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Abstract

Algorithmic reductions are one of the corner stones of
theoretical computer science. Surprisingly, to-date, they
have only played a limited role in machine learning. In
this paper we introduce a formal and practical reduction
between two of the most widely used machine learn-
ing algorithms: from the Elastic Net (and the Lasso as
a special case) to the Support Vector Machine. First, we
derive the reduction and summarize it in only 11 lines
of MATLABTM. Then, we demonstrate its high impact
potential by translating recent advances in parallelizing
SVM solvers directly to the Elastic Net. The resulting
algorithm is a parallel solver for the Elastic Net (and
Lasso) that naturally utilizes GPU and multi-core CPUs.
We evaluate it on twelve real world data sets, and show
that it yields identical results as the popular (and highly
optimized) glmnet implementation but is up-to two or-
ders of magnitude faster.

Introduction

The discovery and rigorous analysis of Algorithmic reduc-
tions is arguably amongst the biggest achievements in theo-
retical computer science (Cormen et al. 2001). It enabled the
rise of modern complexity theory and the establishment of
complexity equivalence-classes (such as P and NP). Reduc-
tions provide important links between seemingly different
algorithms, and often allow for theoretical results about one
algorithm to be transferred to another.

Despite this undeniable success in traditional theoreti-
cal computer science, reductions have found little traction
within the machine learning community (with only few no-
table exceptions (Langford and Zadrozny 2005)). In this pa-
per, we present a formal reduction of the Elastic Net (Zou
and Hastie 2005) and Lasso (as a special case) (Hastie, Tib-
shirani, and Friedman 2009) to the Support Vector Machine
with squared hinge loss1 (Cortes and Vapnik 1995). In other

Copyright c© 2015, Association for the Advancement of Artificial
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1In this work, as we do not use the standard SVM with linear
hinge loss, we refer to the SVM with squared hinge loss simply as
SVM.

words, we show how any Elastic Net regression problem can
be transformed into a binary SVM classification problem,
which lead to identical weight vectors (up to scaling). We
make several concrete contributions:

We provide a rigorous derivation of the reduction from
the Elastic Net to the SVM. This reduction sheds new light
onto both algorithms and offers a valuable opportunity to
translate results from one research community to the other.
Although our contribution is first and foremost theoretical,
we derive a practical linear-time algorithm to perform this
reduction and state it in 11-lines of MatlabTM code.

We also demonstrate the high impact potential of our
reduction by transferring recent breakthroughs in parallel
SVM solvers with graphics processing unit (GPU) sup-
port (Tyree et al. 2014; Cotter, Srebro, and Keshet 2011)
directly to the Elastic Net and the Lasso. We thoroughly
evaluate the correctness and speed of the resulting parallel
Elastic Net implementation on twelve real-world data sets
(covering the p�n and the n�p scenarios) and show that
it outperforms the most efficient existing implementations
consistently in all settings by up-to two orders of magnitude
— making it the fastest Elastic Net and Lasso solver that we
are aware of.

We believe that our result should be of interest to many
members of the machine learning community. Our theoret-
ical reduction could give rise to similar reductions of varia-
tions of the Elastic Net to other known versions of the SVM.
It may also lead to entirely new algorithmic discoveries on
both sides. Our application to utilize GPU hardware and its
associated speedup could be of great use to practitioners,
e.g. in computational biology, neuroscience or sparse cod-
ing. Finally, the fact that utilizing SVM implementations for
the Elastic Net leads to drastically faster implementations
proves that there is still a lot of room to improve Elastic Net
solvers by incorporating parallelism and modern hardware.

Notation and Background

Throughout this paper we type vectors in bold (x), scalars
in regular (C or b), matrices in capital bold (X). Specific
entries in vectors or matrices are scalars and follow the cor-
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responding convention, i.e. the ith dimension of vector x is
xi. In contrast, depending on the context, x(i) refers to the
ith column in matrix X and xi refers to the transpose of its
ith row. 1 is a column vector of all 1. In the remainder of
this section we briefly review the Elastic Net and SVM. In
derivations we highlight changes in equations in red.

Elastic Net. In the regression scenario we are provided
with a data set {(xi, yi)}ni=1, where each xi ∈ Rp and the
labels are real valued, i.e. yi ∈ R. Let y = (y1, . . . , yn)

�
be the response vector and X∈Rn×p be the design matrix
where the (transposed) ith row of X is xi. As in (Zou and
Hastie 2005), we assume throughout that the response vector
is centered and all features are normalized.

The Elastic Net (Zou and Hastie 2005) learns a (sparse)
linear model to predict yi from xi by minimizing the squared
loss with L2-regularization and an L1-norm constraint,

min
β∈Rp

‖Xβ−y‖22+λ2‖β‖22 such that |β|1 ≤ t, (1)

where β = [β1, . . . , βp]
� ∈ Rp denotes the weight vector,

λ2 ≥ 0 is the L2-regularization constant and t > 0 the L1-
norm budget. In the case where λ2 = 0, the Elastic Net re-
duces to the Lasso (Hastie, Tibshirani, and Friedman 2009)
as a special case. The L1 constraint encourages the solu-
tion to be sparse. The L2 regularization coefficient has sev-
eral desirables effects: 1. it makes the problem strictly con-
vex and therefore yields a unique solution; 2. if features are
highly correlated it assigns non-zero weights to all of them
(making the solution more stable); 3. if p�n the optimiza-
tion does not become unstable for large values of t.

SVM with squared hinge loss. In the classification set-
ting we are given a training dataset {(x̂i, ŷi)}mi=1 where
x̂i ∈Rd and ŷi ∈ {+1,−1}. The linear SVM with squared
hinge (Schölkopf and Smola 2002) learns a separating hy-
perplane, parameterized by a weight vector w ∈ Rd—the
unique solution of the following optimization problem:

min
w

1

2
‖w‖22 + C

m∑

i=1

ξ2i s.t. ŷiw
�x̂i ≥ 1− ξi ∀i. (2)

Here, C>0 denotes the regularization constant. Please note
that we do not include any bias term, i.e. we assume that the
separating hyperplane passes through the origin.

This problem is often solved in its dual formulation,
which is equivalent to solving (2) directly due to strong du-
ality. Without replicating the derivation (Hsieh et al. 2008;
Schölkopf and Smola 2002), we state the dual of (2) as:

min
αi≥0

‖Ẑα‖22 +
1

2C

m∑

i=1

α2
i − 2

m∑

i=1

αi, (3)

where α = (α1, . . . , αm) denote the dual variables and
Ẑ = (ŷ1x̂1, . . . , ŷmx̂m) is a d × m matrix, of which the
ith column z(i) consists of input x̂i multiplied by its cor-
responding label ŷi, i.e. z(i) = ŷix̂i. The two formulations
(2) and (3) are equivalent and the solutions connect via
w=

∑m
i=1 αiŷix̂i.

In (3) the data is only accessed through Ẑ�Ẑ, which cor-
responds to the inner-product matrix of the input rescaled
by the labels, i.e. [Ẑ�Ẑ]ij = ŷix̂

�
i x̂j ŷj . In scenarios with

d � m, this matrix can be pre-computed and cached in
a kernel matrix in O(m2) memory and O(d) operations,
which makes the remaining running time independent of the
dimensionality (Schölkopf and Smola 2002). Historically,
the dual formulation is most commonly used to achieve
non-linear decision boundaries, with the help of the kernel-
trick (Schölkopf and Smola 2002). In our case, however, we
will only need the linear setting and restrict the kernel (inner-
product matrix) to be linear, too.

Both formulations of the SVM can be solved par-
ticularly efficiently on modern hardware with Newton’s
Method (Chapelle 2007; Fan et al. 2008), which offloads
the majority of the computation onto matrix operations and
therefore can be vectorized and parallelized to achieve near
peak computing performance (Tyree et al. 2014).

The Reduction of Elastic Net to SVM

In this section, we derive the equivalence between Elastic
Net and SVM, and reduce problem (1) to a specific instance
of the SVM optimization problem (3).

Reformulation of the Elastic Net. We start with the Elas-
tic Net formulation as stated in (1). First, we divide the ob-
jective and the constraint by t and substitute in a rescaled
weight vector, β := 1

tβ. This step allows us to absorb the
constant t entirely into the objective and rewrite (1) as

min
β

∥∥∥∥Xβ − 1

t
y

∥∥∥∥
2

2

+ λ2‖β‖22 s.t. |β|1 ≤ 1. (4)

To simplify the L1 constraint, we follow (Schmidt 2005)
and split β into two sets of non-negative variables, repre-
senting positive components as β+ ≥ 0 and negative com-
ponents as β− ≥ 0, i.e. β = β+−β−. Then we concate-
nate β+ and β− together and form a new weight vector
β̂ = [β+;β−] ∈ R2p

≥0. The regularization term ‖β‖22 can

be expressed as
∑2p

i=1 β̂i
2
, and (4) can be rewritten as

min
β̂i≥0

∥∥∥∥[X,−X] β̂ − 1

t
y

∥∥∥∥
2

2

+ λ2

2p∑

i=1

β̂i
2

s.t.

2p∑

i=1

β̂i ≤ 1.

(5)
Here the set R2p

≥0 denotes all vectors in R2p with all non-
negative entries. Please note that, as long as λ2 �=0, the so-
lution to (5) is unique and satisfies that β+

i =0 or β−
i =0 for

all i.
Barring the (uninteresting) case with extremely large t�

0, the L1-norm constraint in (1) will always be tight (Boyd
and Vandenberghe 2004), i.e. |β̂|= 1.2 We can incorporate

2If t is extremely large, (1) is equivalent to ridge regres-
sion (Hastie, Tibshirani, and Friedman 2009), which typically
yields completely dense (non-sparse) solutions. There is little rea-
son to ever use such (pathologically) large values of t, as the so-
lution can be found much more efficiently with standard ridge re-
gression and does not do feature selection.
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this equality constraint into (5) and obtain

min
β̂i≥0

∥∥∥∥[X,−X] β̂ − 1

t
y

∥∥∥∥
2

2

+ λ2

2p∑

i=1

β̂i
2

s.t.

2p∑

i=1

β̂i=1.

(6)
We construct a matrix Ẑ = [X̂1,−X̂2] such that Ẑβ̂ =

[X,−X] β̂− 1
ty. As 1�β̂ = 1, we can expand y = y1�β̂

and define X̂1 = X− 1
ty1

� and X̂2 = X+ 1
ty1

�. If we
substitute Ẑ into (6) it becomes

min
β̂i≥0

‖Ẑβ̂‖22 + λ2

2p∑

i=1

β̂i
2

s.t.

2p∑

i=1

β̂i = 1. (7)

In the remainder of this section we show that one can ob-
tain the optimal solution β̂

∗
for (7) by carefully construct-

ing a binary classification data set X̂, ŷ such that β̂
∗
=

α∗/|α∗|1, where α∗ is the solution for the SVM dual (3)
for X̂, ŷ.

Data set construction. We construct a binary classifica-
tion data set with m = 2p samples and d = n features
consisting of the columns of X̂ = [X̂1, X̂2]. Let us de-
note this set as {(x̂(1), ŷ1), . . . , (x̂

(2p), ŷ2p)}, where each
x̂(i) ∈ Rn and ŷ1, . . . , ŷp = +1 and ŷp+1, . . . , ŷ2p = −1.
In other words, the columns of X̂1 are of class +1 and
the columns of X̂2 are of class −1. It is straight-forward
to see that for Ẑ = [X̂1,−X̂2], as used in (7), we have
Ẑ = (ŷ1x̂1, . . . , ŷmx̂m), matching the definition in (3). In
other words, the solution of (3) with Ẑ is the SVM classifier
when applied to X̂, ŷ.

Optimal solution. Let α∗ denote the optimal solution of
(3), when optimized with this matrix Ẑ and C = 1

2λ2
. We

will now reshape the SVM optimization problem (3) into
the Elastic Net (7) without changing the optimal solution,
α∗ (up to scaling). First, knowing the optimal solution to
(3), we can add the constraint

∑2p
i=1 αi = |α∗|1, which is

trivially satisfied at the optimum, α∗, and (3) becomes:

min
αi≥0

‖Ẑα‖22+λ2

2p∑

i=1

α2
i − 2

2p∑

i=1

αi. s.t.

2p∑

i=1

αi = |α∗|1.
(8)

Because of this equality constraint, the last term in the ob-
jective function in (8), −2

∑2p
i=1 αi =−2|α∗|1, becomes a

constant and can be dropped. Removing this constant term
does not affect the solution and leads to the following equiv-
alent optimization:

min
αi≥0

‖Ẑα‖22 + λ2

2p∑

i=1

α2
i s.t.

2p∑

i=1

αi = |α∗|1. (9)

Note that the only difference between (9) and (7) is the scale
of design variables. If we divide3 the objective by |α∗|21 and

3This is not well defined if |α∗|1 = 0, which is the over-
regularized case when λ2 → ∞. Here, the SVM selects no support
vectors, i.e. α=0, and the solution to (1) is β = 0.

the constraint by |α∗|1 and introduce a change of variable,
β̂i=αi/|α∗|1 we obtain exactly (7) and its optimal solution
β̂
∗
=α∗/|α∗|1.

Implementation details. To highlight the fact that this re-
duction is not just of theoretical value but highly practical,
we summarize it in Algorithm 1 in MATLABTM code.4 We
refer to our algorithm as Support Vector Elastic Net (SVEN).
As mentioned in the background section, the dual and pri-
mal formulations of SVM have different time complexi-
ties and we choose the faster one depending on whether
2p > n or vice versa. Line 7 converts the primal vari-
ables w to the dual solution α (Schölkopf and Smola 2002).
Many solvers (Bottou 2010; Chapelle 2007; Fan et al. 2008;
Tyree et al. 2014) have been developed for the linear SVM
problem (2). In practice, it is no problem to find an imple-
mentation with no bias term. Some implementations we in-
vestigate do not use a bias by default (e.g. liblinear (Fan
et al. 2008)) and for others it is trivial to remove (Chapelle
2007). In our experiments we use an SVM implementation
based on Chapelle’s original exact linear SVM implemen-
tation (Chapelle 2007) (which can solve the dual and pri-
mal formulation respectively). The resulting algorithm is ex-
act and uses a combination of conjugate gradient (until the
number of potential support vectors is sufficiently small)
and Newton steps. The majority of the computation time
is spent in the Newton updates. As pointed out by Tyree
et al. 2014, the individual Newton steps can be parallelized
trivially by using parallel BLAS libraries (which is the de-
fault in MATLABTM), as it involves almost exclusively ma-
trix operations. We also create a GPU version by casting sev-
eral key matrices as gpuArray, a MATLABTM internal vari-
able type that offloads computation onto the GPU.5

Feature selection and Lasso. It is worth considering the
algorithmic interpretation of this reduction. Each input x̂i

in the SVM data set corresponds to a feature of the origi-
nal Elastic Net problem. Support Vectors correspond to fea-
tures that are selected, i.e. βi �=0. If λ2 → 0 the Elastic Net
becomes LASSO (Hastie, Tibshirani, and Friedman 2009),
which has previously been shown to be equivalent to the
hard-margin SVM (Jaggi 2013). It is reassuring to see that
our formulation recovers this relationship as a special case,
as λ2→0 implies that C→∞, converting (2) into the hard-
margin SVM. (In practice, to avoid numerical problems with
very large values of C, one can treat this case specially and
call a hard-margin SVM implementation in lines 6 and 9 of
Algorithm 1.)

Time complexity. The construction of the input only re-
quires O(np) operations and the majority of the running
time will, in all cases, be spent in the SVM solver. As a re-
sult, our algorithm has great flexibility, and for any dataset

4For improved readability, some variable names are mathemat-
ical symbols and would need to be substituted in clear text (e.g. α
should be alpha)

5The gpuArray was introduced into MATLABTM in 2013.
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Algorithm 1 MATLABTM implementation of SVEN.
1: function β = SVEN(X, y, t, λ2);
2: [n p] = size(X);
3: Xnew = [bsxfun(@minus, X, y./t); bsxfun(@plus, X,

y./t)]’;
4: Ynew = [ones(p,1); -ones(p,1)];
5: if 2p > n then
6: w = SVMPrimal(Xnew, Ynew, C = 1/(2λ2));
7: α = C * max(1-Ynew.*(Xnew*w),0);
8: else
9: α = SVMDual(Xnew, Ynew, C = 1/(2λ2));

10: end if
11: β = t * (α(1:p) - α(p+1:2p)) / sum(α);

with n inputs and p dimensions, we can choose an SVM
implementation with a running time that is advantageous
for that dataset. Chapelle’s MATLABTM implementation can
scale in the worst case either O(n3) (primal mode) or O(p3)
(dual mode) (Chapelle 2007).6 In the typical case the time
complexity is known to be much better. Especially for the
dual formulation we can in practice achieve a running time
far below O(p3), as the worst case assumes that all points are
support vectors. In the Elastic Net setting, this would corre-
spond to all features being kept. A more realistic practical
running time is on the order of O(min(p, n)2), depending
on the number of features selected (as regulated by t).

SVM implementations with other time complexities can
easily be adapted to our setting, for example (Joachims
2006) would allow training in time O(np) and recent
work even suggests solvers with sub-linear time complex-
ity (Hazan, Koren, and Srebro 2011) (although the solution
might be insufficiently exact for our purposes in practice).

Related Work

The main contribution of this paper is the practical reduc-
tion from Elastic Net to SVMs. Our work is inspired by a re-
cent theoretical contribution, (Jaggi 2013), which reveals the
close relation between Lasso and hard-margin SVMs. The
first equivalence results between sparse approximation and
SVMs were discovered by (Girosi 1998), who established
a connection in noise free learning settings. We extend this
line of work and prove a non-trivial equivalence between the
Elastic Net and the soft-margin SVM and we derive a prac-
tical algorithm, which we validate experimentally.

Large scale Elastic Net. Our parallel implementation of
the Elastic Net showcases the immediate usefulness of our
reduction. Although the Elastic Net has been widely de-
ployed in many machine learning applications only little ef-
fort has been made towards efficient parallelization. The co-
ordinate gradient descent algorithm has become the domi-
nating strategy for the optimization.

6As it is slightly confusing it is worth re-emphasizing that if
the original data has n samples with p dimensions, the constructed
SVM problem has 2p samples with n dimensions.
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Figure 1: The regularization paths of glmnet (left) and
SVEN (GPU) (right) on the prostate dataset. Each line cor-
responds to the value of β∗

i as a function of the L1 budget t.
The two algorithms match exactly for all values of t.

The state-of-the-art single-core implementation for solv-
ing the Elastic Net problem is the glmnet package, devel-
oped by Friedman (Friedman, Hastie, and Tibshirani 2010).
As far as we know, it is the fastest off-the-shelf solver for
the Elastic Net, which can be primarily attributed to the very
careful Fortran implementation and code optimizations. Due
to its inherent sequential nature, the coordinate descent al-
gorithm is extremely hard to parallelize. The Shotgun al-
gorithm, (Bradley et al. 2011), is among the first to par-
allelize coordinate descent for Lasso. This implementation
can handle extremely sparse large scale datasets that other
software, including glmnet, cannot cope with due to mem-
ory constraints. The L1 LS algorithm (Kim et al. 2007),
transforms the Lasso to its dual form directly and uses a
log-barrier interior point method for optimization. The op-
timization is based on the Preconditioned Conjugate Gra-
dient (PCG) method to solve Newton steps, which is suit-
able for sparse large scale compressed sensing problems. Liu
et al. (2009) propose the SLEP algorithm to solve Elastic
Net by efficiently computing the Euclidean projection onto
a closed convex set including L1 ball. Shalev-Shwartz et
al. (2014) use a proximal version of stochastic dual coordi-
nate ascent, which allows non-smooth regularization func-
tion such as Elastic Net. Different than applying gradient
based methods, Zou and Hastie (2005) introduce the use of
LARS (Efron et al. 2004) to solve the Elastic Net problem.

On the SVM side, one of the most popular and user-
friendly implementations is the libsvm library (Chang
and Lin 2011). However, it is optimized to solve ker-
nel SVM problems using sequential minimal optimization
(SMO) (Platt and others 1998), which is not efficient for the
specific case of linear SVM. The liblinear library (Fan et
al. 2008) is specially tailored for linear SVMs, including the
squared hinge loss version. However, we find that on mod-
ern multi-core platforms (with and without GPU accelera-
tion) algorithms that actively seek updates through matrix
operations (Tyree et al. 2014) tend to be substantially faster
(in both settings, p�n and n�p).

Experimental Results

In this section, we conduct extensive experiments to evaluate
SVEN on twelve real world data sets. We first provide a brief
description of the experimental setup and the data sets, then
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Figure 2: Training time comparison of various algorithms in p � n scenarios. Each marker compares an algorithm with
SVEN (GPU) on one (out of eight) datasets and one parameter setting. The X,Y-axes denote the running time of SVEN (GPU)
and that particular algorithm on the same problem, respectively. All markers are above the diagonal line (except SVEN (CPU)
for GLI-85), indicating that SVEN (GPU) is faster than all baselines in all cases.

we investigate the two common scenarios p�n and n� p
separately.

Experimental Setting. We test our method on GPU and
(multi-core) CPU under the names of SVEN (GPU) and
SVEN (CPU), respectively. We compare against a large
number of Elastic Net and Lasso implementations. glmnet
(Friedman, Hastie, and Tibshirani 2010) is a popular and
highly optimized Elastic Net software package. The Shotgun
algorithm by Bradley et al. (Bradley et al. 2011) parallelizes
coordinate gradient descent. L1 LS is a parallel MATLAB
solver (for Lasso) implemented by Kim et al. (Kim et al.
2007). SLEP is an implementation by (Liu, Ji, and Ye 2009).
We also compare against an implementation of LARS (Efron
et al. 2004). Finally, we compare against the implementation
of (Shalev-Shwartz and Zhang 2014). All the experiments
were performed on an off-the-shelve desktop with two 8-
core Intel(R) Xeon(R) processors of 2.67 GHz and 96GB
of RAM. The attached NVIDIA GTX TITAN graphics card
contains 2688 cores and 6 GB of global memory.

Regularization path. On all data sets we compare 20 dif-
ferent settings for λ2 and t. We obtain these by first solving
for the full solution path with glmnet. The glmnet implemen-
tation enforces the L1 budget not as a constraint, but as an
L1-regularization penalty with a regularization constant λ1.
We obtain the solution path by slowly decreasing λ=λ1+λ2

and sub-sampling 20 evenly spaced settings along this path
that lead to solutions with distinct number of selected fea-
tures. If the glmnet solution for a particular parameter setting
is β∗ we obtain t by computing t = |β∗|1. This procedure
provides us with 20 parameter pairs (λ2, t) for each data set
on which we compare all algorithms. (For the pure Lasso
implementations, shotgun and L1 LS, we set λ2 = 0.)

Correctness. Throughout all experiments and all settings
of λ2 and t we find that glmnet and SVEN obtain identi-
cal results up to the tolerance level. To illustrate the equiv-
alence, Figure 1 shows the regularization path of SVEN
(GPU) and glmnet on the prostate cancer data used in (Zou
and Hastie 2005). As mentioned in the previous paragraph,
we obtain the original solution path from glmnet and evalu-
ate SVEN (GPU) on these parameter settings. The data has
eight clinical features (e.g. log(cancer volume), log(prostate
weight)) and the response is the log of prostate-specific anti-
gen (lpsa). Each line in Figure 1 corresponds to the β∗

i value
of some feature i=1, . . . , 8 as a function of the L1 budget t.
The two algorithms lead to exactly matching regularization
paths as the budget t increases.

Data sets with p � n. The p � n scenario may be the
most common application setting for the Elastic Net and
Lasso and there is an abundance of real world data sets.
We evaluate all methods on the following eight of them:
GLI-85, a dataset that screens a large number of diffuse
infiltrating gliomas through transcriptional profiling; SMK-
CAN-187, a gene expression dataset from smokers w/o
lung cancer; GLA-BRA-180, a dataset concerning analy-
sis of gliomas of different grades; Arcene, a dataset from
the NIPS 2003 feature selection contest, whose task is to
distinguish cancer versus normal patterns from mass spec-
trometric data; Dorothea, a sparse dataset from the NIPS
2003 feature selection contest, whose task is to predict
which compounds bind to Thrombin.7 Scene15, a scene
recognition data set (Lazebnik, Schmid, and Ponce 2006;
Xu, Weinberger, and Chapelle 2012) where we use the bi-
nary class 6 and 7 for feature selection; PEMS (Bache and
Lichman 2013), a dataset that describes the occupancy rate,
between 0 and 1, of different car lanes of San Francisco bay

7We removed features with all-zero values across all inputs.
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Figure 3: Training time comparison of various algorithms in n � p scenarios. Each marker compares an algorithm with
SVEN (GPU) on one (out of four) datasets and one parameter setting. The X,Y-axes denote the running time of SVEN (GPU)
and that particular algorithm on the same problem, respectively. All markers are above the diagonal line, as SVEN (GPU) is
faster in all cases.

area freeways. E2006-tfidf, a sparse dataset whose task is to
predict risk from financial reports based on TF-IDF feature
representation.8

Evaluation (p� n). Figure 2 depicts training time com-
parisons of the six baseline algorithms and SVEN (CPU) on
the eight datasets with SVEN (GPU). Each marker corre-
sponds to a comparison of one algorithm and SVEN (GPU)
in one particular setting along the regularization path. It’s y-
coordinate corresponds to the training time required for the
corresponding algorithm and its x-coordinate corresponds
to the training time required for SVEN (GPU) with the ex-
act same L1-norm budget and λ2 value. All markers above
the diagonals corresponds to runs where SVEN (GPU) is
faster, and all markers below the diagonal corresponds to
runs where SVEN (GPU) is slower.

We observe several general trends: 1. Across all eight data
sets SVEN (GPU) always outperforms all baselines. The
only markers below the diagonal are from SVEN (CPU) on
the GLI-85 data set, which is the smallest and where the
transfer time for the GPU is not offset by the gains in more
parallel computation. 2. Even SVEN (CPU) outperforms or
matches the performance of the fastest baseline across all
data sets. 3. As the L1-budget t increases, the training time
increase for all algorithms, but much more strongly for the
baselines than for SVEN (GPU). This can be observed by
the fact that the markers of one color (i.e. one algorithm)
follow approximately lines with much steeper slope than the
diagonal.

Data sets with n� p. For the n� p setting, we evaluate
all algorithms on four additional datasets. MITFaces, a fa-
cial recognition dataset; the Yahoo learning to rank dataset,
a dataset concerning the ranking of webpages in response
to a search query; YearPredictionMSD (YMSD), a dataset
of songs with the goal to predict the release year of a song
from audio features; and FD, another face detection dataset.

Evaluation (n� p). A comparison to all methods on all
four datasets can be found in Figure 3. The speedups of
SVEN (GPU) are even more pronounced in this setting. The
training time of SVEN (GPU) is completely dominated by

8Here, we reduce the training set size by subsampling to match
the size of the test set, n=3308.

the kernel computation and therefore almost identical for all
values of t and λ2. Consequently all markers follow vertical
lines in all plots. The massive speedup of up to two orders
of magnitude obtained by SVEN (GPU) over the baseline
methods squashes all markers at the very left most part of the
plot. glmnet fails to complete the FD dataset due to memory
constraints and therefore we evaluate on the λ2 and t values
along the solution path from the other face recognition data
set, MITFaces. As in the p� n case, all solutions returned
by both versions of SVEN match those of glmnet exactly.

Conclusion

This paper provides a rare case of an initially purely theo-
retical contribution with strong practical implications. Algo-
rithmic reductions are very promising for the machine learn-
ing literature for many theoretical and practical reasons. In
particular, the use of algorithmic reductions to obtain par-
allelization and improved scalability has several intriguing
benefits: 1. no new learning algorithm has to be implemented
and optimized by hand (besides the small transformation
code); 2. the burden of code maintenance reduces to the sin-
gle highly optimized algorithm (in this case SVM); 3. the
implementation is very reliable from the start as almost the
entire execution time is spent in a well established and tested
implementation. The squared hinge-loss SVM formulation
can be solved almost entirely with large matrix operations,
which are already parallelized (and maintained) by high-
performance experts through BLAS libraries (e.g. CUBLAS
for NVIDIA GPUs).

We hope that this paper will benefit the community in
at least two ways: Practitioners will obtain a new stable
and blazingly fast implementation of Elastic Net and Lasso;
and machine learning researchers might identify and derive
different algorithmic reductions to facilitate similar perfor-
mance improvements with other learning algorithms. SVEN
is available at http://sven.weinbergerweb.com.
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