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Abstract

While model-based reinforcement learning is often
studied under the assumption that a fully accurate model
is contained within the model class, this is rarely true in
practice. When the model class may be fundamentally
limited, it can be difficult to obtain theoretical guar-
antees. Under some conditions the DAgger algorithm
promises a policy nearly as good as the plan obtained
from the most accurate model in the class, but only if the
planning algorithm is near-optimal, which is also rarely
the case in complex problems. This paper explores the
interaction between DAgger and Monte Carlo planning,
specifically showing that DAgger may perform poorly
when coupled with a sub-optimal planner. A novel vari-
ation of DAgger specifically for use with Monte Carlo
planning is derived and is shown to behave far better in
some cases where DAgger fails.

1 Introduction

Model-based reinforcement learning (MBRL) approaches
can typically be understood to consist of two main compo-
nents: system identification (learning a model from obser-
vations) and planning (obtaining a policy from the learned
model). While these two problems have been extensively
studied separately, combining them raises additional chal-
lenges for both. This is especially true in the agnostic set-
ting, where it is not assumed that a perfect model exists in
the model class. When the model is assumed to be inaccu-
rate, it can be difficult to draw firm connections between its
properties and the quality of plans it generates. That said, it
is critical to study MBRL in the agnostic setting — perfect
models will rarely, if ever, be obtainable in complex, high-
dimensional problems of genuine interest.

Ross and Bagnell (2012) point out that the common
“textbook” framework for system identification (e.g. Ljung,
1999), in which a single batch of data is used to train a
model which is then used to obtain a policy, can fail catas-
trophically when the plan enters states that the training set
did not adequately cover. They introduce the DAgger (Data
Aggregator) algorithm, which iteratively generates training
sets containing states from a mixture of a given “explo-
ration” distribution (supplied by an expert) and the distri-
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bution of states visited by the current policy. This ensures
that the model will be accurate both in states that the expert
would enter and in states that the generated plans would en-
ter. Ross and Bagnell derive agnostic guarantees for DAgger
that, roughly, promise that it will generate a policy that is
nearly as good as the plan one would obtain from the most
accurate model in the class.

There are, of course, many MBRL algorithms that could,
in principle, be applied in the agnostic setting, though rel-
atively few provide performance guarantees in that case.
Schoknecht (2002), Parr et al. (2008), and Sutton et al.
(2008) all point out the equivalence between the optimal
value function in an approximate linear model and an ap-
proximate linear value function learned without a model.
This observation sheds light on what solution will be yielded
by linear models in the agnostic setting, but offers no perfor-
mance guarantees regarding that solution. Sorg, Lewis, and
Singh (2010) and Joseph et al. (2013) both address the ag-
nostic setting by adapting model parameters to directly im-
prove agent performance (rather than model accuracy) via
policy gradient algorithms. As such they inherit the strengths
and weaknesses of gradient approaches — guaranteed conver-
gence, but to a locally optimal model parameterization.

In contrast to the above approaches, DAgger is able to
provide general and strong agnostic performance guaran-
tees. However, though the performance bound is agnostic
to the model class, the tightness of the bound relies upon the
assumption that the planner is near optimal. Furthermore, a
near-optimal plan must be computed at every iteration of the
algorithm. In sufficiently complex problems, obtaining even
a single near-optimal plan is typically infeasible.

This paper considers the interaction between the DAg-
ger algorithm and Monte Carlo planning, a popular family
of methods that can offer good performance with computa-
tional complexity that is independent of the size of the state
space. This paper will focus on the simple one-ply Monte
Carlo planning algorithm, which has its roots in the work
of Tesauro and Galperin (1996). At every step the one-ply
Monte Carlo algorithm estimates the quality of each action
by averaging the returns of several sample rollouts that be-
gin with the action and follow some rollout policy 7, there-
after. We will see that, when coupled with this planner, the
DAgger algorithm can fail dramatically. While the model
is trained to be accurate in states the expert and the execu-



tion policy would encounter, it is not trained to be accurate
in states rollouts would encounter. This can lead to persis-
tent model inaccuracies that harm planning performance. To
mitigate this effect this paper derives a novel variation of
DAgger specifically for use with Monte Carlo planning. The
analysis shows that, because it is aware of the planning al-
gorithm’s specific flaws, the DAgger-MC algorithm is bet-
ter able to distinguish between performance loss that is gen-
uinely irreducible and loss that can be reduced by improv-
ing the model. A simple empirical illustration (Section 5)
demonstrates that these issues can arise in practice and that
DAgger-MC can perform well in cases where DAgger fails.

Note that, though the focus here is on the one-ply Monte
Carlo algorithm, these issues are also relevant to more
sophisticated Monte Carlo tree search (MCTS) planners
(Tavener et al. 2012), such as the popular UCT algorithm
(Kocsis and Szepesvéri 2006). While MCTS algorithms can
explore shallow actions more systematically, they still rely
upon fixed-policy rollouts for deep exploration and, for a
practical number of rollouts, cannot typically promise e-
optimality. The possibility of extending these insights to
MCTS planners is briefly discussed in Section 6.

2 Preliminaries

We will consider stochastic environments with discrete state,
action, and time. For simplicity, assume the environment
state is fully observable (Ross and Bagnell discuss how to
extend the analysis to the partially observable case). Thus,
the environment can be formalized as a Markov decision
process (MDP). The initial state s° € S is drawn from an
initial distribution u. At every step ¢ the agent perceives the
current state s* € S and selectes an action a' € A. Then the
next state s*1 is selected with probability Pr(s'*! | st,a’)
and the agent receives some reward r**! € [R,in, Rmax)-
A policy 7 is a conditional probability distribution over ac-
tions, given state, and represents a way of behaving in the
MDP. The value of a policy 7 at a given state s is defined as
V™(s) = E[Y o0, 7"t | st = s], where v € [0,1) is
the discount factor, which trades off the importance of short-
term and long-term rewards. For a policy , the state-action
value Q™ (s,a) = E [Y72 7 1rtt | st = s, a® = a] rep-
resents the value of taking action a in state s, and following
policy 7 forever after. The goal of the agent will be to find a
policy 7 that maximizes E,.,, [V ™ (s)].

Let P = {P* | a € A} represent the true dynamics,
where P is the |S| x |S| transition matrix representing the
transition probabilities under action a. So, P?_, = Pr(s’ |

s,a). Then let P™ be the one-step transition matrix under
policy m: PT,, = > m(a | s)P¢,. The agent does not
have access to the true dynamics and will thus will learn an
approximate model P = {P* | a € A}, with P™ defined
analogously. Let M be the model class, the space of models
the agent’s mode learning algorithm could possible produce.
In the agnostic setting it is not assumed that P € M.

For simplicity, assume that the reward function R : S X
A = [Rimin, Rmaz), Where R(s,a) is the expected reward
obtained when taking action a in state s, is known. Let R* be
a vector of length |S| with entries R? = R(s,a). Let R™ be
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Algorithm 1 DAgger for Model-Based RL

Require: exploration distribution v, number of iterations
N, number of samples per iteration m, ONLINE-
LEARNER, PLANNER

1: Get initial dataset D

2: Get initial model P; <~ ONLINELEARNER(D;)
3. 7, + PLANNER(P;)

4: forn <+ 2...N do

5 Let D,, be an empty dataset
6

7

8

fork < 1...mdo
With probability 3:
Reset using p

9: Use 7,1 to obtain (s,a) ~ D"
10: Else:

11: Reset to (s,a) ~ v

12: Take action a to obtain s’ ~ P

13: Add (s,a,s’) to D,

14: end for .

15: Update: P, <~ ONLINELEARNER(F,,_1, Dy,)
16: T, < PLANNER(D,)

17: end for

18: return the sequence 7.

the expected reward under policy 7: R} = > 7(a | s)R®.
By the familiar Bellman equation, V™ = R™+~+P™ V™. This
implies that V™ = (I — yP™)"1R™.

From some distribution over states w, imagine executing
policy 7 with a (1 — ) probability of terminating at ev-
ery step. Then d™ = (1 — v)w(I — vP™)~ ! is the distribu-
tion over states at termination. Let D, be the correspond-
ing state-action distribution starting from state distribution
w and following policy 7: D7 (s,a) = d7(s)m(a | s). Note
that E;,[V7™(s)] = ﬁE(s,a)ND;{ [R(s,a)].

2.1 The DAgger Algorithm

The DAgger algorithm (Ross and Bagnell 2012) is shown in
Algorithm 1. Note that the algorithm requires that the world
be able to reset to its initial state distribution p; this is a
reasonable assumption of, for instance, a training simula-
tor. It also assumes the ability to reset to an “exploration
distribution” v over state-action pairs. This is to ensure that
the model sees “good transitions” (transitions a good policy
would encounter). Otherwise it may never be able to gen-
erate good plans. The basic idea of DAgger is to iteratively
train the model on state-action pairs drawn from a mix of
the exploration distribution v and the distribution of states
encountered by the policy generated at each iteration.

One way to generate v is to reset to p and execute an
expert policy with (1 — ) termination probability. The “ex-
pert policy” could, in principle, be uninformed, for instance
the uniform random policy. Though the random policy is
guaranteed in the limit to visit all transitions infinitely often,
it may be unlikely to visit important, hard-to-reach regions
of the state space, and may thus overly concentrate training
data on easy to reach states.

For any two policies m and 7’ and any state distribution

w, let the distribution (7™ = iDr+ %Dgl. The analysis of



DAgger relies upon the following result.

Lemma 1. Suppose the learned model Pis approximately
solved to obtain policy 7. Then for any policy T,

ESNM[VW(S) - Vﬁ]
’Y(Rmaz — Rmzn) pa Da T, 7
= (1—)2 E(s,a)wg;;ﬁ[HPs,. — P 1] + €5,
where €7, = SNM[V”( ) — V‘fr(s)].

The €7;" term can be related to “optimal control error”
(hence the oc). For example, if the planner guarantees that 7
is e-optimal, then €7, < e.

Now consider the sequence of policies 7.y generated
by DAgger. Let p be the initial state distribution. Let 7 =
argmax, .. - Es,[V™(s)] be the best policy in the se-
quence and let 7 be the uniform mixture over all policies

in the sequence. For a policy 7 let ¢j; = supy , V(E a()l) rep-

resent the mismatch between the discounted state-action dis-
tribution under 7 and the exploration distribution v.

Let ¢; = $Dj' + v be the distribution from
which DAgger samples state-action pairs at interation 7.
For each iteration i define the loss function LIY(P) =

a pa N »
E(Sva)NCi[”Ps,~ - Ps,~H ] Le\’t L;zl;rld = N Zi:l Lle(R) be

the average L1 prediction error of the generated models.
Let the overall training distribution be { = % Zivzl G
and let Lty = infprep B ayecllP. — P[] be the
error of the best model in the class under the training distri-
bution (. Then the average regret of the sequence of models

P.yis Lfglf = L;%rld LEL. If ano-regret algorithm is used

to learn the model, LTgt —+0as N — oo.
Finally, for a reference policy , let €,
be the average optimal control error 1nduced by the planner.

Then Ross and Bagnell show the following.

Theorem 1. In DAgger; the policies m1.n are such that for
any policy T,

Eonu[V7(5) = V7 (5)] < Eanpn[V7(s5) = V7 (5)]
W(Rmaz - Rmzn)
< (1 — 7)2 V(L dl + L'rgt) +¢€ 6oc

Informally, this theorem guarantees good performance in
the limit if the model learner is no-regret, the exploration
distribution resembles the state-action distribution of a good
policy, there is a model in the class M with small prediction
error, and the planner gives near optimal plans (for the given
models). Ross and Bagnell also provide similar results us-
ing measures of prediction error such as log likelihood that
are more practical than the L, error, which is typically not
available during training. They also offer some insight into
the behavior of the last policy in the sequence 7. These re-
sults apply to the following analysis as well. The reader is
referred to Ross and Bagnell (2012) for details.

The next section develops a bound on value error anal-
ogous to Lemma 1 that is specific to one-ply Monte Carlo
planning, which will then inspire a modification to the DAg-
ger algorithm. Lemma 1 does apply to this case, as it does
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to any planning method. However, because one-ply Monte
Carlo planning does not guarantee near-optimal plans, the
€™® term could be very large. As a result, even if the ex-
pected prediction error becomes very small (or zero), there
may still be significant value error. One way this manifests
is that the prediction error term does not consider accuracy
in states that might be encountered during rollouts, but not
execution. Inaccuracies in such “off path” states can damage
planning quality but may never be corrected by DAgger.

3 Bounding Error For MC Planning

Imagine a conceptual offline one-ply Monte Carlo planning
algorithm that uses model rollouts to create an execution
policy 7. That is, for each state s and action a, execute n
rollouts of length [ using the model P and the rollout pol-
icy 7. Let (s, a) be the average discounted return of these
rollouts. For sufficiently many rollouts of sufficient length,
@ will closely approximate Q™ , the state-action value func-
tion of 7, in the model. The execution policy will be greedy
with respect to Q): 7(s) = max, Q(s, a).

The more typical online one-ply Monte Carlo algorithm
re-calculates )(s, -) each time s is encountered, giving a po-
tentially different policy for s each time. For simplicity, we
do not consider this effect. This conceptual version of the
algorithm is equivalent to the on-line algorithm if the policy
for each state is cached, rather than re-computed.

In order to analyze the one-ply Monte Carlo planning al-
gorithm we need to operate on state-action value functions.
To facilitate the analysis it will be convenient to image a
new “pre-state” so with R(sg, a) = 0 for all actions a. Tak-
ing any action from sq yields the initial state distribution ;
Pr(s | so,a) = p(s) for every state s and action a. Let 7 be
a state distribution with 7(sg) = 1. So for any policy 7 and
any action distribution «,

Esnnanal@7(s,0)] = 7Esn [V (s)]-

Now, for a policy 7 let B™ be the state-action transi-
tion matrix. That is, for any two state-action pairs (s, a) and
(s,a'), let BY, ) oy = Pr(s" | s,a)m(a’ | s'). Then
one can define the state-action Bellman operator for a policy
™, T7Q(s,a) = R(s,a) + 72 o Bl o) (57,0 @S, ).
The maximizing Bellman operator TQ(s,a) = R(s,a) +
v Plymaxe Q(s',a’). Bellman operators can be sim-
ilarly defined for state value functions as well. Then the fol-
lowing bound can be adapted from a result given by Munos
(2007). The proof closely follows Munos’ original argu-
ment, except with state-action value functions instead of
state value functions, so it is not presented here.

Lemma 2. For an arbitrary state-action value function (),
let 7t be a greedy policy w.r.t. Q. Then for any policy m,

Eon[V7(s) = V7 (5)]

gﬁ%) o+ [TQ(s,a) — Q(s,a).

Now for any two policies 7 and 7’ define a mixed state-
action distribution

mr’ 1 w’ 1 T 1 w7’
5 ’ = §Du +1DH+1D,’7.B .



The third term can be understood as the distribution over
state-actions generated by following policy , but choosing
the last action using 7. Note that this term can be re-written
entirely in terms of the original initial state distribution p:

DB (s,a) = (1 - y)u(s)w'(a | s) + YD B™ (s, ).

The following lemma is analogous to Lemma 1 but spe-
cific to one-ply Monte Carlo planning.

Lemma 3. Let Q be the state-action value function obtained
by one-ply Monte Carlo planning using P. Let 7t be greedy
with respect to Q. Then for any policy T,

Esnpn[V7(s) = V7(s)]

4 ~
< 17E(S,a)’\'§ﬂ-’ﬁ [[Q™ (s,a) — Q™ (s, a)]]

-7
b Q- Qe TV Y
- -~

Before presenting the proof of this lemma, first consider
the meaning of the three terms in the bound. The second
term is the error incurred by the planning algorithm (due to
estimating V™ with a finite number of finite horizon sam-
ples). With sufficiently many rollouts of sufficient length,
this term can be arbitrarily small with high probability.

The third term is a property of the rollout policy and the
true dynamics. It represents the irreducible error caused by
the choice of a sub-optimal rollout policy.

The first term in the bound is the error in the value of the
rollout policy induced by the approximate model. This can
be bounded in terms of the prediction accuracy of the model.
For a policy 7 and state-action distribution ¢, let 67 be anal-
ogous to D7 except with an initial state-action distribution
instead of state distribution. Then the following is an adapta-
tion of a result from Ross and Bagnell (2012) to state-action
value functions. The proof is similar to Ross and Bagnell’s
argument, and is not presented here.

[e.oh}

Lemma 4. For any state-action distribution ¢,

E(s,a)rw(b[QTr(sv a) - QAW (57 a)]
’Y(Rmaw - Rmzn)
< 21— )2 1]

Combining this with Lemma 3 yields the main result of
this section.

E(s,a)~ar [l Pe. — Py

Lemma 5. Let Q) be the value function obtained by one-ply

Monte Carlo planning using P. Let T be greedy with respect
to Q. Then for any policy ,

Eonu[V7(s) = V7(s)]

27(Rmaa: - Rmin) a >
< (1 77)3 E(s,a)N(S;r;,*[HPs,- _Psa,- |1}

4 A A 2
- _ 7'l'7'-Oo 7/1’3 Ty T o
P10 = Q7 e+ g TV -V

3.1 Proof of Lemma 3

This section presents the proof of the key result above,
Lemma 3. It may be useful to consult Table 1, which sum-
marizes many of the symbols used in this argument.
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s The rollout policy used by one-ply MC.

Q™ | The true Q-function of ,.

Q™ | The Q-function of 7, in the model P.

Q The ()-function obtained using one-ply MC.

T The execution policy (greedy w.r.t. Q).

w The initial state distribution of the MDP.

n The state distribution with all its mass on sg.
B The state-action transition matrix for policy 7.
The discounted state distribution generated by
policy 7 starting in state distribution w.

D7 The discounted state-action distribution gener-
ated by policy 7 starting in state distribution w.
© | DT+ $DF .

& | 3Dy +3Dp + 1DiBT.

Table 1: Symbol Reference

Proof of Lemma 3. First note that
TQ-Q
— T‘fr@ _ Tﬁ'QTrr + Qﬂ'r _ Q 4 Tﬁ'Qﬂ'r _ Qﬂ'r
— ’}/BW(Q _ err) 4 err _ Q + TTI'QTFT _ QTA‘T
<yBHIQ- Q71+ 1T - QL+ QT - Q™
Thus, combining with Lemma 2,
Eony[V7(s) — V7 (s)]
2 A T
< =) (Benngre (00 - Q7 (s.0))
+ E(s,a)wgy"’? ['Qﬂr(sv a) - Q(& a)H
+ B oyugp o I7Q7 (5,0) = Q™ (s,a)]]) -
Consider the first term in this expression:
’yE(s,a)NCZ{”?BT’f [lQ(S’ a’) - Qﬂ'r (87 a)H
b 9 T
= iE(s,a)NDgB""’ [‘Q(Sa a) -Q (57 a)H
b 9 ™
+ §E(s,a)~D£r HQ(Sa a) -Q T(Sv a)”
Combine this with the second term to get

2Bl l|Q(s,0) = Q7 (s, 0)]

*%EmwwnHQ@ﬂny“@ﬂm

1
+ §E(s,a)~Df] [|Qﬂr(s’ a) - Q(Sa a)”

+ 3B g Q7 (5,0) — Qs )]
Noting that R(sg, a) = 0 for all a, this is equivalent to
2 B(o~ny71|Q(s,0) = Q7 (s, 0)]
+ 7B )z [1Q(s, ) — Q7 (5,0)]]
+ LBz [1Q (s,a) — Q(s,)]]

2
= 27E(s,a)~§“"“’ HQ(&CL) - Qﬂr (S?G)H




Real System

Figure 1: An example where the loss function suggested by

Lemma 5 provides more guidance than Lemma 1.

Now note that |Q — Q™| < |Q — Q™| + |Q™ — Q™ |. So,
Esnu[VT(5) = V7(s)]

4 N
< 7E(S,H,)Nf"’ﬁ [|Qﬂ-7' (37 a) - er,. (37 a)”

<75
4 = ~
1 Beane s [1Qs,a) =@ (5, 0)]
2 Tr T
T g Bt (TR (5,0) = Q™ (s, )l

Using Jensen’s inequality, one can see that
B ayece = [TQ™ (5.0) =~ Q7 (5,0)]
= VB (g a)mer HEs’~P.3,. [TV™(s") — Vﬂ"'(sl)]H
< VB, (g s 2 [TV (5) = V7 (3)]
<AV =V |,
The result is obtained by finally noting that

E(s,a)w{”v*['@(& a) - Q‘ﬂ'r(& a‘)” < ||Q - Qﬂ'THOO'
O

Before discussing the algorithmic implications of this re-
sult, the next section briefly discusses the relationship be-
tween Lemma 1 and Lemma 5.

3.2 Relationship Between the Bounds

Though the bound given in Lemma 1 is not strictly tighter or
strictly looser than the one in Lemma 5, we can obtain some
understanding of their relationship by comparing their first
terms (the terms subject to optimization). For any policies 7
and 7/, let cﬂ” = MAXrre (7} SUP(5 q) ”;T(ELJ‘;) bound the
mismatch between the rollout policy and the two policies 7
and 7’. Let L(P) = | P —]5;‘ |l1. Then it s straightforward
to verify the following:

Proposition 6. For any policies m and 7'
. 2cm .
T
[LP)] < 1= S B~ [£(P)].
From this result we can see that if, by improving model
accuracy, the first term of Lemma 5 approaches zero, then so
does the first term of Lemma 1. But the converse is not nec-
essarily true. At first glance this might seem to make Lemma
5 less informative than Lemma 1. However, in some such

(s,a)~CE™

2990

Algorithm 2 DAgger-MC for one-ply Monte Carlo Planning

Require: exploration distribution v, number of iterations
N, number of samples per iteration m, rollout policy
7, ONLINELEARNER, MC-PLANNER

1: Get initial dataset D
2: Get initial model P; <~ ONLINELEARNER(D;)
3: 7, + MC-PLANNER(P))
4: forn <+ 2...Ndo
5: fork < 1...mdo
6: With probability 3:
7: Reset using p.
8: Use 7,1 to obtain (z,b) ~ D" .
9: Else with probability :
10 Reset to (z,0) ~ v.
11: Else with probability 1 (1 —v):
12: Reset using 4 to obtain z.
13: Obtain b ~ 7,1 (- | 2).
14: Else:
15: Reset to (z,c) ~ v.
16: Take action ¢ in x to obtain z ~ Py .
17: Obtain b ~ 7,1 (- | 2).
18: Take action b in z to obtain y ~ Pf.,.
19: From y use 7, to obtain (s, a) ~ 6?;,77,1_1 .
20: Take action a to obtain s’ <— P¢ .
21: Add (s,a,s’) toD.
22: end for .
23: Update: P,, <~ ONLINELEARNER(P,,_1, Dy,)
24:  m, + MC-PLANNER(D,)

25: end for
26: return the sequence 1. x

cases this is because Lemma 5 apportions error to its first
term (subject to optimization) that Lemma 1 assigns to its
second term (not subject to optimization).

To see this, consider the system and model pictured in
Figure 1. There are 6 states and two actions (Up and Right
indicated by the side of the states from which the arrows
originate). The system starts in state A. Clearly the optimal
policy 7* always chooses Right. Assume the MC planner
uses uniform random 7. and, for simplicity, let 7 be greedy
with respect to Q™. The rollout policy is equally likely to
go Up or Right from state B, so, in the flawed model, it
severely undervalues state B. As such 7 will choose Up
from state A. Since neither the expert policy 7* nor the ini-
tial execution policy 7 ever reach state E the model would
not be corrected. Subsequent iterations would yield the same
results, and the suboptimal behavior would persist forever.

In contrast, because the rollout policy does reach state F,
the first term in Lemma 5 would be positive. Assuming the
model class permits it, an algorithm minimizing this error
would correct the model. With an accurate model the planner
chooses Right in state A for sufficiently large ~.

4 DAgger for Monte Carlo Planning

Motivated by Lemma 5, DAgger-MC is a variation on DAg-
ger, specifically for use with the one-ply Monte Carlo algo-



rithm. As can be seen in Algorithm 2, the main differences
appear on Lines 6-19 which generate the training examples.
The analysis of DAgger-MC closely follows the anal-
ysis of the original DAgger algorithm, with only a few
changes. Let &;(s,a) = D' ' (s,a) + Fv(s,a) + 5((1 -
Yp(s)mi—1(a | 8)+yvBTi-1(s, a)) be the distribution from
which DAgger-MC samples state-action pairs to initiate roll-
outs in iteration 7, named (z, b) in the pseudocode. Let §; =
57” be the distribution from which DAgger-MC samples
state action pairs for updating 1n iteration 7. Let the over-
all training distribution be § = & S 6, and let TLl, =
infprepm E o)usll| Py — Pe||1]. For each iteration i define

the loss function I'21 (P) = E(s,a)~s. [[| P —]55“ |l1] and let

TLl = L 527 TEY(P). Then the average regret of the se-
quence of models Py.y is Frgt =T}, — TLY. Finally, let
€Emc = ]17 T—y Zv 1 HQz Q?T”oo 1_»y||TVTrT_VTr7' 00

The following is the main theorem, presented without
proof because the argument closely follows that of Ross and
Bagnell, except with Lemma 5 in place of Lemma 1. Let 7
be the best policy in the sequence of policies, and let 7 be
the uniform mixture over all of the policies.

Theorem 2. In DAgger-MC, the policies m1.n are such that
for any policy T,

Esnu[V7(s) = V()] < Egnpn[V7(s) = V7 (s)]
4 Rmam - Rmzn
< €mc + ’Y( (1 — 7)3 ) V(FL dl + Frgt)

As discussed above, though this bound is often looser than
the one given by Theorem 1, it acknowledges the importance
of model accuracy in states that are reached by rollouts. As
a result, DAgger-MC can perform much better than DAg-
ger with a Monte Carlo planner. The next section provides a
brief illustration of how these issues can arise in practice.

S Experiments

Consider the simple game, Shooter, which is shown in Fig-
ure 3. The agent controls a ship at the bottom of the screen.
The available actions are noop, left, right, and shoot. If
the agent chooses to shoot it receives a reward of -1 and, if
there is not already a bullet directly above the ship, a bullet
appears, traveling upwards. If a bullet hits one of the three
targets, it explodes. Each target has a “sweet spot” in the
middle. Hitting the sweet spot yields 20 reward. Hitting to
either side yields 10 reward. The (known) reward function
uses the explosion shape to determine how much reward is
received. The optimal policy is simply to move right across
the screen, shooting a bullet at the middle of each target.
Note that though the domain is simple, the state space is
very large (due to the possible configurations of bullets on
the screen) making near-optimal planning unlikely. On-line
Monte Carlo planning is a popular approach in such a case.

The results of applying DAgger and DAgger-MC to this
problem (using various expert policies to generate v) are
shown in Figure 2. In all cases the planning algorithm was
one-ply Monte Carlo with 50 rollouts of length 15 of the
uniform random policy. The model learner was a factored
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model where each factor was learned using Context Tree
Switching (Veness et al. 2012), similar to the FAC-CTW
algorithm (Veness et al. 2011). The model for each pixel
used a 7 x 7 neighborhood around the pixel as input. Data
was shared across all positions to encode some degree of
positional invariance. The discount factor v was set to 0.9.
Each iteration generated a training batch of 500 samples.
The discounted return obtained by the policy generated at
each iteration in an episode of length 30 is reported, aver-
aged over 200 trials. The shaded regions represent 95% con-
fidence intervals for the mean performace. The benchmark
lines marked “Perfect Model”, and “Random” represent the
average performance of one-ply Monte Carlo using a perfect
model, and the uniform random policy, respectively.

In Figure 2a, the optimal policy was used as the expert.
Note that in the DAgger analysis, using the optimal policy as
the expert is the ideal scenario. However, in this case DAg-
ger rarely even fires a bullet — it gets 0 reward in almost ev-
ery iteration. Because the optimal policy only ever chooses
right or shoot the initial model is never trained on examples
of a bullet moving while the ship moves le ft. Rollouts are
very likely to encounter such situations, and inspection of
model rollouts revealed that the model’s inaccuracy in those
cases causes the planner to undervalue the shoot action. As
such, the policy obtained from planning never shoots at all
which prevents errors regarding bullet dynamics from being
corrected. In contrast, DAgger-MC quickly learns to accu-
rately predict bullet movement and performs well.

In Figure 2b, the uniform random policy was used as the
expert. As might be expected, DAgger performs far better
using this expert as it provides better coverage of states that
will be encountered during rollouts. That said, using an un-
informed expert has downsides as well. For instance, The-
orem 1 will be loose due to an unacceptably large ¢ term.
Also, the random policy is not very likely to hit the targets’
sweet spots, so DAgger-MC takes substantially more data
to learn about that aspect of the dynamics with this expert
than with the optimal policy. Finally, because DAgger re-
lies entirely on the exploration policy to provide coverage
of rollout states it has a persistent disadvantage compared to
DAgger-MC which systematically samples those states.

In Figure 2c, the expert was the one-ply Monte Carlo al-
gorithm applied to a perfect model. This expert policy makes
good decisions like the optimal policy, but is noisy, so DAg-
ger does relatively well. But, again, because DAgger relies
solely on the noise in the exploration policy to learn about
“off-path” states, it persistently sees fewer such examples
than DAgger-MC. As the model learns, it overgeneralizes
in some “off-path” cases and is not corrected because such
cases are rare in the training set. For instance, it learns that
shooting causes a bullet to appear, but not that bullets can
not appear directly next to each other. As a result, when two
bullets appear next to each other in a rollout, this forms an
unfamiliar context and the model subsequently behaves er-
ratically in the rollout. These effects actually cause DAg-
ger’s performance to degrade slightly as it sees more data.
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Figure 2: Results in the Shooter domain. See text for details.

Figure 3: The Shooter game. Left: Initial screen. Middle:
First target has just been hit in its sweet spot. Right: Second
target has just been hit outside its sweet spot.

6 Discussion and Future Work

Though this paper has focused on the simple one-ply Monte
Carlo algorithm, as the Introduction pointed out, the issue
of model accuracy during rollouts is important for more so-
phisticated Monte Carlo tree search (MCTS) algorithms as
well. Preliminary work suggests that a result in the spirit of
Lemma 5 can likely be obtained for MCTS. However, unlike
one-ply Monte Carlo, each MCTS rollout depends on the
rollouts before it. Thus, in order to sample states from the
rollout policy distribution, one must be able to simulate the
entire MCTS process in the world/simulator during training.
This is a fairly strong assumption, even when a simulator
is available. Exploring these issues and, in particular, deter-
mining if similar guarantees can be obtained with weaker as-
sumptions remain interesting directions for future research.
While Theorem 2 does provide guarantees in the agnostic
setting, the bound does still rely on the existance of some
model in the class with small one-step prediction error. As
Talvitie (2014) recently pointed out, this may not be the case
in many problems of interest, especially when using factored
models. Further, when the model class is limited, rollouts
may generate states that can never be reached in the real
system. In that case no amount of training on examples from
the real system can help. Talvitie introduced the heuristic
Hallucinated Replay method, which incorporates erroneous
states generated by sample rollouts into the training set, and
found that it can mitigate the effects of compounding model
errors during rollouts. Perhaps this insight can be combined
with DAgger-MC to obtain tighter bounds and expand its
applicability to a broader range of model classes.

7 Conclusions

The DAgger algorithm for model-based reinforcement
learning in the agnostic setting was shown to fail when cou-
pled with the one-ply Monte Carlo planning algorithm be-
cause it does not train the model on states that are reached
during rollouts, but not execution. The DAgger-MC algo-
rithm, a variation on DAgger for use with Monte Carlo plan-
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ning, was derived based on a novel error bound, and was
shown to perform well in some cases where DAgger fails.
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