ1,n

Σ2,1 Σ2,2 · · · Σ2,n

...
...

. . .
...

Σn,1 Σn,2 · · · Σn,n

⎤⎥⎥⎦ , (7)

where μi is a vector of size |Xi| (=ni); Σi,j is a matrix of
size ni by nj .
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Given a prior, a linear coefficient B and a sequence of
full observations, we derive the estimate Xt at time step t
assuming Gaussian noise in the transition model. The MLE
estimation of μ and Σ for the RTM can be derived:

(μTmax,ΣTmax) = argmax
μT ,ΣT

∑
t=2,··· ,T

log fN ( �Xt;μT ,ΣT )

where �Xt=Xt−BXt−1 and fN is the Gaussian pdf.
Proposition 1. Given a RKF with a single atom, the MLEs
of the Gaussian transition noise are the empirical mean,
variance and covariance as follows:

μMLE =

⎡
⎢⎢⎣

m
m
...
m

⎤
⎥⎥⎦ ,ΣMLE =

⎡
⎢⎢⎢⎣

σ2 σ′ · · · σ′

σ′ σ2 · · · σ′

...
...

. . .
...

σ′ σ′ · · · σ2

⎤
⎥⎥⎥⎦ (8)

such that

m=
1

nT̄

T∑
t=2

∑
a∈A

�Xt(a), σ
2=

1

nT̄

T∑
t=2

∑
a∈A

(
�Xt(a)−m

)2

,

σ′=
1

n(n−1)T̄

T∑
t=2

∑

a,a′∈A
a �=a′

(
�Xt(a)−m

)(
�Xt(a

′)−m
)
,

where n = | �Xt(A)| and T̄=T−1.

Proof. The MLEs of the parameters (μT ,ΣT ) are derived
by the partial derivatives of the log likelihood:

∂

∂μT

T∑
t=2

log fN ( �Xt;μT ,ΣT )=0,

∂

∂ΣT

T∑
t=2

log fN ( �Xt;μT ,ΣT )=0.

All ground variables generated from the atom �Xt have the
same mean, variance and covariances as shown in Equa-
tion (8). Now, we can specify the following linear con-
straints:

m =
1

T̄

∑
t

�Xt(a1) = · · · = 1

T̄

∑
t

�Xt(an).

That is, m= 1
nT̄

∑
t

∑
a
�Xt(a).

The covariance matrix of the RTM is also calculated from
the empirical covariance matrix. The diagonal entries σ2 are
derived as follows:

σ2=
1

T̄

∑
t

( �Xt(a1)−m)2=· · ·= 1

T̄

∑
t

( �Xt(ani)−m)2.

Thus, σ2= 1
nT̄

∑
t

∑
a

(
�Xt(a)−m

)2

. Non-diagonal entries
(covariances) are derived similarly with n(n−1) empirical
covariances.4

4One gets the same result when differentiating m, σ2 and σ′

directly from the log-likelihood.

This result is consistent with the result in the non-
relational KF because the MLE of the ground KF (μT and
ΣT ) are known to be the empirical mean and the empirical
covariance matrix (Roweis and Ghahramani 1999).

In the general case, when we have multiple atoms, the
mean vector and the covariance matrix are block forms as
shown in Equation (7). That is, the mean and covariance val-
ues are same in each subblock. In case of two atoms Xi and
Xj , the means and covariances are represented as follows:

μT =

[
μ1

μ2

]
,ΣT =

[
Σ1,1 Σ1,2

Σ2,1 Σ2,2

]
The MLE parameters of the RTM are derived similarly

with empirical means and covariances of subblocks.
Proposition 2. Given a RKF with multiple atoms, the MLEs
of the Gaussian transition noise are the empirical means,
variances and covariances,

μi = [mi, · · · ,mi]
T s.t. mi =

1

niT̄

T∑
t=2

∑
a∈A

�Xt
i
(a),

Σi,i =

⎡
⎢⎢⎢⎣

σ2 σ′ · · · σ′

σ′ σ2 · · · σ′

...
...

. . .
...

σ′ σ′ · · · σ2

⎤
⎥⎥⎥⎦ ,Σi,j =

⎡
⎢⎣
σ′′ · · · σ′′

...
. . .

...
σ′′ · · · σ′′

⎤
⎥⎦ ,

σ2 =
1

niT̄

T∑
t=2

∑
ainA

(
�Xi
t(a)−mi

)(
�Xi
t(a)−mi

)
,

σ′ =
1

ni(ni−1)T̄

T∑
t=2

∑

a,a′∈A
(a �=a′)

(
�Xi
t(a)−mi

)(
�Xi
t(a

′)−mi

)
,

σ′′ =
1

ninj T̄

T∑
t=2

∑
a∈A,b∈B

(
�Xi
t(a)−mi

)(
�Xj
t (b)−mj

)
,

where ni = | �Xi
t | and T̄=T−1.

Proof. The principles used in the proof of Proposition 1 are
applied because the Σi,i and Σi,j are block matrices.

Thus, the block covariance matrix ΣT can be derived by
(1) learning the ground (non-block) covariance matrix Σ̂T

and (2) computing the averages of each subblock. BlockAv-
erage in Algorithm LearningRKF conducts the averaging-
out procedure.

Learning Linear Coefficient means to estimate the linear
coefficient B between Xt−1 and Xt. In this case, given other
parameters, Gaussian noise of RTMs and ROMs, the MLE
of B is derived as follow (Roweis and Ghahramani 1999),

B̂ =

⎛⎝ ∑
t=2,··· ,T

XtX
T
t−1

⎞⎠⎛⎝ ∑
t=1,··· ,T−1

XtX
T
t

⎞⎠−1

.

Here, B̂ denotes the linear coefficient of the ground TM,
and B̂ will be converted to a block matrix by averaging the
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coefficient in each subblock. B̂i,j denotes the subblock for
the linear transition from Xj

t−1 to Xi
t . The MLE of the block

coefficient is represented as follows:

Bi,i =

⎡⎢⎢⎣
b b′ · · · b′
b′ b · · · b′
...

...
. . .

...
b′ b′ · · · b

⎤⎥⎥⎦ ,Bi,j =

⎡⎢⎣b
′′ · · · b′′
...

. . .
...

b′′ · · · b′′

⎤⎥⎦ ,

such that
b= 1

ni

∑ni

k=1 B̂
i,i
k,k, b

′= 1
ni(ni−1)

∑(ni,ni)
(k,l)=(1,1)

k �=l

B̂i,i
k,l,

b′′= 1
ninj

∑(ni,nj)

(k,l)=(1,1) B̂
i,j
k,l.

The block coefficient matrix B is also the MLE of RTM.

3.3 Learning Observation Models

Given RTMs and a sequence of full observations, we derive
the estimate Xt at time step t assuming that there is no ob-
servation noise.

Learning Observation Noise means to estimate the mean
vector and covariance matrix for the ROM. The MLEs prob-
lem is formulated as follows:

(μMLE,ΣMLE) = argmax
μO,ΣO

T∑
t=1

log fN ( �Ot;μO,ΣO),

where �Oi
t = Ot−C·Xi

t . The derivation is similar to RTMs.
One can substitute �Oi

t for �Xi
t in Proposition 2.

Learning Linear Coefficient C means to compute the
linear coefficient between Xt and Ot.

Ĉ =

⎛⎝ ∑
t=1,··· ,T

OtX
T
t

⎞⎠⎛⎝ ∑
t=1,··· ,T

XtX
T
t

⎞⎠−1

.

The coefficient C is also computed from Ĉ by averaging out
each subblock as in learning B.

4 LRKF with Regroupings
With the estimated parameters, the RKF predicts the state
variables in the relational linear dynamic model. This sec-
tion presents a new lifted Kalman filtering algorithm, which
approximately regroups degenerated relational structures.
Existing lifted Kalman filtering algorithms (Choi, Guzman-
Rivera, and Amir 2011; Ahmadi, Kersting, and Sanner 2011)
suffer degenerations of relational structures when sparse ob-
servations are made.5 Algorithm LRKF-Regroup also de-
generates the domains of relational atoms by calling De-
genAtom when state variables are observed in different time
steps. Thus, the state variables present different Obs (e.g.,
Obs(i,a) �=Obs(i,a′)) where Obs(i,a) stores the most recently
observed time for a ground substition a in the i-th atom.

To overcome such degeneracy, LRKF-Regroup introduces
a new subroutine, called MergeAtom, which merges covari-
ance structures when random variables are not directly ob-
served for a certain time step, say k.

5Note that, the lifted algorithm in (Choi, Guzman-Rivera, and
Amir 2011) is only valid when the same number of observations
are made at the same time steps.

Algorithm 2 LRKF-Regroup (Prediction w/ testing data)

Input: params (B,ΣT ,C,ΣO), obs (O1, · · ·, OT )
repeat
μ0 ← 0, Σ0 ← 0
(Obs(1,1),· · · ,Obs(n,ni))← (0, · · · , 0)
for t← 1 to T do
(μ′

t,Σ
′
t)← Predict-RTM(μt−1, Σt−1, B, ΣT )

for all (i, a) s.t. Oi
t(a) is observed do

Obs(i,a) ← t
end for
(B,ΣT ,C,ΣO)←DegenAtom(Obs, B,ΣT ,C,ΣO)
(μt,Σt)← Update-ROM(μ′

t, Σ
′
t, C, ΣO)

(B,ΣT ,C,ΣO)←MergeAtom(Obs, t, B,ΣT ,C,ΣO)
end for

until t is T
Output: state estimations ((μ0,Σ0), · · · , (μT ,ΣT ))

The MergeAtom operation iterates over atoms and finds
all state variables which are not observed for a certain time
step k. The selected variables are stored in mlist. Then,
the BlockAverage respectively averages diagonal entries and
non-diagonal entries in mlist, and sets the averaged values
to state variables in mlist. In this way, it rebuilds the com-
pact relational structure again.

Algorithm 3 MergeAtom

input: recent obs time Obs, time t, params (B,ΣT ,C,ΣO)
mlist← ∅
for i = 1 to n do

for each a s.t. Obs(i,a)+k ≤ t do

mlisti ←mlisti
⋃{a}

end for
end for
(B′,Σ′

T ,C
′,Σ′

O) = BlockAverage(mlist,B,ΣT ,C,ΣO)
output: merged relational structures (B′,Σ′

T ,C
′,Σ′

O)

The following lemma and theorem are the main theoreti-
cal contributions of this paper.6

Lemma 3. When at least one relational observation is made
on an atom Oi at every time step, the variance of any state
variable Xi(a) in LRKF-Regroup is bounded by σ′i

ROM
2

and converges to√
σ′i
ROM

2
σi
RTM

2
+

σ′i
ROM

4

4 −σi
RTM

2

2 .

Proof. Let the variance of the i-th atom be σi
RTM and the

variances of direct and relational observations respectively
be σi

ROM
2 and σ′i

ROM
2 where σi

ROM < σ′i
ROM as Equa-

tions (4) and (5).
Let σi

t(a)
2 be the variance of a state variable Xi(a) at

time t. This variable will be updated by at least one re-
lational observation by the LRKF-Regroup. Then, the new
variance is 1

σi
t+1(a)

2 = 1
σi
t(a)

2 + 1
σ′i
ROM

2 . That is, σi
t+1(a)

2 ≤
6The definitions of the direct observation and the relational ob-

servation are in Equations (4) and (5).
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Figure 3: Variances of an atom with and without rela-
tional observation (obs). Both models receive one direct
obs every 10 time steps. The circle-shaped marks repre-
sent the variances of an atom with relational obs at ev-
ery time step. The square-shaped marks represent the vari-
ances of an atom without any relational obs. The setting is
(σi

ROM
2
, σ′i

ROM
2
)=(0.1, 0.5).

min(σi
t(a)

2, σ′i
ROM

2
). Use the following equation for tran-

sition and update in each filtering step:

1

σi
t+1(a)

2
≤ 1

σi
t(a)

2 + σi
RTM

2 +
1

σ′i
ROM

2 .

For the convergence, let σi
t+1(a)=σi

t(a)=σi
∗(a). The vari-

ance is then σi
∗(a)

2
=

√
σ′i
ROM

2
σi
RTM

2
+

σ′i
ROM

4

4 −σi
RTM

2

2

Lemma 3 shows that the variance of an atom is bounded
when consecutive relational observations are made. Figure 3
illustrates the intuitions of the lemma.
Theorem 4. When (1) no direct observation is made on two
state variables Xi(a) and Xi(a′) in an atom Oi at least for
k time steps; and (2) at least one relational observation is
made on the other variables in the atom, the difference of the
variances of two state variables σi

t(a) and σi
t(a

′) is bounded
by O(ck) where c is σi

∗(a)
2/(σi

∗(a)
2+σ′i

ROM
2
) and c ≤ 1.

Proof. We follow the result of the Lemma 3 and use σi
∗(a).

The variance of each time step follows the recursive form:

1

σi
t+1(a)

2
=

1

σi
t(a)

2 + σi
RTM

2 +
1

σ′i
ROM

2 . (9)

An exact (non-recursive) formula for σi
t+1(a) is non-trivial.

Thus, we introduce another simpler, converging sequence,

σ̄i
t+1(a)

2 = c(σ̄i
t(a)

2 + σi
RTM

2
).

Since σi
t(a)

2 − σ̄i
t(a)

2 is positive and convex when c < 1,

0≤σ̄i
t(a)≤σi

t(a)≤σi
∗(a), σi

∗(a)
2−σ̄i

t(a)
2 ≥ σi

∗(a)
2−σi

t(a)
2.

The convergence of the simpler form is slower than the orig-
inal one in Equation (9). However, it provides an exact for-
mulation and converges exponentially:

σ̄i
t(a)

2 = ckσ̄i
t−k(a)

2 + σi
RTM

2 1− ck

1− c
.

WLOG, we set Xi(a′) has no direct observation longer than
Xi(a). The variance of Xi(a′) has the same formulation

Figure 4: The water levels of wells in four sets of clusters.
Each plot shows distinct group behaviors. The x axis is the
time step in month and the y axis is the head (of well).

with a substitution of k+α for k. Thus, the variance of
Xi(a′) is represented as follows:

σ̄i
t(a

′)2=ck+α · σ̄i
t−k−α(a

′)2+σi
RTM

2 1−ck+α

1−c .

Note that, σ̄i
t+α(a) ≤ σ̄i

t+α(a
′) ≤ σ̄i

t+∞(a′).

|σi
t+α(a

′)2−σi
t(a)

2| ≤ |σi
t+∞(a′)2−σi

t(a)
2|

= ck(σi
RTM

2
/(1− c)−σi

t+k(a)
2)

= ck(σi
RTM

2
(1 + σi

∗(a)
2/σi

ROM

2
)−σi

t+k(a)
2)

≤ ckσi
RTM

2
(1 + σi

∗(a)
2/σi

ROM

2
) = O(ck).

For the well example, suppose that Xr1(40.5N,103W )
(or X(A)) and Xr1(40.2N,103W ) (or X(B)) are in an
atom Xr1 . As time goes, each well may be observed in dif-
ferent time steps. At time step 10, X(A) is observed through
the observation variable O(40.5N,103W ) (or O(A)) while
X(B) are not observed, yet. Now, two wells have differ-
ent variances and covariances, thus different pairwise Gaus-
sian factors. The pairwise Gaussian parfactor for X(A)
and X(B) cannot be shared anymore. Thus, the atom Xr1

should be degenerated (or divided) into two parts. The de-
generation corresponds to the terms, split (Poole 2003) and
shatter (de Salvo Braz, Amir, and Roth 2005).

Since the degeneration, X(A) and X(B) are not observed
for another 15 time steps. As time goes, the variances of
X(A) and X(B) increase again. However, with at least one
relational observation at every time step, the variances of
X(A) and X(B) converge, and the difference reduces ex-
ponentially as we show in Theorem 4.

Thus, given the consecutive relational observations,
we can compute the variances of the degenerated vari-
ables without searching individuals. That is, k in Algo-
rithm MergeAtom is determined to guarantee that the error
of variances is less than a bound of our interest.

5 Experimental Results

In the experiments, we use multiple synthetic data sets
and a real-world groundwater flow MODFLOW model,
the Republican River Compact Association (RRCA) model
(McKusick 2003) as shown in Figure 1. The dataset ex-
tracted from the RRCA model includes a set of monthly
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Figure 5: Error of estimated parameters (transition matrix
and transition noise) in ground KF and LRKF.

measured heads (water level) at over 3,000 wells for 850
months. Not all wells are measured every month. There are
different groups of wells which show various dynamic be-
haviors as shown in Figure 4. We choose 1,182 wells which
have at least 45 measurements (about 5% of 850).

5.1 The Accuracy of Parameter Learning

For the experiments with synthetic data, we generate 750
time steps of samples for Relational Linear (Transition)
Models with 6 atoms each with 10 variables. That is, our
synthetic training data is composed of 60 by 750 numer-
ical values which is similar to Figure 2. Then, we com-
pare our relational learning algorithm presented in Sec-
tion 3 with the state-of-the-art (ground) learning algorithm
for the vanilla KF (Digalakis, Rohlicek, and Ostendorf 1993;
Ghahramani and Hinton 1996). In each time step, we com-
pute the MLE of the transition matrix and the transition
noise (BX and GRTM in Equation (1)). Then, we measure
the average root mean-square error (RMSE) between the
true parameters and the estimated parameters after 10 re-
peated experiments. Figure 5 shows that our relational learn-
ing can find the true parameters much faster than ground
learning. This result implies that our relational learning per-
forms better than ground learning when samples are gener-
ated from relational models.

To compare the two algorithms in a real-world data,
we conduct experiments on the RCAA data. Handling the
RCAA data is challenging because it has irregular, noisy
measurements with various dynamic changes. In addition,
relational information (i.e., which wells are included in
which atom) is not given. To build the relational informa-
tion, we cluster the set of water wells by spectral clustering
(Ng, Jordan, and Weiss 2001).7 Figure 4 shows four repre-
sentative groups of water wells.

Then, we compute the MLEs parameters: the transition
matrix and noise (BX and GRTM in Equation (1)); and
the observation matrix and noise (HX and GROM in Equa-
tion (4)). To compute the model accuracy, we prepare test
data as the last 20% of measurements for randomly sam-
pled (50%) water wells. That is, 10% of all measurements
(about 10,038) are reserved for testing. All other measure-

7The distance matrix between water wells is computed by mea-
surements of co-occurrences and their average differences.

Figure 6: Filtering time of Lifted RKF and LRKF-Regroup
in a simulation and the RRCA groundwater model.

ments are used for training. We compare the two meth-
ods in terms of the RMSE and the negative log probabil-
ity (−log(p(data|prediction))). Note that KFs provide value
predictions with uncertainty (the variances). For the 10,038
test measurements, the average RMSEs of the LRKF and
the vanilla KF respectively were 4.36 and 5.10. The aver-
age negative log probabilities of the LRKF and the vanilla
KF respectively were 3.88 and 4.91. As shown in Figure 7,
the RRCA model data are very dynamic and noisy. The re-
sult shows that LRKF models such complex real-world data
better than the vanilla KF.

5.2 The Efficiency of Filtering

For the filtering efficiency, we compare the Lifted RKF
(Choi, Guzman-Rivera, and Amir 2011) and our LRKF-
Regroup.8 The algorithms are compared on two datasets
with sparse observations: one synthetic dataset and one real-
world groundwater data. Note that the lifted RKF will not
degenerate the model on full, dense observations. In both ex-
periments, we set k in Algorithm MergeAtom to be 4. That
is, two state variables will be merged if they have the same
observation numbers and types when at least one relational
observation is made.

In synthetic data, we assume an atom with 300 ground
substitutions, i.e., |Xi|=300. Then we make a sparse obser-
vations with a rate of 90%. That is, 90% of state variables
will be observed in each time step. Then, we report the av-
erage filtering time of Lifted RKF and LRKF-Regroup in the
simulation and the RRCA model. The experimental results
are presented in Figure 6.

8Source code is available at http://pail.unist.ac.kr/LRKF.
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Figure 7: The water levels of all wells in the RRCA data.
Each of 50 plots represents wells in a group. The x axis is
the time (in months). The y axis is the water level (head).

6 Conclusion

This paper provides new answers and insights on (1) how
to learn parameters for the RKF; and (2) how to regroup the
state variables from noisy real-world data. We propose a new
learning algorithm that regroups the state variables when in-
dividual observations are made to the RKF in different time
steps. In a simulated dataset and a real-world dataset, we
demonstrate that the new algorithm significantly improves
the accuracy and the efficiency of filtering for large-scale
dynamic systems.
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