Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

Large Margin Metric Learning for Multi-label Prediction

Weiwei Liu and Ivor W. Tsang*
Center for Quantum Computation and Intelligent Systems
University of Technology, Sydney, Australia
liuweiwei863 @ gmail.com, ivor.tsang @uts.edu.au

Abstract

Canonical correlation analysis (CCA) and maximum
margin output coding (MMOC) methods have shown
promising results for multi-label prediction, where each
instance is associated with multiple labels. However,
these methods require an expensive decoding proce-
dure to recover the multiple labels of each testing in-
stance. The testing complexity becomes unacceptable
when there are many labels. To avoid decoding com-
pletely, we present a novel large margin metric learning
paradigm for multi-label prediction. In particular, the
proposed method learns a distance metric to discover la-
bel dependency such that instances with very different
multiple labels will be moved far away. To handle many
labels, we present an accelerated proximal gradient pro-
cedure to speed up the learning process. Comprehensive
experiments demonstrate that our proposed method is
significantly faster than CCA and MMOC in terms of
both training and testing complexities. Moreover, our
method achieves superior prediction performance com-
pared with state-of-the-art methods.

Introduction

Multi-label prediction has been applied to various applica-
tions ranging from document classification and gene func-
tion prediction, to automatic image annotation. Each in-
stance is associated with multiple labels that is represented
by a sparse label vector. For instance, a document can be as-
sociated with a range of topics, such as News, Finance and
Sports (Schapire and Singer 2000); a gene belongs to the
functions of protein synthesis, metabolism and transcription
(Barutcuoglu, Schapire, and Troyanskaya 2006); an image
may have both beach and urban tags (Boutell et al. 2004).
A simple approach to multi-label learning is binary rel-
evance (BR) (Tsoumakas, Katakis, and Vlahavas 2010),
which trains a binary classifier for each label independently.
To deal with many labels, Hsu et al. (2009) assume that label
vectors have a little support. In other words, each label vec-
tor can be projected into a lower dimensional compressed
label space, which can be deemed as encoding. A regres-
sion is then learned for each compressed label. Lastly, the
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compressed sensing (CS) is used to decode the labels from
the regression outputs of each testing instance.

Many works have recently been developed in this
encoding-decoding paradigm. These works mainly use dif-
ferent projection methods to transform the original label
space into another effective label space as encoding. For
example, principal label space transformation (PLST) (Tai
and Lin 2012) uses principal component analysis (PCA)
to project the output labels into a lower dimension. Zhang
and Schneider propose the use of canonical correlation anal-
ysis (CCA) (2011) and maximum margin output coding
(MMOC) (2012) to encode the original label space. Learn-
ing models are then trained in the transformed label space.
To accurately recover the labels from the prediction of the
learning models, expensive decoding schemes are usually
required. Due to the combinatorial nature of the label space,
exact decoding is usually intractable. Even when approx-
imate inference (Zhang and Schneider 2011) is used, the
decoding step is still very time-consuming when there are
many labels.

Motivation Comprehensive experiments on large scale
image databases show that the & nearest neighbor (KNN) al-
gorithm achieves superior performance when handling many
class problems (Deng et al. 2010). Moreover, Kwok and
Tsang (2003) and Weinberger and Saul (2009) show that
the single-label prediction performance of kNN can be im-
proved by learning a distance metric to satisfy the following
constraint: Two nearby instances from different classes will
be pushed further apart with a large margin. However, in a
multi-label setting, nearby instances may differ by only a
few labels, or hundreds. It is non-trivial to define a proper
scaling of the margin for any two nearby instances. To learn
a distance metric for multi-label problems, we require two
conditions: 1) The output labels of an instance can be deter-
mined by that instance. 2) The output labels of an instance
can be predicted by the nearest neighbors of that instance.
To be specific, for a testing instance 2(® an instance z(®)
from the training set is very similar to 2(*) based on their
embeddings, and their corresponding labels are y(*) and 3®)
respectively. In the embedding space, y® and z(*) are sim-
ilar, z(®) and (@) are similar, (%) and y(“) are also similar,
so y®) is similar to (%), Hence, we can use the labels of the
k nearest neighbors of (%) to predict y(@).



To achieve our goal, we present a novel multi-label learn-
ing paradigm to project both the input and output into the
same embedding space. The input and output can then be
compared in the same space, and it is evident that the em-
beddings of the input and the corresponding output should
be similar. Moreover, we enforce the constraint that the
distance between the embedded input of #(*) and its cor-
rect output y(*) should be smaller than the distance be-
tween the embedded of (%) and the output 3(*) of the near-
est neighbors of x(%) with at least a margin measured by
Ay, y®)), the difference between y(® and y®). Thus,
two nearby instances from different output labels will be
pushed further apart by A(y(®), 3(®)).

The main contributions in this work are:

1. To incorporate the feature and label correlations, we
project both the input and output to the same embedding
space, in which the input and output can be compared.
A large margin formulation with k£ nearest neighbor con-
straints is proposed to learn the embedding space. Lastly,
we transform the formulation to metric learning (Kulis
2013; Yang and Jin 2006) for multi-label problems.

2. After transformation, our optimization problem is re-
duced to a semidefinite programming problem. To han-
dle many labels, the accelerated proximal gradient (APG)
method (Beck and Teboulle 2009; Toh and Yun 2009) is
adapted to solve the reduced problem.

3. To avoid the expensive decoding step, we select k nearest
neighbors from the training set for each testing instance in
the embedding space and make a rapid prediction based
on the labels of those k nearest neighbors.

4. Experiments on a number of real-world multi-label data
sets demonstrate that our method outperforms state-of-
the-art approaches and is more efficient than methods that
are based on the expensive decoding step.

Related Work

Tsoumakas and Katakis (2007) group existing multi-label
classification methods into two major categories: algorithm
adaptation (AA) or problem transformation (PT). AA ex-
tends specific learning algorithms to deal with multi-label
classification problems, while PT transforms the learning
task into one or more single-label classification problems.
Several methods (Zhang and Zhou 2006; 2007; Brinker and
Hullermeier 2007) fall into the AA category. Amongst them,
multi-label &k nearest neighbor (ML-kNN) is one of most
popular methods due to its simplicity and good experimental
results (Zhang and Zhou 2007). However, similar to NN,
it suffers from the curse of dimensionality. When there are
many noisy features on high dimensional problems, gen-
eralization performance drops tremendously. Our proposed
method learns a distance that embeds both the input and out-
put in the same embedding space, which prunes away noisy
features. Therefore, our method is capable of finding more
discriminative k nearest neighbors for prediction.

From the PT perspective, Hsu et al. (2009) use random
transformation to project the original label space into a low
dimensional label space. A regression model is trained on
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each transformed label. The compressed sensing technique
is used to recover multi-labels from the regression output.
To capture label dependency, CCA is used by Zhang and
Schneider (2011) to encode the label vectors. The work
that is most relevant to our method is MMOC (Zhang and
Schneider 2012), which embeds both the output and input
in the same space by ensuring that the distance between
the embedded input and the correct embedded output is less
than the distance between the embedded input and any other
embedded output with a large margin. Though MMOC has
shown improved prediction performance, the training pro-
cess involves an exponential number of constraints w.r.t.
the number of labels, which is impractical for real-world
applications, such as image annotation. Since both CCA
and MMOC apply mean-field approximation (Zhang and
Schneider 2011) in the decoding step, their prediction pro-
cess is still expensive when there are many labels. PLST (Tai
and Lin 2012) uses PCA to project the output to a lower di-
mension and applies the linear projection in the decoding
procedure; its performance is inferior to CCA and MMOC
in our experiments.

Some approaches attempt to exploit the different orders
(first-order, second-order and high-order) of label correla-
tions (Zhang and Zhang 2010). For example, Kang, Jin, and
Sukthankar (2006) explicitly exploit high-order correlation
between labels, but this involves an optimization problem
with an exponential number of constraints. All these meth-
ods assume that the correlations are shared by all instances,
thus Huang and Zhou (2012) try to exploit label correlations
in the data locally and measure the similarity between in-
stances in the label space rather than in the feature space.
However, the label space is usually sparse when there are
many labels, making it impossible to obtain accurate similar-
ity between instances through the measurement in the label
space.

A comprehensive review of multi-label learning algo-
rithms can be found in Zhang and Zhou (2014) and refer-
ences therein.

Large Margin Metric Learning
Notations and Preliminaries

Assume z(Y) € RP*! is a real vector representing an input
(instance), y € {0,1}9%! is a real vector representing the
corresponding output (i € {1...n}). n denotes the number
of training samples. The input matrix is X € R™*? and the
output matrix is Y € {0,1}"*9. Nei(4) is the output set of
k nearest neighbors of input instance z(*). For output encod-
ing, V = (v1,vs,....,vq) € R4 (d < q) is the projection
matrix that maps each output vector (¥ (¢ dimension) to
VTy( (d dimension). Let P € RP*4 also be the projection
matrix. For input encoding, each input vector (") (p dimen-
sion) is projected to VT PT2(*) (d dimension). Then z(*) and
y(® can be compared in the projection space (d dimension).

A simple linear regression model for BR is to learn the
matrix P through the following formulation:
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where || - ||F is the Frobenius norm. However, this does
not consider the relationships between labels. To reduce the
noise in the data set, MMOC (Zhang and Schneider 2012)
incorporates the feature and label correlations and proposes
a maximum margin output coding formulation Eq. (2) to
learn the projection matrix.

argminy c gaxd (¢, >0y, 3 |V||F +— Z&
, 2
st |[VTPT2® —vTy@)12 4 A(yl ,y) - &
< VTP —vTy|3,vy € {0,1}9,Vi

Eq. (2) involves an exponentially large number of con-
straints. To address the combinatorial nature of the label
space {0,1}9, Zhang and Schneider (2012) use the over-
generating technique (Finley and Joachims 2008) with the
cutting plane method. Training involves solving a box-
constrained quadratic programming (QP) problem for each
training sample ¢, which is time-consuming, and testing also
involves solving a QP on {0, 1} space. Even if approximate
inference (Zhang and Schneider 2011) is used to solve this
QP problem, it is still computationally expensive.

Proposed Formulation

Inspired by kNN and MMOC, we propose the following
large margin metric learning with k nearest neighbor con-
straints, or LM-KNN for short, to learn the projection ma-
trix.

If the encoding scheme works well, the distance between
the codeword of (" (VT PT (1)) and the codeword of y(?)
(VTy(®) should tend to 0 and be less than the distance be-
tween the codeword of () and the codeword of any other
output (VT'y). Then, the following large margin formulation
is presented to learn projection matrix V':

argminy e pixa (¢,>0y1, 5 VI + 252
3)
st [[VIPTz® —vTy@|2 4 Ay ) =&
< ||VTPTz<“ — VTyHQ,\w € Nei(i),Vi

where C'is a positive constant that controls the trade-off be-
tween square-hinge loss function and regularizer. The con-
straints in Eq. (3) guarantee that the distance between the
codeword of z(?) and the codeword of y(¥) is less than the
distance between the codeword of z(?) and the codeword
of any other output. To give Eq. (3) more robustness, we
add the loss function A(y(?), y) as the margin and minus the
slack variable &; in the left side of the constraints. Given the
distance function ||V PT2() — V7Ty®|2 as the compat-
ibility function, Eq. (3) can be viewed as an adapted form
of structural SVMs (Tsochantaridis et al. 2005). The loss
function is defined as A(y@,y) = ||y¥ — y||; (Zhang and
Schneider 2012), where || - ||; means the {3 norm. Follow-
ing (Weinberger and Saul 2009), we use Euclidean metric to
measure the distances between instances (¥ and 2() and
then learn a new distance metric, which improves the per-
formance of kKNN.
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Define a ¢ X ¢ symmetric positive semidefinite matrix
(denoted by 5;) Q: Q = VVT € SF and ¢, 40 =
PTz() — () We can transform Eq. (3) to the following
metric learning (Kulis 2013; Yang and Jin 2006) problem:

C n

D) Q) o + AW, y) — &
< O ,Qbur Yy € Nei(i), Vi

Accelerated Proximal Gradient Update

Since our objective of Eq. (4) is smooth and the number
of constrains is linear w.r.t n, we can apply the accelerated
proximal gradient (APG) method (Beck and Teboulle 2009;
Toh and Yun 2009) to efficiently solve the primal form of Eq.
(4) with many labels. Let p(Q) = Strace(Q) and f(Q) =
% 21;1 51'2 where §; = max{oamaXyENei(i)(A(y(i)ay) -
(d)f(i)’de)w(i))y - ¢£(i)7y(i) QP50 i) ))}. We define

F(Q) = f(Q) +p(Q).Q € Sy )

The derivative of f is denoted by V f. Yuan, Ho, and Lin
(2012) show that V f is Lipschitz continuous on (). For any
Z € S, consider the following QP problem of F'(Q) at Z:

+31Q - 21+ p(@)

1
= 21Q = GIE+p(@+1(2) - IV F(2)F
(6)

where 7 > 0 is a constant and G = Z — 1V f(Z). To mini-
mize A, (Q, Z) w.rt. Q, it is reduced to solve Eq. (7):

21Q = Gl +p(Q) @)

To solve Eq. (7), we take the derivative of the objective
function of Eq. (7) wrt. Q: 7(Q — G) + 41 = 0, then
Q = G — 5-1. We take the SVD of G as G = UGU”,
and Q = UGUT — -UU”, then Q = U(G — 5-1)UT. We
use 0 to replace the negative entries in G — %I . Lastly, we
obtain the symmetric positive semidefinite matrix solution
of Eq. (7), denoted by S, (G). The detailed APG algorithm
is shown in Algorithm 1:

In Algorithm 1, let L be the Lipschitz constant of V f
and Ly estimated as Ly = 0.01nC'. The optimality condi-
tion of Eq. (4) is VF(Q) = 0. It is usually time-consuming
to achieve this condition. In practice, we meet an e-accurate
solution instead. The stopping condition of Algorithm 1 is
set as:

P@) — F@) _
F(Q")
where € is a small tolerance value. In practice, we set € =

0.001. Lastly, a sublinear convergence rate of algorithm 1 is
guaranteed in the following theorem.

argman€S+ (&0, trace

4
s.t. @

argmeeS+

(®)



Algorithm 1 Accelerated Proximal Gradient Algorithm for

Solving Eq. (4)

Input: 7 € (0,1) is a constant. Choose Q° = Q~' € SF.
t® =¢t~! =1 and k = 0. Choose the Lipschitz constant
Lyandsetty = Ly

Output: The optimal solution to Eq. (4)

. Set ZF = Qr@ v ]—1(Qn Qm 1)

Set T = n7,

for ;) =0,1,2,. do

SetG =2 R
if F(S,(G)) <
set 7,, = T, stop
else
T =
end if
end for

Set Q" = S, (@)

Compute ti+! = V1A 1;4“”)2 Letk =r+1

: Quit if stopping condition is achieved. Otherwise, go to

step 1

Vi(Zr) ,computeS (G)
4,(5-(G), Z), then

Ly
n

TP RN RELN

—_ —_—
w N

Theorem 1 Let {Q"} be the sequences generated by Algo-
rithm I and L¢ be the Lipschitz constant of V f. Then for
any k > 1, we have

K * 2LfHQ0_Q*||2

where Q* = argming F(Q)
The proof can be adapted from Beck and Teboulle (2009).

€))

Prediction

Traditionally, encoding-decoding methods involve the de-
coding process which usually requires solving QP problem
on a combinatorial space. It is computationally expensive.
Inspired by metric learning (Kulis 2013), we select k near-
est neighbors from the training set for each testing instance
in the embedding space, and conduct prediction based on
the codeword distance with a testing instance and the la-
bels of k nearest neighbors. For a new testing input variable
x, we find k instances {z(1) ... x(®)} in the training set
which have a smaller codeword distance from z than other
instances. Based on the codeword distance with = and out-
put of {z() ... ()}  we compute the scores for each
label for z. Lastly, we make the prediction for multi-label
classification problems based on the scores. The equation
of the distance between the codeword of = and the code-
word of () is || M(x) — M(2®)|[3. It can be computed
as (PTz — PTa)TQ(PTx — PTx(). Thus, the testing
time is similar to kNN and much faster than the encoding-
decoding methods. Following the setting in MMOC, we set
0.5 as the threshold without further optimization.

Complexity Analysis
Training time The formulation of MMOC involves an ex-
ponential number of constraints. The authors therefore use

Table 1: Time Complexity

Method Training Time Testing Time
BR O(npq) O(pq)

PLST O(n® + ¢°n + npq) O(q* + pq)
CCA [ O(® +n(p® +¢° + pg)) O(¢%)
MMOC O(ng® +n") 0%
kNN - O(pn)

ML-ENN O(n*p + nq) O(pn + q)

LM-kNN O(q” + knpq®) O(qn + pq)

the overgenerating technique with the cutting plane method.
Lastly, training involves solving a box-constrained QP prob-
lem for each training instance and then using CVX! to solve
a semidefinite programming problem. The time complexity
of QP is at least O(¢?), and from Wahba (1999), the training
time complexity of MMOC is O(ng®+n*) for each iteration
at least. While the training time of our method (LM-£NN) is
dominated by the APG algorithm. To achieve an e-solution,
the number of iterations needed by APG update is O(ﬁ)

The time complexity for each iteration is O(q® + knpq?).
Testing time We analyze the testing time for each testing
instance. Both the testing time of CCA and MMOC involve
solving QP on {0, 1}7 space. It is combinatorial in nature
and intractable, thus mean-field approximation is used to
obtain the approximated solution iteratively. The time com-
plexity for each iteration is O(g?), but it takes many times to
converge. The time complexity is O(q?) at least. The train-
ing and testing time complexity for the methods that are used
in this paper is presented in Table 1. Let 1) = max{n, p, ¢}.

Experiment

In this section, we evaluate the performance of our proposed
Large Margin kNN (LM-kNN) for multi-label prediction.
All the methods compared are implemented in MatLab. All
experiments are conducted on a workstation with a 3.4GHZ
Intel CPU and 32GB main memory running Linux platform.

Experimental Setup
Data Sets We conduct experiments on a variety of real-
world data sets from different domains? (Table 2).

e scene (Boutell et al. 2004): Collects images of outdoor
scenes.

e cal500 (Turnbull et al. 2008): Contains songs by differ-
ent artists. Each song is labeled by 174 tags representing
genres, instruments, emotions, and other related concepts.

e corelSk (Duygulu et al. 2002): Contains images from
Stock Photo CDs. In total, there are 374 labels.

e delicious (Tsoumakas, Katakis, and Vlahavas 2008): Con-
tains textual data of web pages along with 983 tags ex-
tracted from the del.icio.us social book marking site.

e Eur-Lex (Mencia and Fiirnkranz 2008): Collects docu-
ments on European Union law. There are several EuroVoc

"http://cvxr.com/cvx/
*http://mulan.sourceforge.net



Table 2: Data Sets

Data Set f Instances | f Features | f Labels
scene 2,407 294 6
cal500 502 68 174
corelSk 5,000 499 374
delicious 16,105 500 983
EUR-Lex (dc) 19,348 5,000 412
EUR-Lex (ed) 19,348 5,000 3,993

descriptors, directory codes and types of subject matter to
describe the labels. Here, we use two of them which have
more labels.

Baseline Methods We compare our LM-KNN with several
state-of-the-art multi-label prediction methods:

e BR (Tsoumakas, Katakis, and Vlahavas 2010).

e PLST (Tai and Lin 2012): Uses principal component anal-
ysis (PCA) for encoding, and rounding for decoding.

e CCA (Zhang and Schneider 2011): Uses canonical corre-
lation analysis to encode the label vectors, and mean-field
approximation is applied in the decoding step.

e MMOC (Zhang and Schneider 2012): Adapts a maximum
margin criterion to learn output coding for multi-labels.
Its decoding scheme is the same as CCA.

o kNN: We adapt the k nearest neighbor (kNN) algorithm
to solve multi-label classification problems. Euclidean
metric is used to measure the distances between instances.

e ML-kANN (Zhang and Zhou 2007): Based on kNN, the
maximum posteriori principle is used by this method to
determine the labels of the testing instance.

For BR, we use linear classification/regression package LI-
BLINEAR (Fan et al. 2008) with L2-regularized logistic re-
gression (primal) to train the classifier. As with the exper-
imental settings in Zhang and Schneider (2012), the num-
ber of output projections d is set to the number of original
labels ¢ (d = q) for PLST, CCA and MMOC and the de-
coding parameter is set as A = 1 for CCA and MMOC.
In our experiment, we find that the performance of kNN
or ML-KNN have no significant difference on most datasets
with varying k. Following the setting in (Zhang and Zhou
2007), we set k = 10 for kNN, ML-A£NN and our method.
n = 0.4 is set for the APG algorithm and C' = 10 is set
for MMOC and our method. We set the stopping condition
threshold as ¢ = 0.01 for EUR-Lex (ed) data set. Besides
PLST (Tai and Lin 2012), CCA (Zhang and Schneider 2011)
and MMOC (Zhang and Schneider 2012) have also been
shown to outperform the original compressed-sensing-based
method (Hsu et al. 2009), thus we make no comparison with
Hsu et al. (2009) in this paper.

Performance Measurements To fairly measure the per-
formance of our method and baseline methods, we consider
the following evaluation measurements (Mao, Tsang, and
Gao 2013):

e Micro-F1: computes true positives, true negatives, false
positives and false negatives over labels, and then calcu-
lates an overall F-1 score.
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e Example-F1: computes the F-1 score for all the labels of
each testing sample and takes the average over those sam-
ples.

Since Mao, Tsang, and Gao (2013) have shown that Macro-
F1 is sensitive to the rareness of labels and hamming loss is
not a proper measure for multi-label problems with many
labels, we do not consider those two measurements here.
We perform 10-fold cross-validation on each data set and
report the mean and standard error of each evaluation mea-
surement.

Prediction Performance

Tables 3 and 4 list the two measurement results for our
method and baseline approaches in respect of the different
data sets. Recall that CCA and MMOC are very computa-
tionally expensive, especially for solving the QP problem
on {0,1}7 space which is combinatorial in nature and in-
tractable during the decoding step, so they cannot be run on
most of the larger data sets. In our experiment, the decod-
ing procedure on corel5k data set already takes more than
two days for CCA. Because MMOC has to solve a box-
constrained QP for each training sample and use CVX to
tackle optimization problems during the training step, it runs



Table 3: The results of Micro-F1 on the various data sets (mean + standard deviation). The best ones are in bold.

Data Set BR PLST CCA MMOC kNN ML-kENN LM-kNN
scene 0.6911 £ 0.0259 | 0.5924 +0.0326 | 0.7281 £ 0.0286 | 0.7297 £ 0.0287 | 0.7221 £ 0.0193 | 0.7387 £ 0.0278 | 0.7300 £ 0.0301
cal500 0.3448 £ 0.0161 0.3032 £ 0.0095 | 0.3533 £ 0.0207 0.3593 £ 0.0127 | 0.3184 +0.0162 | 0.3542 &£ 0.0157
corel5k 0.0956 £ 0.0260 | 0.0801 4 0.0081 0.0321 £ 0.0075 | 0.0278 +0.0117 | 0.1670 £ 0.0137

delicious 0.2598 £ 0.0052 | 0.1423 4 0.0058 0.2154 £ 0.0047 | 0.1738 4= 0.0047 | 0.3104 £ 0.0058

EUR-Lex (dc) | 0.2673 4 0.0709 | 0.2304 + 0.0269 0.6540 £ 0.0088 | 0.6252 4+ 0.0071 | 0.7207 +£ 0.0063
EUR-Lex (ed) | 0.0374 4 0.0015 | 0.1059 & 0.0115 0.4011 £ 0.0061 0.3489 £ 0.0055 | 0.4344 £ 0.0051

Table 4: The results of Example-F1 on the various data s

ets (mean =+ standard deviation). The best ones are in bold.

Data Set BR PLST CCA MMOC kNN ML-kNN LM-kNN
scene 0.6169 £ 0.0329 | 0.4588 4 0.0346 | 0.7320 &+ 0.0287 | 0.7338 £ 0.0294 | 0.6815 +0.0174 | 0.6874 £ 0.0311 | 0.7101 £ 0.0306
cal500 0.3446 £ 0.0150 | 0.3062 4+ 0.0108 | 0.3516 + 0.0197 0.3561 + 0.0131 | 0.3216 +0.0180 | 0.3511 &+ 0.0161
corel5k 0.0781 £ 0.0166 | 0.0587 £ 0.0054 0.0223 £ 0.0056 | 0.0178 = 0.0069 | 0.1295 +£ 0.0092

delicious 0.2174 £ 0.0047 | 0.1131 £ 0.0039 0.1878 £ 0.0046 | 0.1518 = 0.0044 | 0.2553 £ 0.0043

EUR-Lex (dc) | 0.2556 4 0.0669 | 0.1530 = 0.0201 0.5741 £0.0106 | 0.5496 4 0.0084 | 0.6812 -+ 0.0072

EUR-Lex (ed)

0.0370 £ 0.0015

0.0725 £ 0.0083

0.3409 £ 0.0057

0.3005 £ 0.0049

0.3818 £ 0.0045

out of memory even for the cal500 data set with 68 features
and 174 labels. From the results, we can see that:

e CCA or MMOC’s performance is comparable to the best
results on scene and cal500. This means that CCA and
MMOC are most successful in small data sets with few
labels, but cannot deal with larger data sets with many
labels.

e In our experiment, PLST generally underperforms. Thus,
PLST with simple linear projection in encoding and de-
coding procedure is not effective.

e BR is much inferior to kNN, ML-ANN and LM-£ENN on
much larger data sets EUR-Lex (dc) and EUR-Lex (ed).
BR does not consider the distributions and relationships
between labels, so it achieves much lower accuracy on
many labels data sets.

e Zhang and Zhou (2007) do not compare ML-kNN with
kNN. Our empirical results show that kNN usually out-
performs ML-ANN. ML-ENN estimates the prior and pos-
terior probabilities from £ nearest neighbors in the train-
ing set based on frequency counting. However, k is usu-
ally small, which leads to large estimation error.

e kNN and LM-kANN are most successful on all data sets.
However, LM-KNN outperforms kNN because kNN is
sensitive to noisy data.

Training Time and Testing Time

In this section, we compare the time performance of the var-
ious methods used in the experiment. Figures 1 and 2 re-
port the once training and testing times of 10-fold cross-
validation for our method and baseline approaches in terms
of different data sets respectively. The results illustrate that
PLST is fast in terms of training and testing time, which is
consistent with the empirical results in Tai and Lin (2012),
however, it is not effective in general. BR is fast in terms of
testing time, however, it has slow training time and under-
performs on the much larger data sets EUR-Lex (dc) and
EUR-Lex (ed). Our method LM-kNN is almost 10 times
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faster than CCA and MMOC in terms of both the training
and testing times even on smaller data sets, and is compara-
ble to kNN and ML-£KNN in terms of testing time.

Conclusion

To achieve the better performance than BR, Zhang and
Schneider (2012) proposed MMOC to incorporate the fea-
ture or label correlations. However, MMOC has to deal with
the optimization problem with an exponentially large num-
ber of constraints. Even if the overgenerating technique with
the cutting plane method is used to solve this problem, it is
still computationally very expensive. Inspired by kNN and
MMOC, we propose the large margin formulation with &
nearest neighbors constraints to solve the projection matrix
which reduces the number of constraints from O(n2?) to
O(nk) and is more robust than kNN. Our problem is then
transformed to a metric learning problem. To handle large
scale applications, the accelerated proximal gradient (APG)
method is adapted to solve the reduced semidefinite pro-
gramming problem. Lastly, instead of performing expen-
sive combinatorial optimization or approximate inference
for the decoding procedure, we simply adopt the kNN strat-
egy, which selects k nearest neighbors from the training set
for each testing instance in the projection space and makes
rapid prediction based on the labels of those k nearest neigh-
bors. Overall, extensive experiments on a number of real-
world multi-label data sets demonstrate that our method out-
performs state-of-the-art approaches for accuracy. For scal-
ability, our method is almost 10 times faster than CCA and
MMOC in terms of both the training and testing times, and
is comparable to kNN and ML-£NN in terms of testing time.
For faster multi-label prediction, we will study the incorpo-
ration of the cover tree technique (Beygelzimer, Kakade, and
Langford 2006) into our framework to speed up the batch-
model kNN search.
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