
TODTLER: Two-Order-Deep Transfer Learning

Jan Van Haaren
Department of Computer Science

KU Leuven, Belgium
jan.vanhaaren@cs.kuleuven.be

Andrey Kolobov
Microsoft Research

Redmond, WA, USA
akolobov@microsoft.com

Jesse Davis
Department of Computer Science

KU Leuven, Belgium
jesse.davis@cs.kuleuven.be

Abstract

The traditional way of obtaining models from data, inductive
learning, has proved itself both in theory and in many practi-
cal applications. However, in domains where data is difficult
or expensive to obtain, e.g., medicine, deep transfer learning
is a more promising technique. It circumvents the model ac-
quisition difficulties caused by scarce data in a target domain
by carrying over structural properties of a model learned in
a source domain where training data is ample. Nonetheless,
the lack of a principled view of transfer learning so far has
limited its adoption. In this paper, we address this issue by
regarding transfer learning as a process that biases learning
in a target domain in favor of patterns useful in a source do-
main. Specifically, we consider a first-order logic model of
the data as an instantiation of a set of second-order templates.
Hence, the usefulness of a model is partly determined by the
learner’s prior distribution over these template sets. The main
insight of our work is that transferring knowledge amounts
to acquiring a posterior over the second-order template sets
by learning in the source domain and using this posterior
when learning in the target setting. Our experimental eval-
uation demonstrates our approach to outperform the existing
transfer learning techniques in terms of accuracy and runtime.

Introduction
Most research in building models from data has focused
on the paradigm of inductive learning. In this paradigm, a
learner tries to generalize the available training instances in
order to classify test instances from the same distribution as
the training set. Unfortunately, learning a good model in this
way can be difficult if the amount of available training data
is small. This is often the case in important problems, from
modeling side effects of a drug to predicting terrorist attacks,
where data is expensive or even impossible to obtain at will.

On the other hand, humans cope with a lack of training ex-
amples quite well by transferring knowledge and intuitions
from one setting to another, where the former is called the
source domain and the latter the target domain. For instance,
scientists have realized that forecasting terrorist activity has
analogies to certain models studied in physics. The concepts
and theoretical machinery from the field of physics are dis-
tinct from those used in the fields of sociology and conflict

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

resolution. Nonetheless, by carrying over the structural pat-
terns of the physics models, researchers have managed to
build a model for the frequency of terrorist attacks (Clauset
and Wiegel 2010).

In this paper, we introduce a principled framework for
deep transfer learning, along with an approximate proce-
dure that implements it. In contrast to most other transfer
learning approaches, which concentrate on shallow trans-
fer (Baxter et al. 1995; Banerjee, Liu, and Youngblood
2006) and hence operate on tasks from the same domain
(e.g., using information about the reactivity of one chemi-
cal to learn about the reactivity of another), our TODTLER
framework can perform transfer between completely dif-
ferent problems. Moreover, unlike existing milestone algo-
rithms for deep transfer, DTM (Davis and Domingos 2009)
and TAMAR (Mihalkova, Huynh, and Mooney 2007), it of-
fers a principled view of transfer learning, whose insights,
when implemented in the proposed approximation scheme,
allow it to outperform the state-of-the-art algorithm DTM in
a variety of scenarios.

At a high level, TODTLER views knowledge transfer
as the process of learning a declarative bias in the source
domain and transferring it to the target domain to im-
prove the learning process. More specifically, we concen-
trate on learning Markov logic networks (MLNs), a flex-
ible model that combines first-order logic with probabil-
ities. We treat an MLN as an instantiation of a set of
second-order templates expressible in a language called
SOLT. The likelihood of an MLN model is thus partly de-
termined by the learner’s prior distribution over the sets
of these second-order templates. The main insight of our
work is that transferring knowledge amounts to acquir-
ing a posterior over the sets of second-order templates
by learning in the source domain and using this posterior
when learning in the target setting. As an example, con-
sider the concept of transitivity, which can be expressed as
a second-order template R(X, Y) ∧ R(Y, Z) =⇒ R(X, Z). In
this clause, R is a predicate variable; therefore, this tem-
plate is not specific to any domain, although its instanti-
ations, e.g., Knows(X, Y) ∧ Knows(Y, Z) =⇒ Knows(X, Z),
are. In our framework, if learning in the source domain re-
veals instantiations of the transitivity template to contribute
to highly likely models, the learning process in the target
domain will prefer models with transitive relations as well.

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

3007

Thus, the contributions of this paper are as follows:

• We introduce TODTLER, which is a principled frame-
work for deep transfer learning, and describe an approxi-
mation procedure that uses existing MLN learners to im-
plement TODTLER’s insights. Our implementation is
available for download.1

• We present extensive empirical results for TODTLER on
three domains: Yeast, WebKB, and Twitter. These results
show that TODTLER’s approximation outperforms the
state-of-the-art deep transfer learning method DTM, and
the state-of-the-art first-order inductive learner LSM (Kok
and Domingos 2010). In addition to learning more accu-
rate models, TODTLER is also much faster than DTM.

Background
TODTLER performs transfer learning in Markov logic net-
works, which combine first-order logic with Markov net-
works. We now review Markov networks, first- and second-
order logic, Markov logic networks, and transfer learning.

Markov Networks
Markov networks (Della Pietra, Della Pietra, and Lafferty
1997) represent a joint distribution over a set of proposi-
tional variables ~X . Markov networks can be represented as a
log-linear model P (~X = ~x) = 1

Z exp(
∑

j wjfj(~x)), where
fj is a feature, wj is a weight, and Z is a normalization con-
stant. A feature may be any real-valued function of the vari-
able assignment.

First- and Second-Order Logic
TODTLER uses a subset of first-order logic that is based on
three types of symbols: constants, variables, and predicates.
Constants (e.g., Anna) stand for specific objects in the do-
main. Variables (e.g., X), denoted by uppercase letters, range
over objects in the domain. Predicates (e.g., Friends(X, Y))
represent relations among objects. An atom is P(s1, . . . , sn),
where each si is a constant or variable. A ground atom is
one in which each si is a constant. A literal is an atom or its
negation. A clause is a disjunction over a finite set of literals.

TODTLER also uses a limited form of second-order
logic that allows to augment first-order logic with the no-
tion of predicate variables. For example, in the formula
∀ R, X, Y, Z [R(X, Y) ∧ R(Y, Z) =⇒ R(X, Z)], R is a predi-
cate variable, to be grounded by a predicate symbol. Thus,
second-order logic can express domain-independent rela-
tionships, and TODTLER harnesses this ability.

Markov Logic Networks
A Markov logic network (Richardson and Domingos 2006)
is a set of pairs (F,w), where F is a formula in first-order
logic and w is a real number. Each Markov logic network
(MLN) encodes a family of Markov networks. Given a finite
set of object constants, an MLN induces a Markov network
with one node for each ground atom and one feature for each
ground formula of that MLN. The weight of each feature is

1http://dtai.cs.kuleuven.be/ml/systems/todtler

the weight of the MLN formula that generated that feature.
An MLN induces the following probability distribution ~x:

p(~X = ~x) =
1

Z
exp

(∑
F∈F

wFnF (~x)

)
, (1)

where F is the set of formulas in the MLN, wF is the weight
of formula F , nF (~x) is the number of true groundings2 of F
in ~x, and Z is a normalization constant.

Algorithms have been proposed for learning the weights
associated with each MLN formula (e.g., Lowd and Domin-
gos (2007)) as well as the formulas themselves (e.g., Kok
and Domingos (2010)). MLN structure learners typically op-
timize the weighted pseudo-log-likelihood (WPLL) of the
data, as opposed to the standard likelihood, since the former
is much more efficient to compute.

Transfer Learning
This work falls in the area of transfer learning; see Pan and
Yang (2010) for an overview. In transfer learning, a ma-
chine learning algorithm considers data from another do-
main, called the source domain, in addition to data from the
target domain. More formally, we can define transfer learn-
ing as follows:

Given: A target task T , a target domain Dt and a source
domain Ds, where Ds 6= Dt.

Learn: A target predictive function ft in Dt using knowl-
edge acquired in Ds.

The key difference between inductive learning and trans-
fer learning is that the latter uses additional data from a
source domain to learn a more accurate predictive function.

Unlike most approaches, TODTLER belongs to the class
of deep transfer learning methods which are capable of gen-
eralizing knowledge between distinct domains. Conceptu-
ally, the closest transfer learning approaches to TODTLER
are DTM (Davis and Domingos 2009) and TAMAR (Mi-
halkova, Huynh, and Mooney 2007), which both perform
deep transfer in the context of Markov logic networks.

DTM transfers knowledge from one domain to another
using second-order cliques, which are sets of literals with
predicate variables representing a set of formulas. For ex-
ample, the clique { R(X, Y), R(Y, X) }, where R is a predicate
variable and X and Y are object variables, gives rise to the
second-order formulas

R(X, Y) ∧ R(Y, X),
R(X, Y) ∧ ¬R(Y, X),
¬R(X, Y) ∧ R(Y, X),
¬R(X, Y) ∧ ¬R(Y, X).

In turn, each of these second-order formulas gives rise to
one or multiple first-order formulas.

2The number of true groundings of a formula is obtained by
counting the number of assignments of constants to variables that
make that formula true.

3008

Figure 1: Data generation process

DTM uses the source data to evaluate a number of second-
order cliques and transfers a user-defined number of them to
the target domain. In the target domain, DTM first consid-
ers models only involving the formulas from the transferred
cliques and then refines the models to tailor them more to
the target domain.

The TAMAR algorithm consists in simply taking a first-
order model for the source domain and then attempting to
map each clause in the model to the target domain. The al-
gorithm replaces the predicate symbols in each of the clauses
with predicates from the target domain in all possible ways.
TAMAR is less scalable than DTM or TODTLER in certain
scenarios. In particular, exhaustively mapping each source
clause to the target domain is time consuming for long
clauses or clauses with constants if the target domain has
many predicates or many constants.

The field of analogical reasoning (Falkenhainer, Forbus,
and Gentner 1989) is also closely related to transfer learn-
ing. It applies knowledge from one domain to another via
a mapping or correspondence between the objects and rela-
tions in the two domains. Often, a human needs to provide
possible mappings for each pair of domains.

Transferring Second-Order Knowledge
We now illustrate the intuition behind TODTLER.
Suppose we have two datasets, one characterizing the
smoking habits of a group of people (the smokers
dataset) and the other describing connections between
terrorists (the terrorism dataset). An MLN learned on
the smokers dataset may contain the first-order clause
Smokes(X) ∧ Friends(X, Y) =⇒ Smokes(Y), which cap-
tures the regularity that a friend of a smoker may likely be
a smoker. A similar regularity may appear in the terrorism
dataset: a person in the same organization with a terrorist
may likely be a terrorist. We would like to generalize such
regularities from one model to another, but simply transfer-
ring first-order clauses does not help because the datasets are
described by different relationships and properties.

What the domains have in common is the concept of mul-
tirelational transitivity described by the second-order clause

R1(X) ∧ R2(X, Y) =⇒ R1(Y), (2)

where R1 and R2 are predicate variables. It are these types
of important structural patterns that TODTLER attempts to
identify in the source domain and transfer to other domains.
The transfer occurs by biasing the learner in the target do-
main to favor models containing previously discovered reg-
ularities in the source domain.

Generative model for the data. More specifically,

TODTLER views data in any domain as being gener-
ated by the hierarchical process shown in Figure 1. The
process starts by producing a second-order model of the
data, denoted as M (2). Formally, M (2) is a set of second-
order templates. Each such template is a clause from a spe-
cial language called SOLT (Second-Order Language for
Templates), which is a restriction of second-order logic
that allows only predicate variables and restricts clause
length. Equation 2 provides an example of a SOLT template.
SOLT’s power stems from being able to use predicate vari-
ables in order to state rules that reason about relations, not
just objects, and thus describe domain-independent knowl-
edge. M (2) is sampled from a prior P (M (2)) induced by in-
dependently including each template T expressible in SOLT
into M (2) with some probability pT . In particular, letting
pT = 0.5 for every T ∈ SOLT results in a uniform prior
over all possible second-order models.

Given a second-order model M (2), a first-order (MLN)
model M (1) is generated by instantiating all templates
in M (2) with the set of predicates relevant to the data
at hand in all possible ways. Instantiating a template
with predicates means grounding each predicate vari-
able in the template with a first-order predicate. In
the example above, it is at this stage that the tem-
plate in Equation 2 gives rise to the first-order formula
Smokes(X) ∧ Friends(X, Y) =⇒ Smokes(Y) and to many
others. The weights for the first-order clauses produced in
this way, which are necessary for a well-defined MLN, are
sampled from some prior probability density (omitted in
Figure 1). To complete the process, data is generated from
the MLN using a relevant set of object constants to ground
the first-order clauses. In the case of the smokers dataset,
the data could include ground facts Friends(Alice, Bob),
Smokes(Alice), and Smokes(Bob).

Thus, letting a random variable D denote the data, the
hierarchical generative model above gives us a joint proba-
bility density p(D,M (1),M (2)) that factorizes as

p(D,M (1),M (2)) =

p(D|M (1))p(M (1)|M (2))P (M (2)). (3)

In this formula, p(D|M (1)) is given by Equation 1,
P (M (2)) is given by the probabilities pT of including each
template T into the second-order model, and p(M (1)|M (2))
is positive if the set of clauses in M (1) is the complete in-
stantiation of M (2) and 0 otherwise. The set of clauses of an
MLN M (1) is the complete instantiation of a second-order
model M (2) if this set contains all first-order instantiations
of all templates in M (2) (with some formulas possibly hav-
ing zero weights), and no other formulas.

For the cases when p(M (1)|M (2)) > 0, we can write the
joint density p(D,M (1),M (2)) in the following form, de-
rived from Equation 1:

3009

Input: Ds — source dataset, Dt — target dataset,
P (M (2)) — prior over second-order models
Output: M (1)

t

∗
— an MLN for the target domain

1. Find the posterior distribution Ps(M
(2)|Ds) over

second-order models such that Ps(M
(2)|Ds) is

encoded by the set of template probabilities pT,s, given
the data in the source domain and a similarly encoded
prior P (M (2)) over second-order models:

Ps(M
(2)|Ds)←

∫
M(1)

s
p(Ds,M

(1)
s |M (2))P (M (2))

P (Ds)

(5)

2. Determine the first-order (MLN) model that
maximizes the joint probability of data and first-order
model in the target domain if Ps(M

(2)|Ds) is used as a
prior over second-order models:

Pt(M
(2))← Ps(M

(2)|Ds)

M
(1)
t

∗
← argmax

M(1)
p(Dt|M (1)

t)∑
M(2)

p(M
(1)
t |M (2))Pt(M

(2)) (6)

Algorithm 1: The TODTLER framework

p(D,M (1),M (2)) =∏
~x∈D

[
1

Z ′

∏
T∈T

pT exp

(∑
F∈FT

wFnF (~x)

)]
, (4)

where pT is the probability of including template T into
second-order model M (2), FT is the set of all of T ’s first-
order instantiations, and T is the set of all second-order
templates expressible in SOLT. Equation 4 differs from
Equation 1 in only one crucial aspect: the set of all first-order
formulas is now divided into disjoint subsets corresponding
to particular templates, and each subset has an associated
probability pT of being part of M (1). These probabilities pT
are the key means by which TODTLER transfers knowl-
edge from one domain to another, as we explain next.

Transfer learning with TODTLER. The TODTLER pro-
cedure is briefly summarized in Algorithm 1. Let Ds, M (1)

s ,
Dt, and M

(1)
t stand for the data and first-order MLN in

the source domain and in the target domain, respectively.
TODTLER performs transfer learning in two steps:

1) Learning the second-order model posterior. In the first

step, TODTLER finds the distribution Ps(M
(2)|Ds) over

second-order models that results from observing the data in
the source domain given some initial belief P (M (2)) over
second-order models (Equation 5 in Algorithm 1). In view
of Equation 4, determining Ps(M

(2)|Ds) amounts to com-
puting the template probabilities (denoted pT,s) according to
the source domain data and the prior.

2) Target domain learning using the posterior from the
source domain. In the second step, TODTLER determines
an MLN M

(1)
t

∗
that maximizes the joint probability of data

and first-order model in the target domain if the posterior
Ps(M

(2)|Ds) learned in the first step from the source data
is used as the prior over second-order models (Equation 6
in Algorithm 1). In doing so, TODTLER biases model se-
lection for the target dataset by explicitly transferring the
learner’s experience from the source domain.

Approximations
Despite the conciseness of TODTLER’s procedural de-
scription (Algorithm 1), implementing it is nontrivial for
several reasons. In this section, we discuss the challenges
involved and present a series of appropriate approximations
to the basic TODTLER framework. Algorithm 2 presents a
pseudocode of the resulting implementation, which we will
be referring to throughout this section.

Learning second-order model posteriors. The main diffi-
culty presented by TODTLER is computing the posterior
distribution Ps(M

(2)|Ds) over second-order models. Since
we do not assume the distributions in Equation 5 to have
any specific convenient form, it is not immediately obvi-
ous how to efficiently update the prior P (M (2)). Moreover,
Equation 5 involves summing over first-order MLNs, sug-
gesting that an exact update procedure would likely be very
expensive computationally.

Instead, we take a more heuristic approach. Our proce-
dure exhaustively enumerates all SOLT templates that can
form a user-specified maximum clause length L and maxi-
mum number of distinct object variables V (line 4). These
conditions ensure that the number of second-order templates
under consideration is finite and amount to adopting a prior
P (M (2)) that assigns probability 0 to any second-order
model with templates that violate these restrictions. Addi-
tionally, we assume that for each template T , its probability
of inclusion pT,s under Ps(M

(2)|Ds) is correlated with the
“usefulness” of the first-order instantiations of T for model-
ing the data in the source domain and with its prior proba-
bility p0T .

For each first-order instantiation FT,s in the finite set FS

of all such instantiations of T generated by replacing T ’s
predicate variables with predicates from the source domain,
we calculate F ’s usefulness score, aggregate these numbers
across FS , and use the result, along with the prior p0T , as a
proxy p̂T,s of pT,s. The notion of usefulness of a single first-
order formula is fairly crude — each formula typically con-
tributes to the model along with many others, and its effect
on the model’s performance cannot be easily teased apart

3010

1 Input: Ds — source dataset, Dt — target dataset, L —
maximum template length, V — maximum number of
distinct object variables, P (M (2)) = {p0T }T∈SOLT —
prior over second-order models

2 Output: M (1)
t

∗
— an MLN for the target domain

3
4 T ← EnumerateSecondOrderTemplates(L,V)
5 FS ← EnumerateFirstOrderFormulas(T ,Ds)
6 FT ← EnumerateFirstOrderFormulas(T ,Dt)
7
8 foreach second-order template T ∈ T do
9 foreach first-order formula FT,s ∈ FS do

10 lF,s ←WPLL of optimal FT,s-MLN w.r.t Ds

11 sF,s ← lF,s rescaled to [0, 1]
12 end
13 p̂T,s ← p0T · averageFT,s∈FS

{sF,s}
14 foreach first-order formula FT,t ∈ FT do
15 lF,t ←WPLL of optimal FT,t-MLN w.r.t Dt

16 sF,t ← lF,t rescaled to [0, 1]
17 p̂F,t ← sF,t · p̂T,s

18 end
19 end
20

21 M
(1)
t

∗
← {}

22 old WPLL← −∞
23 OF ←

list of all FT,t ∈
⋃

T∈T FT in decreasing order of p̂F,t

24
25 foreach first-order formula FT,t ∈ OF do
26 M

(1)
t ←M

(1)
t

∗
∪ {FT,t}

27 M
(1)
t ← relearn weights

28 if WPLL of M (1)
t w.r.t Dt > old WPLL then

29 old WPLL←WPLL of M (1)
t

∗
w.r.t Dt

30 M
(1)
t

∗
←M

(1)
t

31 end
32 end
33 return M

(1)
t

∗

Algorithm 2: An approximation to TODTLER

from that of the rest of the model. Nonetheless, as we ex-
plain next, this notion’s simplicity also has a big advantage:
a formula’s usefulness can be computed very efficiently.

More specifically, for each FT,s ∈ FS , we perform
weight learning in the MLN that contains only the formula
FT,s. This MLN is denoted as FT,s-MLN. The weight learn-
ing process makes its own approximations as well. It opti-
mizes the weights so as to maximize the weighted pseudo-
log-likelihood (WPLL) of the model, a substitute criterion
for optimizing likelihood. That, and the fact that our MLN
contains only one formula, makes weight learning very fast.
When the learning process finishes, it yields WPLL lF,s of
the acquired MLN with respect to the source data (line 10).

We then rescale the WPLL to lie between 0 and 1 as differ-
ent domains can have different ranges of WPLLs, and denote
the obtained value as sF,s (line 11).

Intuitively, sF,s roughly reflects how much including FT,s

into an MLN helps the model’s discriminative power. To es-
timate the usefulness score sT,s of a template T , we average
the clause usefulness scores sF,s across FS . Thus, we define
the approximate sampling probabilities for each template T
as p̂T,s ∼ p0T · sT,s (line 13).

In the target domain, we similarly compute a probability
p̂F,t for each formula FT,t, which estimates that formula’s
probability of inclusion in the target domain model. In a
first step, we compute a usefulness score sF,t for each for-
mula FT,t using the same procedure as in the source do-
main (line 15). In a second step, crucially, we multiply the
resulting usefulness score with p̂T,s, the posterior probabil-
ity of inclusion of the corresponding second-order template
learned from the source domain (line 17).

Target domain learning. TODTLER builds the target do-
main model M (1)

t

∗
incrementally, starting from an empty

one in the following way. It arranges the formulas in⋃
T∈T FT in order of decreasing approximate probabil-

ity p̂F,t (line 23). For each formula in the ordered list, the
approximation procedure attempts to add that formula to
M

(1)
t

∗
, jointly learning the weights of all already included

formulas and computing the model’s WPLL (lines 26-27).
A formula is added to the model only if doing so increases
M

(1)
t

∗
’s WPLL with respect to the target data (lines 28-31).

Experimental Evaluation
Our experiments compare the performance of TODTLER
to DTM, which is the state-of-the-art transfer learning ap-
proach for relational domains (Davis and Domingos 2009).
We also compare to learning from scratch using LSM,
which is the state-of-the-art MLN structure learning algo-
rithm (Kok and Domingos 2010). We evaluate the perfor-
mance of the algorithms using data from three domains and
address the following four research questions:

• Does TODTLER learn more accurate models than DTM?

• Does TODTLER learn more accurate models than LSM?

• Is TODTLER faster than DTM?

• Does TODTLER discover interesting SOLT templates?

Datasets
We use three datasets of which the first two have been widely
used and are publicly available.3 The Yeast protein dataset
comes from the MIPS4 Comprehensive Yeast Genome
Database (Mewes et al. 2000; Davis et al. 2005). The dataset
includes information about protein location, function, phe-
notype, class, and enzymes. The WebKB dataset consists of
labeled web pages from the computer science departments
of four universities (Craven and Slattery 2001). The dataset

3Available on http://alchemy.cs.washington.edu.
4Munich Information Center for Protein Sequence

3011

includes information about links between web pages, words
that appear on the web pages, and the classifications of the
pages. The Twitter5 dataset contains tweets about Belgian
soccer matches. The dataset includes information about fol-
lower relations between accounts, words that are tweeted,
and the types of the accounts.

Methodology
Each of the datasets is a graph, which is divided into
databases consisting of connected sets of facts (Mihalkova,
Huynh, and Mooney 2007). Yeast and WebKB consist of
four databases while Twitter consists of two. We trained
each learner on a subset of the databases and tested it on the
remaining databases. We repeated this cycle for all subsets
of the databases.

We transferred with both TODTLER and DTM in all six
possible source-target settings. Within each domain, both
transfer learning algorithms had the same parameter set-
tings. In each domain, we optimized the WPLL for the predi-
cate of interest. We learned the weights of the formulas in the
target model using Alchemy (Kok et al. 2010) and applied a
pruning threshold of 0.05 on the weights of the clauses.

For DTM, we generated all clauses containing at most
three literals and three object variables, and transferred five
and ten second-order cliques to the target domain. Since
DTM’s refinement step can be computationally expensive,
we limited its runtime to 100 hours per database.

For TODTLER, we enumerated all second-order tem-
plates containing at most three literals and three object vari-
ables. We assumed a uniform prior distribution over the
second-order templates in the source domain, which means
TODTLER’s p0T parameter was set to 0.5 for each template.

To evaluate each system, we jointly predict the truth value
of all groundings of the Function predicate in Yeast, the
PageClass predicate in WebKB, and the AccountType pred-
icate in Twitter given evidence about all other predicates.
We computed the probabilities using MC-SAT. After a burn-
in of 1,000 samples, we computed the probabilities with
the next 10,000 samples.6 We measured the area under the
precision-recall curve (AUCPR) and the test set conditional
log-likelihood (CLL) for the predicate of interest. AUCPR
gives an indication of the predictive accuracy of the learned
model. Furthermore, AUCPR is insensitive to the large num-
ber of true negatives in these domains. CLL measures the
quality of the probability estimates.

Discussion of Results
Table 1 presents the average relative differ-
ence in AUCPR (i.e., (AUCPRTODTLER −
AUCPRDTM)/AUCPRTODTLER) and CLL (i.e.,
(CLLTODTLER − CLLDTM)/CLLTODTLER) between
TODTLER and both transferring five (DTM-5) and ten
(DTM-10) cliques with DTM. The table shows the average
relative differences for varying amounts of training data.
For example, the “3 DB” column presents the results for

5Available on http://dtai.cs.kuleuven.be/ml/systems/todtler.
6The DTM paper performs leave-one-grounding-out inference

while this paper jointly infers all groundings of the target predicate.

training on all subsets of three databases and evaluating on
the remaining database. The N/A entries arise because the
Twitter dataset only contains two databases. Positive aver-
age relative differences denote settings where TODTLER
outperforms DTM. In terms of AUCPR, TODTLER
outperforms both DTM-10 and DTM-5 in all 14 settings. In
terms of CLL, TODTLER outperforms DTM-10 in 12 of
the 14 settings and DTM-5 in 11 of the 14 settings.

Table 2 presents the average relative difference in AUCPR
and CLL between TODTLER and LSM, and DTM-5 and
LSM. This represents a comparison between performing
transfer as opposed to learning from scratch in each do-
main with the state-of-the-art structure learner LSM.7 We
see that TODTLER also outperforms LSM in all 14 set-
tings in terms of both AUCPR and CLL. DTM-5 outper-
forms LSM in 12 of the 14 settings in terms of both AUCPR
and CLL. In both cases, we see that transferring knowledge
from a source task leads to more accurate learned models
than simply learning from scratch in the target domain.

Figure 2 presents learning curves for predicting protein
function in the Yeast dataset when transferring from We-
bKB. TODTLER outperforms DTM-10, DTM-5 and LSM.
Note that LSM obtains a much worse CLL than the other
systems and hence its curve falls out of the range of the
graph. Figure 3 presents learning curves for predicting a
web page’s class in the WebKB dataset when transferring
from Twitter. Again, TODTLER exhibits better perfor-
mance than DTM-10, DTM-5 and LSM. In both figures,
TODTLER’s performance improves as the amount of train-
ing data is increased.

Several possible explanations exist about why
TODTLER learns more accurate models than DTM.
First, TODTLER transfers fine-grained knowledge because
it performs transfer on a per-template basis instead of a
per-clique basis. As discussed in the background, DTM’s
second-order cliques group together multiple second-order
formulas. Then, each of these second-order formulas gives
rise to one or multiple first-order formulas. Within a clique,
only a small subset of these formulas will be helpful for
modeling the target domain. Second, TODTLER transfers
both the second-order templates (i.e., structural regularities)
as well as information about their usefulness (i.e., the poste-
rior of the formulas, Ps(M

(2)|Ds)). In contrast, DTM just
transfers the second-order cliques and the target data is used
to assess whether the regularities are important. Finally,
TODTLER transfers a more diversified set of regularities
whereas DTM is restricted to a smaller set of user-selected
cliques. This increases the chance that TODTLER transfers
something of use for modeling the target domain.

In addition to learning more accurate models, TODTLER
is also considerably faster than DTM (see Table 3). Across
all settings, TODTLER is 8 to 44 times faster in Yeast, 5
to 29 times faster in WebKB, and 132 to 264 times faster
in Twitter. A couple of reasons contribute to TODTLER’s
improved runtime. First, for learning in the target domain,
DTM runs an iterative greedy strategy that picks the single

7We picked DTM-5 as it generally exhibits better performance
than DTM-10.

3012

Table 1: The average relative differences in AUCPR and CLL between TODTLER and DTM-10, and TODTLER and DTM-5
as function of the amount of training data. Positive differences indicate settings where TODTLER outperforms DTM. In terms
of AUCPR, TODTLER outperforms both DTM-10 and DTM-5 in all 14 settings. In terms of CLL, TODTLER outperforms
DTM-10 in 12 of the 14 settings and DTM-5 in 11 of the 14 settings. The N/A entries arise because the Twitter dataset only
contains two databases.

TODTLER versus DTM-10 TODTLER versus DTM-5
AUCPR CLL AUCPR CLL

1 DB 2 DB 3 DB 1 DB 2 DB 3 DB 1 DB 2 DB 3 DB 1 DB 2 DB 3 DB
WebKB→ Yeast 0.213 0.390 0.331 -0.114 0.650 0.517 0.231 0.344 0.540 -0.097 1.137 2.112
Twitter→ Yeast 0.190 0.325 0.362 -0.063 0.126 0.017 0.171 0.353 0.260 -0.065 0.748 -0.127
Yeast→WebKB 0.479 0.614 0.638 0.121 0.098 0.196 0.479 0.607 0.627 0.121 0.095 0.191
Twitter→WebKB 0.578 0.596 0.607 1.055 0.158 0.157 0.578 0.587 0.605 1.055 0.155 0.156
WebKB→ Twitter 0.224 N/A N/A 3.945 N/A N/A 0.150 N/A N/A 5.140 N/A N/A
Yeast→ Twitter 0.226 N/A N/A 4.210 N/A N/A 0.152 N/A N/A 5.469 N/A N/A

Table 2: The average relative differences in AUCPR and CLL between TODTLER and LSM, and DTM-5 and LSM as func-
tion of the amount of training data. Positive differences indicate settings where TODTLER or DTM-5 outperforms LSM.
TODTLER outperforms LSM in all 14 settings in terms of both AUCPR and CLL. DTM-5 outperforms LSM in 12 of the 14
settings in terms of both AUCPR and CLL. The N/A entries arise because the Twitter dataset only contains two databases.

TODTLER versus LSM DTM-5 versus LSM
AUCPR CLL AUCPR CLL

1 DB 2 DB 3 DB 1 DB 2 DB 3 DB 1 DB 2 DB 3 DB 1 DB 2 DB 3 DB
WebKB→ Yeast 0.471 0.671 0.583 5.075 12.156 8.841 0.311 0.518 0.161 5.725 6.537 3.328
Twitter→ Yeast 0.479 0.676 0.589 6.091 14.356 10.486 0.371 0.542 0.459 6.584 8.764 12.832
Yeast→WebKB 0.576 0.561 0.562 0.079 0.073 0.070 0.186 -0.018 0.032 -0.037 0.001 0.006
Twitter→WebKB 0.576 0.561 0.562 0.072 0.066 0.064 -0.004 0.003 0.058 -0.478 0.003 0.007
WebKB→ Twitter 0.599 N/A N/A 13.463 N/A N/A 0.528 N/A N/A 1.355 N/A N/A
Yeast→ Twitter 0.600 N/A N/A 14.238 N/A N/A 0.528 N/A N/A 1.355 N/A N/A

0.00

0.05

0.10

0.15

0.20

0.25

 1 2 3

A
U

C
P

R

Number of databases

LSM

DTM-5

DTM-10

TODTLER

(a) AUCPR in Yeast

-2.00

-1.50

-1.00

-0.50

0.00

 1 2 3

C
L

L

Number of databases

LSM

DTM-5

DTM-10

TODTLER

(b) CLL in Yeast

Figure 2: Learning curves showing AUCPR and CLL for the
Function predicate in Yeast when transferring from WebKB.
The LSM curve falls out of the range of figure (b).

0.00

0.10

0.20

0.30

0.40

0.50

 1 2 3

A
U

C
P

R

Number of databases

LSM

DTM-5

DTM-10

TODTLER

(a) AUCPR in WebKB

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

 1 2 3

C
L

L

Number of databases

LSM

DTM-5

DTM-10

TODTLER

(b) CLL in WebKB

Figure 3: Learning curves showing AUCPR and CLL for
the PageClass predicate in WebKB when transferring from
Twitter. The LSM and DTM curves largely overlap.

best candidate formula in each step. This is more expensive
than TODTLER’s non-iterative target-domain strategy for
picking formulas. Second, DTM performs a refinement step,
which improves accuracy but is computationally costly as it
is another greedy search approach.

Table 4 presents the ten top-ranked second-
order templates in each domain. One example is
R1(X, Y) ∨ ¬R1(Y, X), which represents symmetry and
ranks first in Yeast and WebKB and second in Twitter.
When transferred to the Twitter problem, this template
gives, among others, rise to the first-order formula

Follows(X, Y) ∨ ¬Follows(Y, X), meaning that if an ac-
count Y follows an account X, X is likely to follow Y as well.
Another example is R1(X, Y) ∨ ¬R1(Z, Y) ∨ ¬R2(X, Z),
which ranks third in Yeast, eighth in WebKB and ninth in
Twitter. This template represents the concept of homophily,
which means that related objects (X and Z) tend to have
similar properties (Y). When transferred to the WebKB
problem, this template gives, among others, rise to the first-
order formula Has(X, Y) ∨ ¬Has(Z, Y) ∨ ¬Linked(X, Z),
meaning that if a web page X links to a web page Z, both
web pages are likely to contain the same word Y.

3013

Table 3: Average runtime in minutes for TODTLER and DTM. TODTLER is consistently faster than both DTM configura-
tions. The N/A entries arise because the Twitter dataset only contains two databases.

TODTLER DTM-10 DTM-5
1 DB 2 DB 3 DB 1 DB 2 DB 3 DB 1 DB 2 DB 3 DB

WebKB→ Yeast 103 199 338 1,759 6,671 9,206 1,766 6,234 14,896
Twitter→ Yeast 93 181 277 725 1,683 4,635 707 2,496 9,555
Yeast→WebKB 16 26 45 95 571 1,323 84 478 753
Twitter→WebKB 13 21 44 142 392 840 122 294 464
WebKB→ Twitter 1 N/A N/A 75 N/A N/A 49 N/A N/A
Yeast→ Twitter 1 N/A N/A 76 N/A N/A 50 N/A N/A

Table 4: The ten top-ranked second-order templates in each domain.
Rank Yeast WebKB Twitter

1 R1(X, Y) ∨ ¬R1(Y, X) R1(X, Y) ∨ ¬R1(Y, X) R1(X, Y) ∨ ¬R1(X, Z)
2 R1(X, Y) ∨ ¬R1(Y, X) ∨ ¬R2(X, Z) ¬R1(X, Y) ∨ R1(X, Z) ∨ ¬R1(Y, Z) R1(X, Y) ∨ ¬R1(Y, X)
3 R1(X, Y) ∨ ¬R1(Z, Y) ∨ ¬R2(X, Z) ¬R1(X, Y) ∨ ¬R1(Y, X) ∨ R2(X, Z) ¬R1(X, Y) ∨ ¬R1(Y, X) ∨ R1(Z, X)
4 R1(X, Y) ∨ ¬R1(X, Z) ∨ ¬R1(Y, X) ¬R1(X, Y) ∨ R1(Y, Z) ∨ ¬R1(Z, X) ¬R1(X, Y) ∨ R1(X, Z) ∨ ¬R1(Y, X)
5 ¬R1(X, Y) ∨ R1(Y, X) ∨ ¬R2(X, Z) ¬R1(X, Y) ∨ ¬R1(X, Z) ∨ R1(Y, Z) R1(X, Y) ∨ ¬R1(X, Z) ∨ ¬R1(Y, Z)
6 ¬R1(X, Y) ∨ R1(X, Z) ∨ ¬R1(Y, Z) R1(X, Y) ∨ ¬R1(X, Z) ∨ ¬R1(Y, X) ¬R1(X, Y) ∨ R1(Z, Y) ∨ ¬R2(X, Z)
7 ¬R1(X, Y) ∨ R1(Z, Y) ∨ ¬R2(X, Z) ¬R1(X, Y) ∨ ¬R1(Z, Y) ∨ R2(X, Z) ¬R1(X, Y) ∨ ¬R1(Y, X) ∨ R2(X, Z)
8 R1(X, Y) ∨ ¬R1(Y, X) ∨ ¬R1(Z, X) R1(X, Y) ∨ ¬R1(Z, Y) ∨ ¬R2(X, Z) ¬R1(X, Y) ∨ R1(Y, X) ∨ ¬R1(Z, X)
9 R1(X, Y) ∨ ¬R1(Y, Z) ∨ ¬R1(Z, X) ¬R1(X, Y) ∨ ¬R1(X, Z) ∨ R1(Y, X) R1(X, Y) ∨ ¬R1(Z, Y) ∨ ¬R2(X, Z)

10 R1(X, Y) ∨ ¬R1(X, Z) ∨ ¬R1(Y, Z) R1(X, Y) ∨ ¬R1(Y, X) ∨ ¬R1(Z, X) R1(X, Y) ∨ ¬R1(X, Z) ∨ ¬R1(Y, X)

More extensive results are available in the online supple-
ment.8 These results contain all the learning curves as well
as the AUCPRs and CLLs for all systems.

Conclusion
This paper proposes TODTLER, which is a principled
framework for deep transfer learning. TODTLER views
knowledge transfer as the process of learning a declarative
bias in one domain and transferring it to another to im-
prove the learning process. It applies a two-stage procedure,
whereby it learns which second-order patterns are useful in
the source domain and biases the learning process in the tar-
get domain towards models that have these patterns as well.
Our experiments demonstrate that TODTLER outperforms
the previous state-of-the-art deep transfer learning approach
DTM. While producing more accurate models, TODTLER
is also significantly faster than DTM. In the future, we hope
to make TODTLER even more powerful by enabling it
to transfer a richer set of patterns than any deep transfer
learning algorithm can currently handle. In the future, we
also want to investigate if TODTLER could be used as a
stand-alone MLN structure learning algorithm as Moore and
Danyluk (2010) presented some evidence that DTM is well-
suited for that task.

Acknowledgments
Jan Van Haaren is supported by the Agency for Innova-
tion by Science and Technology in Flanders (IWT). Jesse

8Available on http://dtai.cs.kuleuven.be/ml/systems/todtler.

Davis is partially supported by the Research Fund KU Leu-
ven (CREA/11/015 and OT/11/051), EU FP7 Marie Curie
Career Integration Grant (#294068) and FWO-Vlaanderen
(G.0356.12).

References
Banerjee, B.; Liu, Y.; and Youngblood, G. 2006. ICML
Workshop on Structural Knowledge Transfer for Machine
Learning.
Baxter, J.; Caruana, R.; Mitchell, T.; Pratt, L. Y.; Silver,
D. L.; and Thrun, S. 1995. In NIPS Workshop on Learning to
Learn: Knowledge Consolidation and Transfer in Inductive
Systems.
Clauset, A., and Wiegel, F. W. 2010. A Generalized
Aggregation-Disintegration Model for the Frequency of Se-
vere Terrorist Attacks. Journal of Conflict Resolution
54(1):179–197.
Craven, M., and Slattery, S. 2001. Relational Learning with
Statistical Predicate Invention: Better Models for Hypertext.
Machine Learning 43(1/2):97–119.
Davis, J., and Domingos, P. 2009. Deep Transfer via
Second-Order Markov Logic. In Proceedings of the 26th
International Conference on Machine Learning, 217–224.
Davis, J.; Burnside, E.; Dutra, I.; Page, D.; and Santos Costa,
V. 2005. An Integrated Approach to Learning Bayesian Net-
works of Rules. In Proceedings of the European Conference
on Machine Learning, 84–95.
Della Pietra, S.; Della Pietra, V.; and Lafferty, J. 1997. In-

3014

ducing Features of Random Fields. In IEEE Transactions
on Pattern Analysis and Machine Intelligence, volume 19,
380–392.
Falkenhainer, B.; Forbus, K.; and Gentner, D. 1989. The
Structure-Mapping Engine: Algorithm and Examples. Arti-
ficial Intelligence 41(1):1–63.
Kok, S., and Domingos, P. 2010. Learning Markov Logic
Networks Using Structural Motifs. In Proceedings of the
27th International Conference on Machine Learning.
Kok, S.; Sumner, M.; Richardson, M.; Singla, P.; Poon,
H.; Lowd, D.; Wang, J.; Nath, A.; and Domingos, P.
2010. The Alchemy System for Statistical Relational
AI. Technical Report, Department of Computer Science
and Engineering, University of Washington, Seattle, WA.
http://alchemy.cs.washington.edu.
Lowd, D., and Domingos, P. 2007. Efficient Weight Learn-
ing for Markov Logic Networks. In Proceedings of the 11th
European Conference on Principles and Practices of Knowl-
edge Discovery in Databases, 200–211.

Mewes, H. W.; Frishman, D.; Gruber, C.; Geier, B.; Haase,
D.; Kaps, A.; Lemcke, K.; Mannhaupt, G.; Pfeiffer, F.;
Schüller, C.; Stocker, S.; and Weil, B. 2000. MIPS: A
Database for Genomes and Protein Sequences. Nucleic
Acids Research 28(1):37–40.
Mihalkova, L.; Huynh, T.; and Mooney, R. J. 2007. Mapping
and Revising Markov Logic Networks for Transfer Learn-
ing. In Proceedings of the 22nd AAAI Conference on Artifi-
cial Intelligence, 608–614.
Moore, D. A., and Danyluk, A. 2010. Deep Transfer as
Structure Learning in Markov Logic Networks. In Proceed-
ings of the AAAI-2010 Workshop on Statistical Relational AI
(StarAI).
Pan, S. J., and Yang, Q. 2010. A Survey on Transfer Learn-
ing. IEEE Transactions on Knowledge and Data Engineer-
ing 22(10):1345–1359.
Richardson, M., and Domingos, P. 2006. Markov Logic
Networks. Machine Learning 62(1-2):107–136.

3015

