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Abstract

Supervised dimensionality reduction has shown great
advantages in finding predictive subspaces. Previous
methods rarely consider the popular maximum mar-
gin principle and are prone to overfitting to usually
small training data, especially for those under the max-
imum likelihood framework. In this paper, we present
a posterior-regularized Bayesian approach to combine
Principal Component Analysis (PCA) with the max-
margin learning. Based on the data augmentation idea
for max-margin learning and the probabilistic interpre-
tation of PCA, our method can automatically infer the
weight and penalty parameter of max-margin learning
machine, while finding the most appropriate PCA sub-
space simultaneously under the Bayesian framework.
We develop a fast mean-field variational inference algo-
rithm to approximate the posterior. Experimental results
on various classification tasks show that our method
outperforms a number of competitors.

Introduction
Principal Component Analysis (PCA) has been widely used
for dimensionality reduction and data analysis. It aims to
extract dominant patterns underlying the data, and to repre-
sent it as a set of new orthogonal variables called principal
components. Due to its restrictive linear algebra based un-
supervised formulation, there have been many efforts to ex-
tend this fundamental technique to more general scenarios.
Among these work, the probabilistic PCA (PPCA) (Tipping
and Bishop 1999) is a prominent example, which allows us
to integrate PCA as a bottom layer module into more pow-
erful hierarchical Bayesian frameworks.

Meanwhile, extending PCA with supervised information
is another promising direction since this can help to learn
more discriminative features for classification and regres-
sion analysis. The supervised PPCA model (Yu et al. 2006)
extends PPCA by assuming that the Gaussian features and
labels are generated independently from a latent low dimen-
sional space through linear transformations. A more general
exponential family supervised PCA model proposed in (Guo
2009) assumes each data and label pair is generated from a
common latent variable via conditional exponential family
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models, and optimizes the conditional likelihood of obser-
vation pairs via a convex formulation.

Apart from supervised PCA, there also exist many other
supervised dimensionality reduction (SDR) methods. The
support vector decomposition machine (SVDM) (Pereira
and Gordon 2006) uses Singular Value Decomposition
(SVD) to find the low dimensional space, while training
linear classification models with hinge loss in that space.
Later, a more efficient approach based on generalized lin-
ear models was proposed in (Rish et al. 2008), which uses
a closed-form EM-style procedure to optimize the weighted
linear combination of the conditional likelihoods on features
and labels. In (Chen et al. 2012), a large-margin harmonium
model (MMH) based on latent Markov network was pro-
posed for multi-view data analysis. Recently, Zhu et al. pro-
posed a infinite latent SVM (iLSVM) (Zhu, Chen, and Xing
2014) based on the Indian buffet process (IBP) (Ghahramani
and Griffiths 2005), which can infer the most appropriate
number of features. However, MMH and iLSVM have to
solve many SVM subproblems during their inference proce-
dure, thus tend to be inefficient for large data.

In this paper, we propose a data augmentation based
Bayesian posterior regularization approach to combine max-
margin learning with PPCA. Unlike MMH and iLSVM,
which are both under the maximum entropy discrimination
(Jaakkola, Meila, and Jebara 1999) framework, and can-
not infer the penalty parameter of max-margin models in
a Bayesian style, our method is based on the data aug-
mentation idea for max-margin learning (Polson and Scott
2011), which allows us to automatically infer the weight
and penalty parameter while finding the most appropriate
PCA subspace simultaneously under the Bayesian frame-
work. Our approach also differs from SVDM, which im-
poses strict constraints to keep the L2-norm of its model
weights always smaller than 1. Finally, compared with max-
imum likelihood based methods, our Bayesian model has
many inherent advantages, e.g., suppressing unnecessary
principal components with the automatic relevance determi-
nation (Neal 1995; Tipping 2001) prior, and avoiding over-
fitting to small training set by model averaging, etc.

We apply our general framework to the max-margin clas-
sification problem in latent PCA space. To allow our model
to scale to large data sets, we develop a fast mean-field varia-
tional inference algorithm to approximate the posterior. Ex-
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periments on synthetic and real classification tasks show that
our method outperforms a number of competitors.

Related Work SDR has been active for a long time (Fuku-
mizu, Bach, and Jordan 2004; Zhang, Zhou, and Chen
2007). Recently, Xu et al. studied SDR in a weakly super-
vised setting (Xu et al. 2014). Their large margin framework
simultaneously encourages angle consistency between pref-
erence pairs and maximizes the distance between examples
in preference pairs. In (Raeder et al. 2013), Raeder et al. pro-
posed a scalable SDR model with hierarchical clustering. To
collapse related features into a single dimension, they clus-
ter model parameters from historical models and implicitly
incorporate feature and label data without operating directly
in a massive space. In (Mcauliffe and Blei 2008), focusing
on text data, a supervised topic model is proposed, which
can discover more predictive latent topical representations.
Later, Zhu et al. extended it with Bayesian posterior regu-
larization for max-margin learning (Zhu, Ahmed, and Xing
2012; Zhu et al. 2014). But their models are restricted to
discrete data while our PCA based model are more general.

Bayesian Maximum Margin PCA
In this section, we first review the probabilistic PCA,
and then present the proposed Bayesian max-margin PCA
framework. We exemplify it by giving a classification model
and a fast variational inference procedure to approximate the
posterior. We assume we have a data matrix X ∈ Rd×N con-
sisting ofN observations {xn}Nn=1 in d-dimensional feature
space. For supervised learning, we also have a 1 × N re-
sponse vector y.

Probabilistic PCA
The probabilistic PCA (PPCA) (Tipping and Bishop 1999)
is a latent variable model, which defines a generative process
for each observation x as

x|z ∼ N (x|Wz + t, σ2Id), z ∼ N (z|0, Ik),

where N (·) is the multivariate normal distribution, W ∈
Rd×k is the factor loading matrix, z ∈ Rk×1 is a k-
dimensional latent variable, and t is a d-dimensional vector
which allows non-zero means for the data. Then it is easy to
verify that the marginal distribution of observation x also
is a Gaussian, with mean vector t and covariance matrix
WWT + σ2Id. As shown in (Tipping and Bishop 1999),
the maximum likelihood solution for t just is the mean of
observations, and the solution for W has strong connections
to the principal component vectors in conventional PCA. In
fact, when σ2 → 0 this probabilistic model recovers PCA.

By introducing a prior distribution over the parameters,
a Bayesian PCA model was proposed in (Bishop 1999a),
where the effective dimension of latent principal component
space can be determined as part of Bayesian inference.

The framework of BM2PCA
From the description above, we can see that the low-
dimensional latent representations of data are learned only
based on the data covariance. By contrast, here we aim to

improve unsupervised PCA learning by exploiting the re-
sponse values associated with data observations.

First, as in Bayesian PCA (Bishop 1999a), we introduce
a prior distribution over the parameters of PPCA and define
the following generative process for the n-th observation:

t ∼ N (t|0, δ−1Id)

r ∼
∏k
i=1 Γ(ri|ar, br)

W ∼
∏k
i=1N (wi|0, r−1

i Id)

τ ∼ Γ(τ |aτ , bτ )

zn ∼ N (zn|0, Ik)

xn ∼ N (xn|Wzn + t, τ−1Id)

where Γ(·) is the Gamma distribution1, and δ, ar, br, aτ ,
bτ are the hyper-parameters. Note that the hierarchical prior
on W and r is motivated by automatic relevance determi-
nation (ARD) (Neal 1995; Tipping 2001), which can con-
trol the effective number of retained principal components.
Let Ω = (t,W, r, τ,Z) denote all the parameters and la-
tent variables, and p0(Ω) = p0(t)p0(W, r)p0(τ)p0(Z) be
the prior on them. Then we can see that the Bayesian pos-
terior distribution p(Ω|X) = p0(Ω)p(X|Ω)/p(X) can be
equivalently obtained by solving the following information
theoretical optimization problem:

min
q(Ω)∈P

KL(q(Ω)‖p(Ω|X)) (1)

where KL(q‖p) is the Kullback-Leibler (KL) divergence,
and P is the space of probability distributions. Expanding
(1) and ignoring the term unrelated to q(Ω), we further get

min
q(Ω)∈P

KL(q(Ω)‖p0(Ω))− Eq(Ω)[logp(X|Ω)].

Now consider exploiting the response values y associated
with data observations X. In general, we prefer latent rep-
resentations Z that on one hand explain the observed data
X well and on the other hand allow us to learn a predictive
model, which predicts y and the responses of new obser-
vations as accurate as possible. As well known, maximum
margin learning machines such as SVM have arguably good
generalization performance. However, their quadratic opti-
mization based formulations make it not trivial to combine
them with Bayesian modeling. In this paper, we adopt the
posterior regularization (Jaakkola, Meila, and Jebara 1999;
Zhu, Ahmed, and Xing 2012; Zhu et al. 2014; Zhu, Chen,
and Xing 2014) strategy to incorporate the max-margin prin-
ciple into the above unsupervised Bayesian PCA model. As
a direct way to impose constraints and incorporate knowl-
edge in Bayesian models, posterior regularization is more
natural and general than specially designed priors. Now let
Θ be the parameter of a max-margin prediction model M,
and q(Ω,Θ) denote the joint post-data distribution2 of Ω and
Θ. We define the following expected margin loss ofM:

R(q(Ω,Θ)) = Eq(Ω,Θ)l(Z,Θ)

1Throughout this paper, we use its shape-rate parameterization,
i.e., a· and b· are the shape and rate parameter respectively.

2We use post-data to distinguish it from posterior.
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where l(Z,Θ) is the margin loss of M on training data
(X,y), then our BM2PCA framework can be formulated as

min
q(Ω,Θ)∈P

KL(q(Ω,Θ)‖p0(Ω,Θ))− Eq(Ω)[logp(X|Ω)]

+2C · R(q(Ω,Θ)) (2)

where p0(Ω,Θ) = p0(Ω)p0(Θ) is the prior, C is the
regularization parameter, the constant 2 is just for conve-
nience, and the expected margin lossR(q(Ω,Θ)) has differ-
ent forms for different learning tasks.

So far, we have developed our max-margin PCA frame-
work with Bayesian posterior regularization. By defining
l(Z,Θ) with hinge loss and ε-insensitive loss respectively,
this general framework can handle both classification and
regression problems. In the following, we consider binary
classification problem to exemplify our framework.

Model for classification
Suppose we have a 1 × N label vector y, with its element
yn ∈ {+1,−1}, n = 1, ..., N . Our goal is to find the post-
data distribution q(Ω,Θ) under the framework in (2). First
we have to define the margin loss for classification. Specifi-
cally, as in SVM we want the two classes of data to be sep-
arated from each other by a large margin, which gives us
a max-margin classification problem in the latent principal
components space. Henceforth we define z̃ = [zT , 1]T as
the augmented latent representation of observation x, and let
f(x; z̃,η) = ηT z̃ be a discriminant function parameterized
by η. We assume the prior of η takes the following form

p(η|ν) = N (η|0, ν−1I(k+1))

ν ∼ p0(ν) = Γ(ν|aν , bν)

where aν and bν are hyper-parameters and ν plays a similar
role as the penalty parameter in SVM. Thus for classification
we have Θ = (η, ν) and p0(Θ) = p0(η, ν) = p(η|ν)p0(ν).

Now for fixed values of Z and η, we can compute the
margin loss on training data (X,y) by

l(Z,Θ) =
N∑
n=1

max(0, 1− ynf(xn)).

Since Z and η actually are random variables, we have to
average the loss over their joint distribution, i.e., we have
the following expected margin loss3 for classification:

Rc(q(Ω,Θ)) =
N∑
n=1

Eq(Ω,Θ) max(0, 1− ynηT z̃n).

Directly solving (2) with Rc is difficult and inefficient.
Here we regard

ϕ(yn|z̃n,η) = exp{−2C ·max(0, 1− ynηT z̃n)}
as the unnormalized pseudo-likelihood of the label variable
for the n-th data, then our model can be rewritten as

min
q(Ω,Θ)∈P

KL(q(Ω,Θ)‖p0(Ω,Θ))− Eq(Ω)[logp(X|Ω)]

−Eq(Ω,Θ)[log(ϕ(y|Z,η))] (3)

3Expected margin loss (Zhu et al. 2014) is more convenient
and upper-bounds the margin loss of the expected prediction model
(Jaakkola, Meila, and Jebara 1999) by Jensen’s inequality.

where ϕ(y|Z,η) =
∏N
n=1 ϕ(yn|z̃n,η). Solving problem

(3), we can get the posterior distribution

q(Ω,Θ) =
p0(Ω,Θ)p(X|Ω)ϕ(y|Z,η)

φ(X,y)
,

where φ(X,y) is the normalization constant, which is in-
tractable to compute analytically due to the max function in
ϕ. In the following, we develop an efficient data augmenta-
tion based variational algorithm to approximate q(Ω,Θ).

Variational approximate inference
Since directly solving for the posterior is intractable, we
appeal to the variational approximate Bayesian inference
method (Beal 2003; Bishop 2006) which is generally much
more efficient than the Markov Chain Monte Calo (MCMC)
based sampling methods, and thus allows us to scale to large
data sets.

First, to deal with the max function in ϕ(·), we apply the
data augmentation idea (Polson and Scott 2011; Tanner and
Wong 1987) and transform the pseudo-likelihood function
into the integration of a function with augmented variable:

ϕ(yn|z̃n,η) =

∫ ∞
0

exp{ −1
2λn

[λn + C(1− ynηT z̃n)]2}
√

2πλn
dλn.

Let

ϕ(y,λ|Z,η) =
N∏
n=1

exp{ −1
2λn

[λn + C(1− ynηT z̃n)]2}
√

2πλn
,

then we can get the augmented posterior distribution4

q(Ω,Θ,λ) ∝ p0(Ω,Θ)p(X|Ω)ϕ(y,λ|Z,η). (4)

In the following we will approximate this augmented poste-
rior with the mean-field variational method. Specifically, we
assume there are a family of fully factorized but free-form
variational distributions

V (Ω,Θ,λ) = V (t)V (W)V (r)V (τ)V (Z)V (η)V (λ)V (ν)

and the goal is to get the optimal one which minimizes
the KL divergence KL(V (Ω,Θ,λ)‖q(Ω,Θ,λ)) between
the approximating distribution and the target posterior. To
achieve this, our strategy is to first initialize the moments
of all factor distributions of V (Ω,Θ,λ) appropriately and
then iteratively optimize each of the factors in turn using the
current estimates for all of the other factors. Convergence
is guaranteed because the KL divergence is convex with re-
spect to each of the factors. Now let us first expand the right
side of (4) and get the joint distribution of data and parame-
ters as follows
p(Ω,Θ,λ,X,y) = p0(t)p(W|r)p0(r)p0(τ)p0(Z)p(η|ν)

· p0(ν)p(X|t,W, τ,Z)ϕ(y,λ|Z,η).

Then it can be shown that when keeping all other factors
fixed the optimal distribution V ∗(Z) satisfies

V ∗(Z) ∝ exp{E−Z[log p(Ω,Θ,λ,X,y)]} (5)
4Its conditionals have convenient forms and its marginalization

over λ recovers q(Ω,Θ).
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where E−Z denotes the expectation with respect to
V (Ω,Θ,λ) over all variables except for Z. Plugging all in-
volved quantities into (5), we can further get

V ∗(Z) =
N∏
n=1

N (zn|µ(n)
z ,Σ(n)

z )

Σ(n)
z = {C2Eη[η̃η̃T ]Eλ[λ−1

n ] + Ik

+ Eτ [τ ]EW[WTW]}−1

µ(n)
z = Σ(n)

z {Eτ [τ ]EW[WT ](xn − Et[t])

+ Eλ[λ−1
n ]{C(Eλ[λn] + C)ynEη[η̃]

− C2Eη[η(k+1)η̃]}}

where η̃ denotes the first k dimensions of η, i.e., η =
[η̃, η(k+1)]. Similarly, we can get the updating equations for
all other factors. Since they are tedious and easy to derive,
here we only provide the equations for λ, ν, and η:

V ∗(λ) =

N∏
n=1

GIG(λn|
1

2
, 1, χ(n))

χ(n) = C2(1− ynEη[ηT ]EZ[z̃n])2

V ∗(ν) = Γ(ν|ãν , b̃ν)

ãν = aν + L/2,

b̃ν = bν + Eη[‖η‖2]/2

V ∗(η) = N (η|µη,Ση)

Ση = {C2
N∑
n=1

EZ[z̃nz̃
T
n ]Eλ[λ−1

n ]

+ Eν [ν]I(k+1)}−1

µη = Ση

N∑
n=1

C(1 + CEλ[λ−1
n ])ynEZ[z̃n]

where GIG(·) is the generalized inverse Gaussian distribu-
tion. The equations for t, W, r and τ are similar as those in
(Bishop 1999b), thus are omitted here.

Prediction on unseen data
Suppose we have a set of test data that is unseen during the
model training phase. The goal is to predict the labels of
these data as accurate as possible. To apply our classification
model learned above, we have to first project the new data
to the same low-dimensional feature space as that for train-
ing data. Given the optimal variational distributions V ∗(t),
V ∗(W), and V ∗(τ) learned in the training phase, we use a
single step variational method to approximate the posterior
latent representation p(znew|xnew) for test data xnew:

V ∗(znew) = N (znew|µnewz ,Σnewz )

Σnewz = {Ik + Eτ [τ ]EW[WTW]}−1

µnewz = Σnewz Eτ [τ ]EW[WT ](xnew − Et[t])

where the expectations are taken over the optimal variational
distributions of t, W, and τ .

Then with the optimal variational approximation V ∗(η)
for the posterior distribution of classification parameter η,
we can predict the class label of xnew by

µ̃newz = [(µnewz )T , 1]T

ynew = sgn(Eη,znew [ηT z̃new])

= sgn(µTη µ̃
new
z ).

Computational complexity
For each iteration of the variational inference on training
data, we need O(Ndk4) computation, most of which is spent
on the calculation of Σ

(n)
z , n = 1, ..., N where the inver-

sion of each covariance matrix consumes O(k3) computa-
tion. However, noting that in typical uses, k usually is very
small, e.g., 10 or 20, our model can be approximatively seen
as scaling linearly in the training sizeN and original dimen-
sionality d. For testing on unseen data with Ntest test sam-
ples, we only need to invert the covariance matrix Σz one
time, so the complexity is O(Ntest + k3)dk.

Experiments
We evaluate the proposed BM2PCA model on various classi-
fication tasks. Note that for real tasks, the classification prob-
lems typically have multiple classes, so though our model
is designed for binary classification, we adapted it with the
one-VS-rest strategy like that for SVM.

Parameter setting
In all of our experiments, the hyper-parameters of BM2PCA
are set as: ar = br = 1e-3, aτ = 1e-2, aν = 1e-1,
bτ = bν = δ = 1e-5. For the regularization parameter C,
we empirically found that BM2PCA works well on most of
our data sets when 10 ≤ C ≤ 40. We decide to select C
from the integer set {10, 20, 30, 40} for each data set by per-
forming L-fold cross-validation on training data, where L is
the smaller one of 5 and the number of training samples per
class.

Illustration on synthetic data
We generate two Gaussian clusters of 50 data points in a
2-dimensional space, with each corresponding to one class.
Then we add three other dimensions to each point by sam-
pling from a given multivariate Gaussian. For PCA, we use
all the 100 points to learn a projection in 2-dimension space,
while a random and equal split into training/testing is con-
ducted for BM2PCA. As shown in Figure 1, the points in
red and black are training samples, and the points in blue
and green are testing ones. We use crosses and squares to in-
dicate positive and negative samples respectively. It is easy
to see that BM2PCA found a good subspace for both training
and testing while PCA worked not so well.
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Figure 1: Projection results on synthetic data: (a) BM2PCA; (b)
PCA. Crosses and squares are positive and negative samples re-
spectively. Points in red and black are training samples while points
in blue and green are testing ones.

Real Data sets
We test BM2PCA on video retrieval, face recognition, gene
classification and text categorization problems. Some statis-
tics of these data sets are shown in Table 1. For the
TRECVID2003 data, we have 1078 manually labeled video
shots each of which is represented by a 1894-dimension
binary vector of text features and a 165-dimension vector
of HSV color histogram. The Yale data contains 165 gray
scale face images in GIF format of 15 individuals. There
are 11 images per individual, one per different facial expres-
sion or configuration such as center-light, left-light, happy
or surprised. The ORL data contains 10 different face im-
ages for each of 40 distinct subjects. For some subjects,
the images were taken at different times with varying light-
ing and facial details. The YaleB (the extended Yale Face
Database B) data includes 38 individuals and about 64 near
frontal face images under different illuminations per individ-
ual. All faces are manually aligned, cropped and resized to
32×32 or 64×64 pixels. For the 11 Tumors and 14 Tumors
gene expression data sets, we have 11 various human tumor
types, and 14 various human tumor types with 12 normal tis-
sue types respectively. The characteristics of these data are
their high dimensionality and small samples. Finally, the 20
Newsgroups data contains 20,000 news articles posted in 20
newsgroups. After removing the words that occur less than
5 times, we have 19,928 documents with 25,284 words.

Table 1: Statistics of the multi-class data sets.
Category #Data #Dim #Class

TRECVID2003 Video 1078 2059 5
Yale Face 165 4096 15
ORL Face 400 1024 40
YaleB Face 2414 1024 38

11 Tumors Gene 174 12533 11
14 Tumors Gene 308 15009 26

20 Newsgroups Text 19928 25284 20

Evaluation and results
Competitors (1) Six state-of-the-art supervised dimensio-
nality reduction methods: supervised probabilistic PCA
(SPPCA) (Yu et al. 2006), supervised exponential family
PCA (SEPCA) (Guo 2009), supervised dimensionality re-
duction with generalized linear models (SDR-GLM) (Rish

et al. 2008), Maximum margin supervised topic models
(MedLDA) (Zhu, Ahmed, and Xing 2012), large-margin
Harmonium (MMH) (Chen et al. 2012), and infinite latent
SVM (iLSVM) (Zhu, Chen, and Xing 2014); and (2) three
baseline methods: direct SVM learning in original feature
space (FULL), SVM learning in principal component space
(PCA), and SVM learning in the space given by linear dis-
criminant analysis (LDA). For multiclass SVM (Crammer
and Singer 2002), we use a fast implementation from the
LIBLINEAR5 package (Fan et al. 2008).

Evaluation To compare with SPPCA, we conduct experi-
ments on the ORL, 14 Tumors, and 20 Newsgroups data sets
that are used in its original paper (Yu et al. 2006). Our data
organization is the same as theirs, i.e., each sample is nor-
malized to have unit length, and TF-IDF features are used
for 20 Newsgroups data. The number of training samples
per class is 2 for ORL and 14 Tumors, and 5 for 20 News-
groups. For all projection methods, the data are projected
into 10-dimensional space. The results of BM2PCA, FULL
and PCA are averaged over 20 independent runs and shown
in Table 2. Here we also provide the result of MedLDA, a
latest supervised topic model for text with maximum mar-
gin principle, but note that it can only address word count
data. From the results we can see BM2PCA has obvious ad-
vantage over all competitors on ORL and 14 Tumors data,
and only performs a little worse than the decoupled PCA
and SVM learning on 20 Newsgroups. However, it should
be noted that PCA used both labeled and unlabeled data to
learn the projection, while BM2PCA and other SDR meth-
ods only used labeled ones. Considering 20 Newsgroups is a
very large data set and thus the few training samples cannot
reflect it well, the performance of BM2PCA is non-trivial.

Table 2: Comparison on multi-class data sets with unit length nor-
malization. Listed results are test accuracies (%) averaged over 20
independent runs. Bold face indicates highest accuracy.

ORL 14 Tumors 20 News Average
FULL 41.7 ± 8.7 53.4 ± 2.5 45.3 ± 1.4 46.8
PCA 54.4 ± 2.9 34.5 ± 3.4 38.8 ± 2.5 42.5
LDA 19.1 ± 2.5 34.7 ± 4.8 31.1 ± 2.6 28.3

SPPCA 61.7 ± 4.1 36.8 ± 3.6 10.7 ± 2.4 36.4
MedLDA - - 14.2 ± 2.8 14.2
BM2PCA 73.7 ± 3.8 54.3 ± 3.8 35.3 ± 3.0 54.4

Different from SPPCA, the convex SEPCA model pro-
posed in (Guo 2009) assumes each feature of the data is
centered to have zero mean. Here we also give comparisons
with it on the Yale, YaleB and 11 Tumors data, where the
number of training samples per class is 3 for Yale and 11
Tumors, and 5 for YaleB. Again, for all projection meth-
ods, the data are projected into 10-dimensional space. The
averaged results are shown in Table 3, from which we can
see BM2PCA almost always outperforms other SDR com-
petitors and the decoupled PCA and SVM learning method.
SEPCA achieved excellent performance on the 11 Tumors

5Available at: http://www.csie.ntu.edu.tw/%7Ecjlin/liblinear/.
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data, which may due to its convex formulation and the global
optimum, however, its performance on the YaleB data is not
so good because of its maximum likelihood principle. By
contrast, BM2PCA always is among the best, yielding high-
est overall accuracy on three data sets.

Table 3: Comparison on centered data sets with test accuracies
(%) averaged over 20 independent runs. The results for SEPCA,
SDR-GLM and SPPCA are cited from (Guo 2009).

Yale YaleB 11 Tumors Average
FULL 74.2 ± 3.1 62.3 ± 6.8 83.8 ± 3.7 73.4
PCA 55.8 ± 4.2 12.9 ± 5.3 67.6 ± 6.3 45.4
LDA 37.1 ± 7.1 15.7 ± 1.8 28.6 ± 5.2 27.1

SPPCA 51.6 9.8 63.0 41.5
SDR-GLM 58.8 19.0 63.5 47.1

SEPCA 64.4 20.5 88.9 57.9
BM2PCA 65.7 ± 3.5 43.8 ± 4.8 77.1 ± 4.9 62.2

We also compare BM2PCA with the infinite latent SVM
(iLSVM) (Zhu, Chen, and Xing 2014), large-margin Harmo-
nium (MMH) (Chen et al. 2012) and a decoupled approach
of EFH+SVM on the TRECVID2003 data set. EFH+SVM
uses the exponential family Harmonium (EFH) (Welling,
Rosen-Zvi, and Hinton 2004) to discover latent features and
then learns a multiclass SVM. Here we use the same train-
ing/testing split as in (Chen et al. 2012), and like in (Zhu,
Chen, and Xing 2014) we only consider the real-valued HSV
features. We set the number of components to k = 10 for
BM2PCA, and the results in terms of accuracy and F1 score
are shown in Table 4, from which we can see BM2PCA
achieves the best performance.

Table 4: Results (%) on TRECVID2003 data. BM2PCA, MMH
and EFH have zero std due to their deterministic initialization.

EFH+SVM MMH iLSVM BM2PCA
Accuracy 56.5 ± 0.0 56.6 ± 0.0 56.3 ± 1.0 63.8 ± 0.0
F1 score 42.7 ± 0.0 43.0 ± 0.0 44.8 ± 1.1 47.6 ± 0.0

Sensitivity analysis
We study the sensitivity of BM2PCA with respect to sam-
pling ratio, component number k, and the parameter C.

Sampling ratio First, we show the performance improve-
ment of BM2PCA with increasing number of training sam-
ples. Here we take the Yale data as example and fix C to
be 10. As the averaged results over 20 runs show in Fig-
ure 2, BM2PCA (with different number of principal compo-
nents) performs better when more training samples are avail-
able, which is the desired property for most applications. For
comparison, we also provide the results of SVM learning
in original feature space, which are consistently worse than
those of BM2PCA with k = 30.

Number of components Also from Figure 2, we can ob-
serve that the performance of BM2PCA increase steadily
when more principal components are learned (similar trends
are shown in Figure 3 with different parameter C). The re-
sults of decoupled PCA and SVM learning are given in Fig-

Figure 2: Results on Yale data set with different sampling
ratio and number of components k (dimensions).

ure 2 as well. We can find that BM2PCA outperforms the
decoupled method significantly, no matter how many com-
ponents and training samples are used.

Regularization parameter C Finally, we show how the
regularization parameter C influences the prediction perfor-
mance of BM2PCA. We use 2 and 5 training samples per
class for the ORL and YaleB data respectively. The aver-
aged results over 20 runs of BM2PCA are shown in Figure 3,
where we considered different number of components, i.e.,
k = 10 and k = 20. We can see that while different data sets
prefer different C, different k seem have similar interests of
C for a given data set.
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Figure 3: Effect of regularization parameter C of BM2PCA
with different k: (a) ORL data; (b) YaleB data.

Conclusions and future work
We presented a Bayesian approach to combine PCA with
max-margin learning. Under the Bayesian framework, our
method can infer the weight and penalty parameter of max-
margin machine while finding the most appropriate principal
components simultaneously. Experiments on various classi-
fication tasks show the superiority of our method.

Our framework can be extended in several aspects. First, it
is natural to conduct semi-supervised learning by extracting
principal components on all observed samples while train-
ing classification model only on those labeled ones. Second,
we can also define the expected margin lossR(q(Ω,Θ)) for
regression problem similar as in ε-insensitive Support Vec-
tor Regression, and our data augmentation based variational
inference can be easily adapted to this case. Third, it is also
interesting to extend BM2PCA to deal with multi-view data
(Chen et al. 2012) and multi-task data (Evgeniou and Pontil
2007). These will be the promising future work.
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