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Abstract

Covariate shift correction allows one to perform supervised
learning even when the distribution of the covariates on the
training set does not match that on the test set. This is
achieved by re-weighting observations. Such a strategy re-
moves bias, potentially at the expense of greatly increased
variance. We propose a simple strategy for removing bias
while retaining small variance. It uses a biased, low variance
estimate as a prior and corrects the final estimate relative to
the prior. We prove that this yields an efficient estimator and
demonstrate good experimental performance.

Introduction

Covariate shift is a common problem when dealing with real
data. Quite often the experimental conditions under which a
training set is generated are subtly different from the situa-
tion in which the system is deployed. For instance, in can-
cer diagnosis the training set may have an overabundance of
diseased patients, often of a specific subtype endemic in the
location where the data was gathered. Likewise, due to tem-
poral changes in user interest the distribution of covariates in
advertising systems is nonstationary. This requires increas-
ing the weight of data related to, e.g., ‘Gangnam style’, when
processing historic data logs.

A common approach to addressing covariate shift is to
reweight data such that the reweighted distribution matches
the target distribution. Briefly, suppose we observe X :=
{x1, . . . , xm} drawn iid from q(x), typically with associated
labels Y := {y1, . . . , ym} drawn from p(y|x). This consti-
tutes the ‘training set’. However, we need to find a minimizer
f∗p of risk Rp— defined in Equation (1) — with regard to
p(y|x)p(x), for which we only have iid draws of the covari-
ates X ′ := {x′1, . . . x′m′}. Note that simply minimizing the
empirical risk on the training data leads to a biased estimate
(since training set corresponds to samples from q(x)p(y|x)).
If p and q are known, this problem can be addressed via im-
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portance sampling in the following manner:

Rp[f ] = Ex∼p(x)Ey|x(`(y, f(x)))

=

∫
p(x)

q(x)
q(x)Ey|x`(y, f(x))dx

= Ex∼q(x)Ey|x [β(x)`(y, f(x))] , (1)

where β(x) := p(x)
q(x) and ` is a loss function. Correspond-

ingly, empirical averages with respect to X and X ′ can
be reweighted, see, e.g., (Quiñonero-Candela et al. 2008;
Cortes et al. 2008) and the references therein for further de-
tails. While estimator based on Equation (1) is unbiased, it
tends to increase the variance of the empirical averages con-
siderably by weighting the observations by β.

This issue is particularly exacerbated when the weights
are large. As a rule of thumb the effective sample size of
a reweighted dataset is meff := ‖β(X)‖21 / ‖β(X)‖22 where
β(X) is the vector of weights β(x1), . . . , β(xm). This quan-
tity naturally arises, e.g., for a weighted average of Gaussian
random variables, while deriving Chernoff bounds using the
weights β(X) (Gretton et al. 2008), or in the particle filter-
ing context (Doucet, de Freitas, and Gordon 2001). To gain
better intuition for meff , consider the case where p = q. In
this case, we have high effective sample size (meff = m).
Whereas in the undesirable case of a single observation hav-
ing very high weight, meff ≈ 1. Hence, meff is a good in-
dicator of the effect of β(x) on variance of the weighted
empirical averages.

Thus, while one might obtain an unbiased estimator via
Equation (1), it becomes nearly useless when the effective
sample size is small relative to the original sample size.
This situation is frequently observed in practice insofar as
we encounter cases where simple covariate shift correction
not only fails to improve generalization performance on the
test set but, in fact, leads to estimates that perform worse
than simply minimizing the empirical risk on the training
data (i.e., unweighted estimation). Moreover, in many cases
the solutions of the biased and the unbiased risk estimates
are closer than what the distributions p and q would suggest.
Figure 1 shows an example of such a scenario.

The situation described above is often encountered in
practice — covariate shift correction fails to improve mat-
ters due to high variance while the unweighted solution per-
forms reasonably well. This raises the question of how we
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Figure 1: Assume that the dependence y|x is linear in x, as indi-
cated by the green line. In this case, inferring y|x using the blue
distribution q, as depicted by the blue crosses (with matching den-
sity), would lead to a perfectly accurate estimate, even if the test
set is drawn according to red distribution p. On the other hand,
reweighting with p(x)

q(x)
would lead to a very small effective sample

size since p and q are very different. While this example is ob-
viously somewhat artificial, there exist many situations where the
minimizer of the biased risk is very good.

could benefit from the low variance of the biased estimate
found by using q while removing bias via weighting with
β. This is precisely what doubly robust estimators address
— see, e.g., (Kang and Schafer 2007) for an overview. They
provide us with two opportunities to obtain a good estimate.
If the unweighted estimate solves the problem, the estimate
will be very good and minimizing the unbiased risk will not
change the final outcome significantly. Conversely, if the un-
weighted estimate is useless, we still have the opportunity to
amend things in the context of estimating f∗p by reweighting
the dataset. This work focuses on tackling the problem of
covariate shift correction from a doubly robust viewpoint by
effectively utilizing the unweighted estimate.

Main Contributions: In summary, the paper makes the fol-
lowing contributions. (1) We develop a simple, yet powerful,
framework for doubly robust estimation in the context of co-
variate shift correction, which to the best of our knowledge,
has not been previously explored. (2) We demonstrate the
generality of the framework by providing several concrete
examples. (3) We present a general theory for the framework
and provide a detailed analysis in the case of kernel meth-
ods. (4) Finally, we show good experimental performance
on several UCI datasets.

Related Work
There has been extensive research in covariate shift correc-
tion problem. Most of the work is directed towards estimat-
ing the weights β. Several methods have been proposed to
estimate these weights by optimization and statistical tech-
niques (Gretton et al. 2008; Agarwal, Li, and Smola 2011;
Sugiyama et al. 2008; Wen, nam Yu, and Greiner 2014).
Likewise, there has been considerable work in developing
doubly robust estimators for many statistical and machine
learning problems, particularly in the problems involving
missing data and reinforcement learning (Kang and Schafer
2007; Dudı́k, Langford, and Li 2011; Bang and Robins
2005). But none of these works address the problem of our
concern, namely doubly robust estimation for covariate shift

correction. While a few works, e.g., (Shimodaira 2000), at-
tempt to reduce the variance by adjusting the weights and
thereby, balancing the bias-variance tradeoff, they do not
tackle the problem from doubly robust estimation point of
view. In fact, these methods can be used in conjunction with
our approach.

The most relevant to our work are (Kuzborskij and
Orabona 2013), (Li and Bilmes 2007) and (Daume III 2007).
All these works use similar ideas for addressing related
problems in domain adaptation. However, none of these
works address the problem of covariate shift correction.
Moreover, our methodology and framework are much more
general.

Doubly Robust Covariate Shift Correction
We first give a formal description of our problem, and then
proceed to the algorithm and its theoretical analysis. Our
language will be that of risk minimization. For this purpose
denote by X , with xi ∈ X , the space of covariates, and by
Y , with yi ∈ Y , the space of associated labels. For any func-
tion f : X → R, we use fi to denote the function evaluated
at point xi. The distributions p(x) and q(x) are defined on
X . Moreover, y ∼ p(y|x). As stated in the introduction, we
assume that xi ∼ q(x) and x′i ∼ p(x) and yi ∼ p(y|xi).
For simplicity, we assume m = m′ in this paper. Finally,
we denote by ` : Y2 → R+

0 a loss function. We assume
that the loss function is L−Lipschitz and bounded above
by L.1 Our goal is to minimize the expected risk with re-
gard to distribution p Rp[f ] := E(x,y)∼p[`(y, f(x))]. Let
Rq[f ] := E(x,y)∼q[`(y, f(x))] denote expected risk with re-
gard to distribution q. Quite often we will deal with empiri-
cal averages, often weighted. We define

R̂[f |X,Y, α] :=
1

m

∑
i

αi`(yi, f(xi))

The risks for X ′ are defined analogously. The unweighted
empirical risk is R̂[f |X,Y ] = R̂[f |X,Y, 1m] where 1m
is ones vector of size m. Given a class F of functions
X → Y we aim to find some f∗p that minimizes Rp[f ]. Un-
fortunately, Rp[f ] is not directly accessible, hence we can
only approximate it via the empirical risk R̂[f |X,Y ], or its
reweighted variant R̂[f |X,Y, β].

Furthermore, we use a regularizer Ω to ensure that we do
not overfit to the data. This regularizer plays a rather critical
role in our doubly robust approach. It quantifies the notion of
‘simple’ function. More specifically, we use Ω[f, f ′] to mea-
sure complexity of f relative to f ′. By default we set f ′ = 0
with the corresponding shorthand Ω[f ] := Ω[f, 0]. This
views the constant null function as the simplest in the en-
tire set. For instance, in kernel methods we have Ω[f, f ′] :=
1
2 ‖f − f

′‖2, where the norm is evaluated in a Reproducing
Kernel Hilbert Space.

Finally, we introduce minimizers of expected and empiri-
cal risk, as is common in statistical learning theory (Vapnik
1998). We use f∗p and f∗q to denote the minimizers of risks

1We use the same constant L, without loss of generality.
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Rp and Rq respectively. Throughout this paper, we use the
following equivalent formulations interchangeably:

f̂q,λ := argmin
f∈F

R̂[f |X,Y ] + λΩ[f ]

f̂q,ν := argmin
f∈F

R̂[f |X,Y ] s.t. Ω[f ] ≤ ν

The corresponding pair (λ, ν) and associated problem will
be clear from the context. The equivalence follows from the
fact that for any λ, there exists a ν such that the solution
of the two problems is same. This is done merely for rea-
sons of simplifying our theoretical analysis. This yields the
following risk functionals with associated minimizers.

f̂q,νq := argmin
f∈F

R̂[f |X,Y ] s.t. Ω[f ] ≤ νq (2)

Here the risk functional, as defined in Equation (2) (referred
to as unweighted estimator or minimizer) corresponds to the
empirical risk minimizer when solving the inference prob-
lem with respect to the distribution q(x)p(y|x). Let β̂ be
the estimated covariate shift weights. The next empirical risk
functional is X,Y reweighted by β̂ such that we obtain an
unbiased estimate from p (referred to as weighted estimator
or minimizer).

f̂p,νp := argmin
f∈F

R̂[f |X,Y, β̂] s.t. Ω[f ] ≤ νp (3)

Finally, let f̂DR denote doubly robust estimator which is risk
minimizer, albeit with a prior around f̂q,λ rather than 0.

f̂DR := argmin
f∈F

R̂[f |X,Y, β̂] s.t. Ω[f, f̂q,λ] ≤ ν′ (4)

Lastly, we define f∗q,λq
and f∗p,λp

to be the penalized mini-
mizers of the expected risk. i.e.,

f∗q,λq
:= argmin

f∈F
Rq[f ] + λqΩ[f ]

f∗p,λp
:= argmin

f∈F
Rp[f ] + λpΩ[f ] (5)

The above quantities are needed since f∗p and f∗q might not
necessarily have bounded norm in function classes that we
study. Briefly, our algorithm outline is the following.
Step 1: Unweighted estimate Solve the unweighted infer-
ence problem using (X,Y ) as training data to obtain f̂q,λq

(see Equation (2)).
Step 2: Covariate shift correction weights Using X and
X ′ estimate the covariate shift correction weights. This can
be done by any off-the-shelf (e.g. kernel mean matching)
covariate shift procedure (Gretton et al. 2008; Agarwal et
al. 2011).
Step 3: Doubly robust estimate If meff is much smaller
than m, use unweighted estimate in Step 1 and covariate
shift weights in Step 2 to obtain f̂DR (see Equation 4).

Intuitively, while f̂q,λq will not minimize the expected
risk, it is often a very good proxy. Given that no reweighting
was carried out, the variance for f̂q,λq

is comparatively low.
That is, we are using the large unweighted sample size to
obtain a good starting point with high confidence.

f∗p

f∗q

Original
Function Class

F

Doubly Robust
Function Class
FDR

Figure 2: Pictorial representation of DR estimation procedure. As-
sumption 3 implies that f∗q is close to f∗p than origin (as shown in
the figure). While the generic covariate shift finds the weighted em-
pirical risk minimizer over the large function class F , doubly ro-
bust procedure optimizes over a much smaller function class FDR.
This leads to small variance in doubly robust procedure as com-
pared to generic covariate shift procedure when the effective sam-
ple size meff is small.

Assumptions
It is worth mentioning the assumptions required for the ap-
plication of doubly robust estimation, since they motivate
our design choices.

Assumption 1 The conditional training and test distribu-
tions are identical i.e p(y|x) = q(y|x).

This is implicit in the definition of covariate shift — if
p(y|x) 6= q(y|x) it would be trivial to construct counterex-
amples for any algorithm attempting to solve covariate shift.
For instance, setting p(y|x) = q(−y|x) for binary classifi-
cation would lead to a maximally bad solution.

Assumption 2 β(x) is well defined and bounded by some
constant η. This ensures that there cannot exist sets of
nonzero measures with respect to P that have zero measure
with respect to Q.

Again, in the absence of this assumption we could design
pessimal algorithms. In this case we could, e.g., set y|x = 0
for all x /∈ S and y|x = C for x ∈ S, immediately implying
substantial misprediction regardless of the sample size.

Assumption 3 The risk minimizer f∗p,λp
is much closer to

the unweighted risk minimizer f∗q,λq
rather than the origin,

i.e., νDR = Ω[f∗p,λp
, f∗q,λq

]� Ω[f∗p,λp
] = νp.

The above assumption indicates that the unweighted solu-
tion is beneficial for solving the weighted solution. This
assumption is reminiscent of approaches used in previ-
ous literature on domain adaptation (see Kuzborskij and
Orabona 2013; Li and Bilmes 2007). Also, note that the as-
sumption is only relative to the origin and does not assume
anything about the absolute closeness of the weighted and
unweighted solutions.

We would also like to emphasize that Assumption 3 does
not trivially mean improved result. Note that we additionally
need to estimate the unweighted solution, which can degrade
the performance of the algorithm. However, the critical point
we exploit is that the unweighted estimator, although biased,
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has low variance since it does not involve reweighting the
dataset. We will revisit this issue later in Section .

Estimating Covariate Shift Weights
Before delving into a specific algorithm we need to discuss
means of obtaining estimates of β(X). A number of ap-
proaches have been proposed in the literature. We only give
a brief outline of a few approaches here and refer interested
readers to the appropriate references for further details.

Penalized Risk Minimization (PRM) The basic idea in this
approach is to estimate covariate shift weights β by solving
a particular regularized convex minimization problem over a
function class (Nguyen, Wainwright, and Jordan 2008). The
rationale for the approach stems from the fact that the op-
tima to the variational representation of KL-divergence is
attained at the point β(x) = p(x)

q(x) ∀x ∈ X . More specif-
ically, consider the following variational representation of
KL-divergence: D(p, q) = supg>0

∫
log g(x)p(x)dx −∫

g(x)q(x)dx + 1. This is obtained by a simple application
of Legendre-Frenchel convex duality (see (Nguyen, Wain-
wright, and Jordan 2008) for more details). More impor-
tantly for us, the supremum is attained at g(x) = β(x) =
p(x)/q(x). Let us assume that the function β belongs to
RKHS G. Since the access to distributions p and q is through
their corresponding samples, we solve the following regular-
ized empirical version of the problem:

β̂ = argmin
g∈G

1

m

m∑
i=1

g(xi)−
1

m

m∑
i=1

log g(x′i) +
γm
2
I2(g)

where I(g) is a non-negative measure of complexity for g
such that I(β) <∞. It is shown that the above estimator en-
joys good statistical properties. A more detailed theoretical
exposition of the estimator will follow in later sections.

Kernel Mean Matching (KMM) Another popular approach
to obtain the covariate shift weights is by matching the
mean embeddings in the feature space induced by a univer-
sal RKHS K on the domain X (Gretton et al. 2008). More
specifically, we solve the following optimization problem

min
β̂
L̂(β̂) :=

∥∥∥∥∥ 1

m

m∑
i=1

β̂iΦ(xi)−
1

m

m∑
i=1

Φ(x′i)

∥∥∥∥∥
s.t. 0 ≤ β̂i ≤ η and

1

m

m∑
i=1

β̂ = 1,

where Φ : X → K. Intuitively, the above procedure tries
to match the mean embeddings of weighted training and test
distributions. Since the RKHS is universal, matching the em-
beddings provides estimates for covariate shift weights β.
As above, we delay the theoretical details. Note that while
the first estimation procedure gives the function β, the KMM
approach computes the function evaluated only at the train-
ing points. See e.g. (Agarwal, Li, and Smola 2011) for a
detailed comparison to other approaches.

Examples
To gain a better understanding of our approach, we now
present our estimators in various algorithmic settings. Let

us assume, we have estimated covariate shift weights β̂ via
PRM, KMM or in general, any other method.

Regression The simplest setting is linear regression, possi-
bly in a Reproducing Kernel Hilbert Space. Here the loss
`, the function f , and Ω are given by f(x) = 〈w, φ(x)〉,
`(y, f(x)) = 1

2 (y − f(x))2 and Ω[f, f ′] = 1
2 ‖w − w

′‖2,
where φ(x) is a feature map. The three steps of doubly ro-
bust covariate shift correction are:

1. Solve the quadratic optimization problem below.

ŵq,λq
= arg min

w

1

2

m∑
i=1

(yi − 〈φ(xi), w〉)2 +
λq
2
‖w‖2

2. Estimate the covariate shift correction weights β̂.
3. Solve the centered weighted regression problem to obtain

the doubly robust estimator ŵDR.

minimize
w

1

2

m∑
i=1

β̂i(yi−〈φ(xi), w〉)2 +
λ′

2

∥∥w − ŵq,λq

∥∥2

The approach works whenever
∥∥w∗p − w∗q∥∥ � ∥∥w∗p∥∥, i.e.

whenever the unbiased and the biased solutions are close
compared to the overall complexity of the solutions.

SVM Classification The approach is quite analogous to
the above approach, the main difference being a different
loss function. This yields f(x) = 〈w, φ(x)〉, `(y, f(x)) =

max(0, 1− yf(x)), and Ω[f, f ′] = 1
2 ‖w − w

′‖2. The asso-
ciated algorithm is as follows:

1. Solve a standard SVM classification problem using X,Y
to obtain ŵq,λq

.

min
w

m∑
i=1

max(0, 1− yif(xi)) +
λq
2
‖w‖2

2. Estimate the covariate shift correction weights β̂.
3. Solve the centered weighted SVM classification problem

to obtain the DR estimator ŵDR.

min
w

m∑
i=1

β̂i max(0, 1− yif(xi)) +
λ′

2

∥∥w − ŵq,λq

∥∥2

Regression Tree The nontrivial challenge here is to define
what it means to use an existing tree as a prior. We obtain
the following algorithm:

1. Compute a Regression Tree f̂q,λq using X,Y with suit-
able pruning strategy λq .

2. Estimate the covariate shift correction weights β̂.
3. Compute the residuals εi := yi−f̂q,λq

(xi). Train a second
regression tree δf using (xi, εi, β̂i) as covariates, labels,
and sample weights. Output the corrected tree f̂DR :=

f̂q,λq
+ δf .

Analogous modifications are possible for Gaussian Process
estimates where we use stage 1 estimates as prior, or for neu-
ral networks. Given the generality, our analysis proceeds in
two steps — we first derive a general metatheorem, followed
by an application to kernel methods.
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Theoretical Analysis
In this section we derive generalization bounds for the dou-
bly robust estimation procedure and show that they are prov-
ably better than the standard covariate shift bounds under the
conditions assumed in this paper. To this end, we develop
a general framework for analyzing the doubly robust esti-
mator and use it to prove generalization bounds for kernel
methods. More precisely, we obtain upper bounds on risk
Rp of functions, f̂p,λp (standard covariate shift correction)
and f̂DR (doubly robust estimator).

Let H be a reproducing kernel Hilbert space associated
with X and feature map φ(x) ∈ H. We use K denote the
kernel matrix corresponding to the training points X .Let
‖φ(x)‖H ≤ κ for all x ∈ X . Due to lack of space, we rel-
egate the details of general framework and proofs to the ap-
pendix of the full version2, and only state the result for ker-
nel methods using covariate shift weights obtained through
PRM in the main paper. The bounds for KMM can be ob-
tained in a similar manner. We state the main results about
generalization bounds for PRM, which follow as corollaries
of our general framework.

Theorem 1 Suppose f̂p,λp
and f∗p,λp

are as defined in Equa-
tions (3) and (5) respectively, and β ∈ G. Let the regular-
ization parameter for PRM be γm = cm−2/(2+τ) for some
τ > 0 and a constant c. Then we have the following with
probability at least 1− δ.

Rp[f̂p,λp ] ≤ Rp[f∗p,λp
] + ∆W,S + ∆W,R. (6)

∆W,S and ∆W,R, representing the covariate shift and func-
tion complexity parts of the bound are:

∆W,S =
2κ2L2

λ

(
√
ηγm + η 4

√
8

m
log

(
4

δ

))

∆W,R = 2ηL

(
2ν

m

√
tr(K) + 3

√
1

2m
log

(
4

δ

))
Theorem 2 Suppose f̂DR and f∗p,λp

are as defined in Equa-
tions (4) and (5) respectively, and β ∈ G. Let the regular-
ization parameter for PRM be γm = cm−2/(2+τ) for some
τ > 0 and a constant c. Then we have the following with
probability at least 1− δ.

Rp[f̂DR] ≤ Rp[f∗p,λp
] + ∆DR,S + ∆DR,R. (7)

∆DR,S and ∆DR,R, denoting the covariate shift and func-
tion complexity parts of the bound are:

ν′ = νDR + ν∆

= νDR +

√√√√4L

λq

(
2νq
√

tr(K)

m
+ 3

√
log(6/δ)

2m

)

∆DR,S =
2κ2L2

λ′

(
√
ηγm + η 4

√
8

m
log

(
6

δ

))

∆DR,R = 2ηL

(
2ν′
√

tr(K)

m
+ 3

√
log(6/δ)

2m
+
‖f̂q,λq‖2

m

)
2Full version of the paper can be found at www.cs.cmu.edu/

∼sjakkamr/dr.pdf.

Proof sketch for Theorem 2. The proof consists of two cru-
cial components. First, we derive a uniform convergence re-
sult for f̂q,λq

relative to the expected risk minimizer f∗q,λq
.

Second, we bound the error in risk caused due to estimation
of covariate weights β̂ and the complexity of the function
class. Combining the bounds on f̂q,λq relative to f∗q,λq

and
error in estimation of covariate shift weights, we get the re-
quired result.

Discussion on the Generalization Bounds
In order to understand the benefit of our doubly robust es-
timator, we make a qualitative comparison of the various
generalization bounds in this section. We only compare the
bounds for PRM here, but analysis for KMM yields simi-
lar conclusions. From Assumption 3, we have ν′ � νp and
expect λ′ � λp, provided bound ν∆ is small. When the vari-
ance of f̂q,λq is small, it is easy to see that ∆DR,R � ∆W,R

and ∆DR,S � ∆W,S (in Equations (6) and (7)). These
bounds also clearly demonstrate the doubly robust nature
of the algorithm. Before ending our discussion, we need
to make it explicit that our analysis only compares the up-
per bounds and hence, needs to be interpreted with caution.
Nonetheless, our empirical evaluation, in the next section,
supports our theoretical analysis and provides a compelling
case to use our estimators in practice.

Experiments
We present our empirical results in this section. We apply
doubly robust covariate shift correction to a broad range
of UCI datasets and a real-world dataset to demonstrate its
performance. In particular, we show that it is effective both
for classification and regression settings, and both for linear
methods (by using a Support Vector Classifier) and nonlin-
ear approaches (by using a Regression Tree).

For our experiments we compare the performance of un-
weighted (see Equation (2)) (referred to as UNWEIGHTED),
weighted (see Equation (3))(referred to as WEIGHTED) and
doubly robust (see Equation (4))(referred to as DOUBLYRO-
BUST) empirical estimators. That is, UNWEIGHTED ignores
the problem of covariate shift correction; WEIGHTED uses
the weights computed by KLIEP (Sugiyama et al. 2008)
with Gaussian kernel. For simplicity we use a reduced rank
expansion with 100 basis functions in our experiments. The
bandwidth of the kernel is chosen by cross-validation.

We would like to emphasize that while we only report re-
sults for KLIEP due to lack of space, using doubly robust es-
timation in conjunction with other popular approaches (e.g.,
(Gretton et al. 2008; Shimodaira 2000)) yields similar re-
sults.

Synthetic Data: This experiment is meant to provide
a comparison of WEIGHTED and DOUBLYROBUST ap-
proaches when varying effective sample size meff . The data
for this experiment is generated based on a polynomial ob-
jective y = −x + x3 + ε where ε ∼ N (0, 0.3) (Gret-
ton et al. 2008). We set p(x) = N (0, 1) and use as bi-
asing distribution p(x) = N (µ, 0.3) where µ is adjusted
such that we obtain different effective samples sizes. 300
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training and test samples are drawn. We use linear regres-
sion with standard `2 penalization. Figure 3 shows the root
mean square error (RMSE) ratio of DOUBLYROBUST to
WEIGHTED. It can be seen that DOUBLYROBUST outper-
forms WEIGHTED for lower values ofmeff and is marginally
worse for higher values of meff . The latter is not surprising,
since DOUBLYROBUST makes use of the data thrice rather
than twice.

0 0.2 0.4 0.6 0.8 10.94

0.96

0.98

1

1.02

meff/m

Er
ro

r R
at

io

Figure 3: Comparison of WEIGHTED and DOUBLYROBUST
using a synthetic dataset. We plot the error ratio as a func-
tion of the effective sample size. As can be seen, our method
improves the most when the increase in variance is the high-
est. This is consistent with the fact that it acts as variance
reducer.

Real Data: For a more realistic comparison we apply our
method to several UCI3 and benchmark4 datasets. To con-
trol the amount of bias we use PCA to obtain the leading
principal component. The projections onto the first principal
component are then used to construct a subsampling distri-
bution q. Let t0 and t1 be the minimum and the maximum
of the projected values respectively. Let σPC be the stan-
dard deviation of the projected values. We then subsample
using their projected values according to normal distribution
N (t0 +α(t1− t0), 0.5σPC). Varying the value of α changes
the meff of the training data by shifting q relative to p. The
value α ∈ (0, 1) is independently set for each dataset in such
a way that the effective sample size meff is less than 1/3 of
the training data. This method of inducing covariate shift in
the data set is often used in the covariate shift literature (see,
e.g., (Gretton et al. 2008)).

For classification, we use support vector machines
with a linear kernel. As mentioned earlier, Ω[f, f ′] =
1
2 ‖w − w

′‖2, i.e., the correction is additive in feature space.
The regularization parameters are chosen separately for each
empirical estimator by cross validation. We report the classi-
fication error Pr {yf(x) < 0}. We normalize the errors with
the UNWEIGHTED error.

For regression we apply regression trees to several UCI
datasets. We report the square error loss for these experi-
ments. As explained earlier, we first train a regression tree on
the unweighted dataset and then build a differential regres-
sion tree on the residual with restricted tree depth in order to

3http://archive.ics.uci.edu/ml/datasets.html
4http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

train the doubly robust regression tree.
The results are reported in Figure 4. We report the av-

erage RMSE error and the standard deviation over 30 tri-
als for each experiment. The errors in both the above cases
are normalized by the error of UNWEIGHTED. In both the
tasks, it can be clearly seen that DOUBLYROBUST outper-
forms both UNWEIGHTED and WEIGHTED on most of the
datasets. Note that neither UNWEIGHTED nor WEIGHTED
are significantly better than each other. On the other hand,
our approach consistently outperforms both. This is in line
with our intuition that the unweighted solution is an excel-
lent variance reducer. Overall, we conclude that our method
is promising for covariate shift correction problem.

Conclusion
In this paper we proposed an intuitive and easy-to-use strat-
egy for improving covariate shift correction. It addresses a
key issue that plagues many covariate shift correction al-
gorithms, namely that the variance increases considerably
whenever samples are reweighted. It achieves this goal by
using the unweighted solution as a variance-reducing proxy
for the unknown true weighted solution. This is a rather
general strategy and has been used with great success, e.g.
as control variate, in the context of reinforcement learning
(Sutton and Barto 1998).

Our approach is particularly simple insofar as it requires
essentially no additional code to use — all that is required
in practice is to allow for reweighting and offset-correction
in a linear model, a decision tree, or any other estimator that
might be at hand. Of particular importance is the fact that we
found our approach never to be worse than unweighted so-
lution, something that cannot be said in general for covariate
shift correction.
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