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Abstract

The aim of domain adaptation algorithms is to establish
a learner, trained on labeled data from a source domain,
that can classify samples from a target domain, in which
few or no labeled data are available for training. Co-
variate shift, a primary assumption in several works on
domain adaptation, assumes that the labeling functions
of source and target domains are identical. We present
a domain adaptation algorithm that assumes a relaxed
version of covariate shift where the assumption that the
labeling functions of the source and target domains are
identical holds with a certain probability. Assuming a
source deterministic large margin binary classifier, the
farther a target instance is from the source decision
boundary, the higher the probability that covariate shift
holds. In this context, given a target unlabeled sample
and no target labeled data, we develop a domain adapta-
tion algorithm that bases its labeling decisions both on
the source learner and on the similarities between the
target unlabeled instances. The source labeling function
decisions associated with probabilistic covariate shift,
along with the target similarities are concurrently ex-
pressed on a similarity graph. We evaluate our proposed
algorithm on a benchmark sentiment analysis (and do-
main adaptation) dataset, where state-of-the-art adapta-
tion results are achieved. We also derive a lower bound
on the performance of the algorithm.

Introduction
In machine learning, domain adaptation refers to the situ-
ation when one learns from samples drawn from a certain
domain, and tests the resulting hypothesis on samples drawn
from another domain. For many application domains, ob-
taining enough labeled data for training is not easy due to
cost, availability, etc. One possible approach of addressing
this challenge is to leverage labeled data that may be avail-
able from similar domains, and this is basically where the
concept of domain adaptation is paramount. In the domain
adaptation literature, the training domain is commonly re-
ferred to as the source domain, whereas the test domain is
commonly referred to as the target domain. The hypothe-
sis performance in the target domain is the main metric in
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domain adaptation (Ben-David et al. 2007). In order for do-
main adaptation to achieve reasonable classification perfor-
mance, there must be some sort of similarity between the
two domains, so that the learning hypothesis can have a
chance of performing better than a random classifier on tar-
get data. Such performance depends both on the hypothesis
performance in the source domain, and on the relationship
between the two domains.

In some works, existing domain adaptation algorithms
have been grouped into two categories: i) conservative and
ii) adaptive. A “conservative” domain adaptation algorithm
is one that learns only from source labeled data, without
making use of data from the target domain, whereas “adap-
tive” algorithms make use of target generated data (Ben-
David and Urner 2012; 2014). With respect to this taxon-
omy, our proposed algorithm is adaptive since it adapts its
target learner based on target unlabeled data. One example
of a domain adaptation problem is learning from images cap-
tured under certain lighting conditions or taken by a certain
type of camera, and performing an object recognition task on
images captured under different lighting conditions or taken
by another camera type, respectively (Saenko et al. 2010).
Another common example is to train a spam filter on emails
belonging to one address, and test it on a different address.

In domain adaptation, understanding the relationship be-
tween the source and target domains is fundamental for the
learner. The two extremes in the source-target domain rela-
tionship spectrum are: i) If there is no relationship between
the two domains at all, there is no basis for domain adap-
tation, and ii) if the source and target domains are identi-
cal then there is no need for domain adaptation. Covariate
shift is a common assumption that formulates this relation-
ship in the majority of previous works on domain adapta-
tion, e.g. (Sugiyama and Mueller 2005; Huang et al. 2006;
Ben-David and Urner 2014). Covariate shift refers to the as-
sumption that the labeling functions of the source and target
domains are identical. Practically speaking, covariate shift
is a reasonable assumption for some, but not all, domain
adaptation problems. As an example of an adaptation prob-
lem where covariate shift does not hold, let us assume that
there is a sentiment analysis dataset containing the music
and films domains. The sentence ‘I love the story but not the
music’, is an example of an input pattern that has different
rates depending on the domain (Thet et al. 2009). Another
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example where covariate shift does not hold is in remote
sensing applications where an object is moving and the im-
age used for training (source) shows an object that slightly
moved before acquiring another image (target).

A majority of domain adaptation algorithms rely on co-
variate shift, while the rest mostly seek a common feature
representation where covariate shift holds, or have access
to target labeled data. In this paper, we introduce a domain
adaptation algorithm that takes a different strategy based on
a relaxed or probabilistic version of covariate shift. Assum-
ing a binary classifier, for each point in the learning space,
probabilistic covariate shift generically states that source
and target labels are identical with a probability proportion-
ate to: i) the distance from the source decision boundary in
the case of a source large margin learner, or to ii) the source
labeling degree of certainty in the case of a source proba-
bilistic classifier. The work presented here focuses on the
case of a source large margin learner.

The proposed domain adaptation algorithm learns from
similarities between target unlabeled instances, as well as
the corresponding source labels associated with probabilistic
covariate shift. In order to label the target sample, we estab-
lish a similarity graph whose edge weights are founded on
the combination of similarities between target instances and
probabilities that their respective source labels hold in the
target (according to probabilistic covariate shift). We assume
a source deterministic binary classifier, and prior knowledge
that the source hypothesis class is that of large margin clas-
sifiers. The learner makes use of a source labeled sample as
well as a target unlabeled sample in the labeling task.

Our contributions are as follows: First, we introduce a do-
main adaptation algorithm that neither requires labeled data
from the target domain nor relies on the standard covariate
shift assumption. Second, the proposed algorithm achieves
state-of-the-art adaptation results on the Amazon reviews
sentiment analysis dataset. Third, under the assumption of
a weight ratio between the source and target marginal distri-
butions, φ-Lipschitz property with respect to the target dis-
tribution, and probabilistic covariate shift, we derive a theo-
retical lower bound on the performance of the algorithm.

Related Work
As per the training samples available to the learner, the
framework followed in this paper was formalized by Ben-
David et al. (Ben-David et al. 2007). It assumes that source
data and a target unlabeled sample (no target labeled data)
are available to the learner. It further notes that feature repre-
sentation of an adaptation problem is sound if it achieves low
source domain error and minimizes the distance between
the source and target marginal distributions. In this frame-
work, a few additive measures of distance between source
and target marginals were introduced via the available
training samples, e.g. dA (Kifer, Ben-David, and Gehrke
2004) and discrepancy distance (Mansour, Mohri, and Ros-
tamizadeh 2009). Various other studies were proposed in
the same framework (Blitzer, Dredze, and Pereira 2007;
Glorot, Bordes, and Bengio 2011; Chen, Xu, and Wein-
berger 2012). Other domain adaptation learners have ac-
cess to target labeled samples as well, e.g. (Chen, Wein-

berger, and Blitzer 2011; Blitzer et al. 2008). The former
iteratively learned a target predictor along with an associ-
ated subset of source and target features via an optimiza-
tion problem. Under covariate shift, the latter minimized a
convex combination of source and target empirical risk to
derive a uniform convergence bound (Blitzer et al. 2008;
Ben-David et al. 2010). On the other hand, Ben-David and
Urner (Ben-David and Urner 2014) presented a conservative
adaptation learner, which learns from source samples only.

One major difference between the framework of (Ben-
David et al. 2007) and the work presented in this paper is the
standard vs. probabilistic covariate shift assumption. Most
domain adaptation algorithms were founded on the covariate
shift assumption, e.g. (Bickel, Bruckner, and Scheffer 2007;
Huang et al. 2006; Kifer, Ben-David, and Gehrke 2004;
Mansour, Mohri, and Rostamizadeh 2009). Bickel, Bruck-
ner, and Scheffer (Bickel, Bruckner, and Scheffer 2007)
mapped covariate shift based learning onto an integrated op-
timization problem and established a kernel logistic regres-
sion classifier for solving it. To handle the source and tar-
get marginal distributional difference, Huang et al. (Huang
et al. 2006) proposed a nonparametric method to produce
resampling weights without distribution estimation. In addi-
tion, some domain adaptation paradigms, under the covari-
ate shift setup, corrected sample selection bias by impor-
tance weighting (Cortes et al. 2008; Cortes, Mansour, and
Mohri 2010; Sugiyama, Krauledat, and Mueller 2007).

Examples of domain adaptation algorithms not assuming
covariate shift include (Bergamo and Torresani 2010) and
(Schweikert et al. 2009) where target labeled data constitute
part of the training data. Other algorithms targeted a problem
where labeling functions of multiple sources are not iden-
tical due to noise (Crammer, Kearns, and Wortman 2006;
2008). However, their problem is different from adaptation
since all training marginal distributions are identical.

A few domain adaptation algorithms can be adjusted and
used in transfer learning. Transfer learning refers to applying
the learning knowledge obtained from a source task(s) to de-
velop a hypothesis for a target task (Ben-David and Schuller
2003; Dai et al. 2007; Maurer 2005). In transfer learning, the
learner typically has access to target labeled data, unlike the
learner in our problem definition.

Methodology
Notation Let X be an instance set and Y be a label set.
We address a binary labeling problem; Y = {1,−1}. For
a distribution, P , over X × {0, 1}, we denote a learner
by l : X → Y , and its error probability by ErrP (l) =
Pr(x,y)∼P (y 6= l(x)).

Let PS and PT be the source and target distributions, re-
spectively, over X × {0, 1}. Also, let DS and DT be the
marginal distributions of PS and PT , respectively, over X .

The domain adaptation learner receives as input a sample,
S, consisting of n source labeled instances drawn according
to PS . The learner also bases its labeling decisions on a sam-
ple, T , of m target unlabeled instances drawn according to
DT . Assume that lS belongs to a hypothesis class of large
margin learners. The aim is to establish a target learner, lT ,
to label T with a minimized error probability, ErrPT

(lT ).
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Source Learning
As we are interested in source large margin classifiers here,
we learn from the source domain using support vector ma-
chines (SVMs) with a soft margin. The dual form of soft
margin SVMs (1), which is formulated into a quadratic pro-
gramming problem, is solved using sequential minimal op-
timization (SMO) (Platt 1999).

maximize

n∑
i=1

αi −
1

2

n∑
i,j=1

yiyjαiαjxi · xj (1)

w.r.t. αi. subject to : 0 ≤ αi ≤ C,
n∑

i=1

αiyi = 0

Where αi, for i = 1, 2, ..., n, denote Lagrange multipli-
ers, and αi = 0 for all training instances except the support
vectors. It is a linear SVM learner with C = 1. We denote
the number of support vectors by nsv and the bias term by
b = 1

nsv

∑nsv

i=1(
∑n

j=1 αjyj(xj ·xi)− yi). Hence, the output
of the classifier for an instance x is computed as:

sign[(

n∑
i=1

αiyi(xi · x)) + b] (2)

Assumptions Controlling Domain Adaptation
As far as the source domain is concerned, it is an ordinary
supervised learning problem. However, the primary task is to
make use of source labeled data along with target unlabeled
data so that the target data can be accurately labeled. Our
main goal here is to answer the question as to whether it
is possible to successfully learn without target labeled data
and with an assumption that can be more realistic than the
standard covariate shift in many applications. We address
domain adaptation problems satisfying the following:

Weight Ratio For the subsets of the domain X where
DS(X) 6= 0, denote the weight ratio, CR, of the target and
source marginal distributions, DT and DS , as:

CR(DT , DS) = inf
DS(x)6=0

DT (x)

DS(x)
(3)

Lipschitz Condition A function f : Rd → R is φ-
Lipschitz if (Shalev-Shwartz and Ben-David 2014):
∀x1, x2 ∈ [0, 1]d : |f(x1)− f(x2)| ≤ φ · ‖x1 − x2‖ (4)

In our case, the deterministic labeling function, f , is de-
noted by, f : Rd → {0, 1}. The φ-Lipschitz condition is
assumed only when we derive the error bound. Moreover, it
is not assumed to hold in the dataset used in the experiments.

Probabilistic Covariate Shift The assumption that co-
variate shift always holds, lS(x) = lT (x) ∀x ∈ X , may be
reasonable in some domain adaptation tasks, yet it is not re-
alistic in many others. Assuming a source large margin clas-
sifier, we introduce a generalized version of covariate shift
where source and target labeling functions of x are identi-
cal with a probability proportionate to its distance from the
source decision boundary. In other words, the farther an in-
stance is from the boundary, the higher our confidence of its
source and target labels being identical. A measure propor-
tionate to distance from the boundary, |fsvm|, is computed
as the absolute value of the SVM classifier’s output shown
in (2). We formalize the probabilistic covariate shift assump-
tion by: ∀ψ > 0 and x where fsvm(x) 6= 0:

Prx∼DT (∃x : lS(x) 6= lT (x) ∧ 1

|fsvm(x)| ≤ ψ) ≤ υ(ψ) (5)

The condition fsvm(x) 6= 0 is added due to the fraction
1

|fsvm(x)| , but instances, x, with fsvm(x) = 0 are still the
least likely to have identical source and target labels. υ(ψ)
is a monotonically increasing function of ψ. Probabilistic
covariate shift generalizes the standard covariate shift since
setting υ(ψ) = 0, for all ψ results in the standard covariate
shift. From the decision boundary perspective, probabilistic
covariate shift states that the target boundary is “probably”
close to the source boundary; as such, probability that the
former is at a certain location, is inversely proportionate to
the distance between the source boundary and such location.

Target Learning
We aim at labeling a target sample, T , based on probabilis-
tic covariate shift (an instance’s source label is not guaran-
teed to be identical to its target label) and with no target
labeled data available for learning. The information at our
disposal consists of two main aspects: i) the global assump-
tion that the target boundary is more likely to be close, rather
than far, to the source boundary, and ii) the local assumption
that nearby target instances are likely to have the same label.
Hence, we base our target labeling decisions on these two as-
pects. We establish a similarity graph where both global and
local labeling information are expressed so that the target
sample can be labeled accordingly. Similarity graphs origi-
nally derive pairwise similarity scores based on local neigh-
borhoods between unlabeled nodes. Other versions of simi-
larity graphs have been developed in order to handle labeled
and unlabeled nodes in a transductive sense, e.g. (Blum and
Chawla 2001). Here we address a learning problem where
we have instances that are neither unlabeled nor labeled with
certainty. Instead, each target instance label has an associ-
ated probability or degree of certainty, and we want to assign
weights on edges between the graph nodes (target instances)
reflecting both the global and local labeling aspects. We pro-
pose a KNN probabilistic mincut similarity graph (6) where
the local aspect is commonly expressed (7) and the global
aspect is reflected by the expression introduced in (8). Simi-
lar to the original unsupervised similarity graphs, a spectral
ratiocut solution to the KNN probabilistic mincut optimiza-
tion problem is subsequently presented.

KNN Probabilistic Mincut We construct a weighted sim-
ilarity graph where each target instance is a vertex (node).
Edges between vertices are weighted based on the follow-
ing rules. There is no edge between two vertices if neither
of them is a nearest neighbor of the other. Otherwise, a sym-
metric weighted KNN function is utilized for edge weight-
ing. An edge between xi and xj , w(xi, xj), is assigned a
weight based on two factors (6), symmetric KNN similarity
between xi and xj , and the corresponding labeling proba-
bilities, Prxi∼DT

(lT (xi) = 1) and Prxj∼DT
(lT (xj) = 1),

w.r.t. probabilistic covariate shift. Symmetric KNN similar-
ity depends on the two ordered similarity pairs sim(xi, xj)
and sim(xj , xi). sim(xi, xj) is calculated by (7). Gaussian
similarity is chosen as the similarity function wij .
w(xi, xj) = label sim(xi, xj)× [sim(xi, xj) + sim(xj , xi)]

(6)

sim(xi, xj) =

{ wij∑
xj∈knn(xi)

wij
xj ∈ knn(xi)

0 xj /∈ knn(xi)
(7)
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On the other hand, the global labeling information is ex-
pressed via label sim(xi, xj). For an instance, x, the target
labeling probability is based on probabilistic covariate shift,
since: Pr(lT (x) = 1) = Pr(lS(x) 6= lT (x)) if lS(x) = 0,
and Pr(lT (x) = 1) = 1−Pr(lS(x) 6= lT (x)) if lS(x) = 1.

Pairwise similarities of labeling probabilities,
label sim(xi, xj), are expressed as shown in (8).
label sim(xi, xj) = 1 + 4 CS× (8)

(Prxi∼DT (lT (xi) = 1)− 1

2
) (Prxj∼DT (lT (xj) = 1)− 1

2
)

The constantCS controls the weight given to source labeling
probabilities; if CS = 0, then label sim(xi, xj) = 1 so that
only the local neighborhood counts and the problem turns
into a partitioning problem on a KNN similarity graph. We
use CS = 1 in our experiments. The limits are as follows: If
Pr(lT (xi) = 1) = Pr(lT (xj) = 1) = 1 or Pr(lT (xi) =
1) = Pr(lT (xj) = 1) = 0, then label sim(xi, xj) = 2.
If Pr(lT (xi) = 1) = 1 and Pr(lT (xj) = 1) = 0, or vice
versa, then label sim(xi, xj) = 0. In case Pr(lT (xi) =
1) = Pr(lT (xj) = 1) = 0.5, or at least one of them is equal
to 0.5, meaning there is no labeling information to derive,
then label sim(xi, xj) = 1.

In order to assign labels to target instances via the simi-
larity graph, the graph is cut into two partitions. A minimum
cut is sought such that the summation of edge weights con-
necting the two partitions is minimized.

Probabilistic mincut graph aims at minimizing the total
weight of edges connecting the two partitions, i.e. edges
whose removal would disconnect the the two partitions, T+

and T−. Equation (9) depicts the probabilistic mincut graph
optimization problem.

minimizeT+,T−

∑
∀xi∈T+,xj∈T−

w(xi, xj) (9)

KNN Probabilistic (Spectral) Ratiocut As can be seen
in (6-9), the KNN probabilistic mincut graph minimizes the
cut by minimizing the sum of weights across the two par-
titions (groups). One major problem with the probabilistic
mincut graph algorithm is that it may lead to degenerate
cuts, i.e. target instances being split into two very unbal-
anced groups; T+ and T− can be unbalanced in terms of
size. The intuition behind this problem is similar to the one
in Blum and Chawla (Blum and Chawla 2001). This defi-
ciency can be overcome by minimizing the average, rather
than sum, of weights across the two groups. Dividing the
KNN Probabilistic Mincut optimization objective function
in (9) by |T+| |T−| leads to the ratiocut objective function
(different only by a constant) (Hagen and Kahng 1992). In
its original unsupervised form, the ratiocut problem is NP-
hard but it can be efficiently solved using spectral grouping
techniques. We follow an equivalent path here. Let W be
the adjacency matrix consisting of w(xi, xj), and Dg be the
degree matrix where Dgii =

∑n
j=1 w(xi, xj). A spectral

formulation of
∑

w(xi,xj)
|T+| |T−| is shown in (10) (Luxburg 2007).

The matrix L is the unnormalized Laplacian.
minimizeF FTLF, for L = Dg −W, f ∈ {T+, T−}
subject to : F ⊥ 1, ‖F‖ =

√
n (10)

Performance Lower Bound
We derive a lower bound on the target domain performance
of our algorithm, which we refer to as ProbCS. In this sec-
tion, we construct a 1-NN probabilistic mincut graph. Ver-
tices of the graph represent a target unlabeled sample, T. Its
adjacency matrix is calculated by (6). We assume a weight
ratio, CR, between the marginals, DT and DS . Probabilistic
covariate shift controls the relationship between the deter-
ministic binary labeling functions lS and lT by (5). Also, lT
satisfies the φ-Lipschitz property.

Theorem 1 The average distance between a target in-
stance and the source SVM boundary is proportionate to the
ProbCS lower bound, whereas the average distance between
target instances is inversely proportionate to the same bound.

Proof The probability that ProbCS makes a correct label-
ing decision on a target instance, CorrPT

(ProbCS), is equal
to the probability that x, x ∈ T , is ultimately assigned a la-
bel, lProbCS(x), that is equal to its correct label lT (x):
ET∼Dm

T
[CorrPT (ProbCS)] = Pry=lT (x),ý=lProbCS(x)(y = ý)

ET∼Dm
T

[ErrPT (ProbCS)] = Pr(y 6= ý) (11)
Refer to probabilistic covariate shift as PCS. For x, x ∈

T , lT (SVM) denotes the most likely label of x based on
SVM and PCS only, before taking target local neighbor-
hoods into consideration. We use lT (SVM) only in theory so
that we can separately analyze the errors resulting from the
1-NN probabilistic mincut graph and those resulting from
PCS and the source SVM classifier.

Theorem 2 Assume that lT (SVM) is the ground truth for
a target 1-NN classifier (we will get back to this assumption
later). The total cut of the 1-NN probabilistic mincut graph is
equal to the number of leave-one-out (LOO) cross-validation
classification errors of a binary 1-NN classifier acting on the
same data and same domain.

Proof LOO cross-validation error of a binary 1-NN clas-
sifier learning from a dataset of size m is equal to the num-
ber of instances, z, where l(z) 6= l(NN(z)). On the other
hand, recall that the total cut of the 1-NN probabilistic min-
cut graph is defined as the sum of weights of edges con-
necting the two partitions, T+, T−. Let sim(xi, xj) = 1
if xj is the nearest neighbor of xi, and sim(xi, xj) = 0
otherwise. Thus, the total cost of a minimum cut is equal
to

∑
w(xi, xj) across the cut, which in turn is equal to∑m

i=1

∑m
j=1
j 6=i

sim(xi, xj), where xi ∈ T+ and xj ∈ T−, or

vice versa. The latter summation is exactly equal to the LOO
cross-validation error of 1-NN. Equivalence can be proven
for larger values of k, but we use k = 1 for simplicity.

Based on Theorem 2, and on the fact that LOO cross-
validation error is an almost unbiased estimate of general-
ization error of KNN (Luntz and Brailovsky 1969; Elisseeff
and Pontil 2002), ET∼Dm

T
[ErrPT

(1NN-Prob-Mincut)] can
be estimated by ET∼Dm

T
[ErrPT

(1NN)]. Back to (11), de-
note by A the event that lT (SVM[x]) = lT (x), and by B the
event that 1-NN leads to a correct classification. Therefore:

Pr(A) ≡ Pr(lT (SVM)[x] = lT (x))

Pr(B|A) ≡ 1− ET∼Dm
T

[ErrPT (1NN)]

Pr(y = ý) = Pr(A,B) = Pr(A)× Pr(B|A) (12)
The rest of this section will be dedicated to the calcu-
lation of Pr(A) and Pr(B|A). We begin by analyzing
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ET∼Dm
T

[ErrPT (1NN)]. This is the expected error of a 1-NN clas-
sifier on one domain (the target), assuming that it learns from a cor-
rectly labeled sample of size m. Denote Pr(lT (x)=1) by plT (x).

Pr(lT (x) 6= lT (1NN)[x]) =

plT (x)(1− plT (1NN)[x]) + plT (1NN)[x](1− plT (x))

≤ 2plT (x)(1− plT (x)) + |plT (1NN)[x]− plT (x)| (13)
Where the inequality is the outcome of standard algebraic
manipulations, same as those in the proof of Theorem 7 in
Ben-David and Urner (Ben-David and Urner 2014).

ET∼Dm
T

[ErrPT (1NN)] = E[Pr(lT (x) 6= lT (1NN)[x])]

≤ E[2plT (x)(1− plT (x)) + |plT (1NN)[x]− plT (x)|]
Due to lT being deterministic, the first term is always 0. As-
suming X = [0, 1]d and using φ-Lipschitz (4) leads to:

ET∼Dm
T

[ErrPT (1NN)] ≤ φET∼Dm
T

[‖NN(x)− x‖] (14)
Equation (14) determines the expected error of a target 1-NN
learner, which, as stated by Theorem 2, is equivalent to the
expected error of a target 1-NN probabilistic mincut graph.
The intuition that the average distance between an instance
x and its NN,E[‖NN(x)−x‖] is proportionate to the 1-NN
expected error, is supported by the bound.

Back to (12), we move on to Pr(A). Denote by U the
event: PCS doesn’t change lS(SVM)[x], and by V the com-
plementary event: PCS changes lS(SVM)[x].
ET∼Dm

T
(lT (SVM)[x] = lT (x)) =

E[((lT (x)=lS(SVM)[x]), U) ∨ ((lT (x) 6= lS(SVM)[x]), V )]

≥ ET∼Dm
T

((lT (x) = lS(SVM)[x]), U) (15)
Using the PCS formalization (5) and Markov’s inequality:

E(V ) ≤ υ(ψ) +
ψ

E(|fsvm(x)|) , E(U) ≥ 1− E(V ) (16)

We assume that Ex∼DS
(lT (x) = lS(SVM)[x]) = 0.5, and

assume that the events lT (x) = lS(SVM)[x] and U are in-
dependent. The latter assumption is rigid (leading to a less
tight bound), because the intuition behind assuming PCS (re-
lated to U ) should be based on some prior knowledge (lead-
ing to expected correlation between lT (x) and lS(SVM)[x]).
Based on these two assumptions, and from (3) and (16):

E(lT (SVM)[x] = lT (x)) =

≥ Ex∼DT (lT (x) = lS(SVM)[x])× E(U)

≥ CR × Ex∼DS (lT (x) = lS(SVM)[x])× E(U)

≥ 0.5 CR × (1− υ(ψ)− ψ

E(|fsvm(x)|) ) (17)

From (12), (14) and (17) into (11):

ET∼Dm
T

[CorrPT (ProbCS)] ≥ (1− υ(ψ)− ψ

E(|fsvm(x)|) )

× 0.5 CR × (1− φ ET∼Dm
T

[‖NN(x)− x‖]) (18)
Hence, the farther the expected distance from a target
instance to the source SVM boundary, E(|fsvm(x)|), the
higher (better) the ProbCS lower bound. Also, the smaller
the average distance between a target instance x and its near-
est neighbor,E(‖NN(x)−x‖), the higher the ProbCS lower
bound. This concludes the proof of Theorem 1.

Experiments
To evaluate the performance of the proposed algorithm, we
run our experiments on the Amazon reviews dataset (Blitzer,
Dredze, and Pereira 2007). This is a sentiment analysis
dataset that has often been used for evaluation in domain

adaptation. The Amazon reviews dataset originally con-
tains more than 340,000 reviews from 22 different domains,
where each domain represents a product type. The dataset
as a whole is very heterogeneous and extremely unbalanced.
This is the reason why its most common use is in the form
constructed by Blitzer, Dredze, and Pereira (Blitzer, Dredze,
and Pereira 2007), which consists of 4 different domains: i)
books, ii) DVDs, iii) electronics, and iv) kitchen appliances.
Each review originally has a rating (0-5 stars), but again we
apply the convention, e.g. (Glorot, Bordes, and Bengio 2011;
Chen, Xu, and Weinberger 2012), of turning these ratings
into binary labels by assigning a positive (negative) label
to reviews with rating > 3 (≤ 3). The updated form of
Amazon reviews is more balanced as per the number of
positive and negative reviews. Two more common things
we follow in order to provide consistent comparisons with
previous algorithms are: i) a pre-processing step where fea-
tures are reweighted with standard tf-idf (Salton and Buck-
ley 1988), ii) we select the 5,000 most frequent features (vo-
cabulary terms of unigrams and bigrams). Information about
the Amazon reviews dataset is displayed in Table 1.

Table 1: Statistics of the Amazon reviews sentiment analysis
dataset.

Domain # Labeled rev. # Unlabeled rev. % +ve
Books 2000 4465 50%
DVDs 2000 5945 50%

Electronics 2000 5681 50%
Kitchen appl. 2000 3586 50%

Similar to Glorot, Bordes, and Bengio (Glorot, Bordes,
and Bengio 2011; Chen, Xu, and Weinberger 2012), our
metric is a measure of the discrepancy error, i.e. the er-
ror due to the difference between the source and target do-
mains. Let the transfer error, e(S, T ), be the test error ob-
tained by a learner trained on S and tested on T , and let
the in-domain error, e(T, T ), be the test error obtained by a
learner trained on a target sample T1 and tested on another
target sample T2. Also, denote by eb(T, T ), the in-domain
error of the baseline linear SVM. The metric used to com-
pare domain adaptation algorithms is referred to as the trans-
fer loss, e(S, T ) − eb(T, T ). The lower the algebraic trans-
fer loss value, the better the adapted classifier performance
compared to the one-domain baseline classifier.

We have 12 adaptation tasks, moving from one domain
(source) to another (target), e.g. B → D. Our domains
are B (books), D (DVDs), E (Electronics) and K (Kitchen
appliances). The strategy we pursue in order to implement
ProbCS on the Amazon reviews dataset is as follows:

1. We train a linear SVM on S, the labeled 2000 instances
(reviews) of a source domain.

2. Regarding probabilistic covariate shift formulated in (5),
we define υ(ψ) as shown in (19):

υ(ψ) =

{
0.5 fsvm ≤ |1|
0 fsvm > |1|

(19)

The above results from our assumption that some Amazon
reviews can be invariably indicated as positive (or nega-
tive) in several domains. Thus, we make the assumption
that target reviews not within the source SVM margin can
be safely classified by the source SVM, and set υ(ψ) = 0
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in this part of the target domain. For target reviews within
the source SVM margin, we do not make further assump-
tions as per their target labels and we set υ(ψ) = 0.5. We
experimented other values, fsvm ≤ |2|, |0.5|, etc, and re-
sults support the intuition as fsvm ≤ |1| performs best.
Results are notably worse when standard covariate shift is
assumed to hold within the source SVM margin.

3. From (19): For each instance xi in T , set the correspond-
ing υ(ψ) according to fsvm(xi). Note that for xi not
within the SVM margin, υ(ψ) = 0, thus Pr(lS(xi) 6=
lT (xi)) = 0 and they retain their source labels. This is
later utilized in deciding which group is positive, T+, and
which is negative, T−. The group containing instances
xi, xi ∈ T, fsvm(xi) > +1 is T+, and the one con-
taining instances xi, xi ∈ T, fsvm(xi) < −1 is T−.

4. We construct the KNN similarity graph whose vertices
represent instances of T , and the adjacency matrix is cal-
culated by (6). Afterwards, a spectral solution to the prob-
abilistic ratiocut optimization problem is computed by
(10). As a result, T+ and T− are obtained. Instances of
T+ (T−) are assigned the label +1 (−1).

In Figure 1, linear SVM is a domain adaptation learner,
trained on source data assuming standard covariate shift;
υ(ψ) = 0, for all ψ. In the 12 domain adaptation tasks,
we calculated number of source test instances within the
source linear SVM margin, just to compare it with number
of target test instances within the same margin. The latter
was always bigger, which supports the probabilistic covari-
ate shift intuition that the labeling functions are different.
Assume, for example, no target test instances lay in the mar-
gin, this would have suggested that the source classifier is
good enough for target data and hardly needs adaptation.

Results of linear SVM vs. ProbCS, which are in favour
of ProbCS, as shown in Figure 1, support the intuition be-
hind assuming probabilistic covariate shift, rather than stan-
dard covariate shift, on the Amazon reviews dataset. On the
other hand, an experiment was performed based on spec-
tral ratiocut with an ordinary KNN weighting function, not
taking source labeling probabilities into consideration. The
intuition behind this experiment is to check whether the lo-
cal neighborhood assumption is enough to group target in-
stances. Results of this experiment are far worse than all the
adaptation algorithms. As a result (and also due to space),
we did not add this experiment to Figure 1. The last two
experiments suggest that, for Amazon reviews, probabilis-
tic covariate shift, not its standard correspondent, and the
utilized values of υ(ψ) are plausible assumptions. Another
experiment was performed based on the same values of
υ(ψ) by running transductive SVM (Joachims 1999b) using
(Joachims 1999a). In addition to being slow, performance
was considerably worse than ProbCS in the 12 tasks, sup-
porting the intuition that the local neighborhood assumption
is useful for adaptation learning from Amazon reviews.

Besides linear SVM, the other 4 algorithms we com-
pare our results to represent state-of-the-art adaptation re-
sults on the Amazon reviews dataset. First, structural corre-
spondence learning (SCL) (Blitzer, McDonald, and Pereira
2006) utilizes unlabeled data from both domains to find cor-

Figure 1: Comparison of 6 domain adaptation algorithms
based on the transfer loss. In 9 out of the 12 adaptation tasks,
ProbCS achieves the best performance (lowest transfer loss).

respondences among their features. Second, CODA (Chen,
Weinberger, and Blitzer 2011) is briefly described in the Re-
lated Work section. Finally, SDA (Glorot, Bordes, and Ben-
gio 2011) and mSDA (Chen, Xu, and Weinberger 2012) are
two adaptation algorithms based on learning robust feature
representations by stacked denoising autoencoders (SDAs).
mSDA (Chen, Xu, and Weinberger 2012) marginalizes noise
and is more efficient than SDA in terms of computational
cost and scalability. For CODA, SDA and mSDA, we used
the implementation provided by the authors. For SCL, we re-
port the results reported in (Chen, Xu, and Weinberger 2012)
because the settings are identical. Parameter values are de-
termined by 10-fold cross-validation (K = 7 for ProbCS).

Transfer loss values, for the 12 domain adaptation tasks
and 6 domain adaptation algorithms, are reported in Fig-
ure 1. ProbCS achieves the lowest transfer loss in 9 tasks
and joint lowest with mSDA in K → D. A negative transfer
loss value indicates an improvement achieved by the corre-
sponding domain adaptation algorithm (notwithstanding the
domain discrepancy) over a baseline linear SVM trained and
tested on the same domain (e(S, T ) < eb(T, T )).

Conclusion
We present a domain adaptation algorithm that learns with-
out any target labeled data, assuming probabilistic covariate
shift, where the assumption that the labeling functions of the
source and target domains are identical holds with a certain
probability. Probabilistic covariate shift assumes that the tar-
get decision boundary may not be the same as the source
boundary but is probably not too far. In other words, the
probability that the target boundary is at a certain distance
from the source one, is inversely proportionate to the dis-
tance. Target learning is performed on the basis of a simi-
larity graph representing probabilistic covariate shift-based
source labels and similarities between target unlabeled in-
stances. Results on a benchmark sentiment analysis dataset
indicate state-of-the-art adaptation results. A lower bound
on the performance of the proposed algorithm is also pre-
sented. One direction for future research is in generative
models where modeling can be based on prior knowledge
along with probabilistic covariate shift.

2481



References
Ben-David, S., and Schuller, R. 2003. Exploiting task relat-
edness for multiple task learning. Conference on Learning
Theory (COLT) 567–580.
Ben-David, S., and Urner, R. 2012. On the hardness of do-
main adaptation and the utility of unlabeled target samples.
Algorithmic Learning Theory (ALT) 139–153.
Ben-David, S., and Urner, R. 2014. Domain adaptation - can
quantity compensate for quality? Annals of Mathematics and
Artificial Intelligence 70(3):185–202.
Ben-David, S.; Blitzer, J.; Crammer, K.; and Pereira, F. 2007.
Analysis of representations for domain adaptation. Advances
in neural information processing systems (NIPS) 137–144.
Ben-David, S.; Blitzer, S.; Crammer, K.; Kulesza, A.; Pereira,
F.; and Vaughan, J. 2010. A theory of learning from different
domains. Machine learning 79(2):151–175.
Bergamo, A., and Torresani, L. 2010. Exploiting weakly-
labeled web images to improve object classification: A do-
main adaptation approach. Advances in neural information
processing systems (NIPS) 181–189.
Bickel, S.; Bruckner, M.; and Scheffer, T. 2007. Discrimina-
tive learning for differing training and test distributions. In-
ternational Conference on Machine Learning (ICML) 81–88.
Blitzer, J.; Crammer, K.; Kulesza, A.; Pereira, F.; and Wort-
man, J. 2008. Learning bounds for domain adaptation. Ad-
vances in neural information processing systems (NIPS) 129–
136.
Blitzer, J.; Dredze, M.; and Pereira, F. 2007. Biographies,
bollywood, boom-boxes and blenders: Domain adaptation for
sentiment classification. Association for Computational Lin-
guistics (ACL).
Blitzer, J.; McDonald, R.; and Pereira, F. 2006. Domain adap-
tation with structural correspondence learning. EMNLP 120–
128.
Blum, A., and Chawla, S. 2001. Learning from labeled and
unlabeled data using graph mincut. International Conference
on Machine Learning (ICML) 19–26.
Chen, M.; Weinberger, K.; and Blitzer, J. 2011. Co-training
for domain adaptation. Advances in neural information pro-
cessing systems (NIPS) 2456–2464.
Chen, M.; Xu, Z.; and Weinberger, K. 2012. Marginalized
denoising autoencoders for domain adaptation. International
Conference on Machine Learning (ICML).
Cortes, C.; Mohri, M.; Riley, M.; and Rostamizadeh, A. 2008.
Sample selection bias correction theory. Algorithmic Learn-
ing Theory (ALT) 38–53.
Cortes, C.; Mansour, Y.; and Mohri, M. 2010. Learning
bounds for importance weighting. Advances in neural infor-
mation processing systems (NIPS) 442–450.
Crammer, K.; Kearns, M.; and Wortman, J. 2006. Learning
from data of variable quality. Advances in neural information
processing systems (NIPS) 18.
Crammer, K.; Kearns, M.; and Wortman, J. 2008. Learn-
ing from multiple sources. Journal of Machine Learning Re-
search (JMLR) 9:1757–1774.
Dai, W.; Yang, Q.; Xue, G.; and Yu, Y. 2007. Boosting
for transfer learning. International Conference on Machine
Learning (ICML) 193–200.

Elisseeff, A., and Pontil, M. 2002. Leave-one-out error and
stability of learning algorithms with applications. NATO-ASI
Series on Learning Theory and Practice.
Glorot, X.; Bordes, A.; and Bengio, Y. 2011. Domain adap-
tation for large-scale sentiment classification: A deep learn-
ing approach. International Conference on Machine Learning
(ICML) 513–520.
Hagen, L., and Kahng, A. 1992. New spectral methods for ra-
tio cut partitioning and clustering. IEEE Trans. on Computer-
Aided Design 11:1074–1085.
Huang, J.; Gretton, A.; Borgwardt, K.; Schoelkopf, B.; and
Smola, A. 2006. Correcting sample selection bias by unla-
beled data. Advances in neural information processing sys-
tems (NIPS) 601–608.
Joachims, T. 1999a. SVM-Light: Support vector machine.
Cornell Univ.
Joachims, T. 1999b. Transductive inference for text classifica-
tion using support vector machines. International Conference
on Machine Learning (ICML) 200–209.
Kifer, D.; Ben-David, S.; and Gehrke, J. 2004. Detecting
change in data streams. VLDB 180–191.
Luntz, A., and Brailovsky, V. 1969. On estimation of char-
acters obtained in statistical procedure of recognition. Tech-
nicheskaya Kibernetica 3.
Luxburg, U. V. 2007. A tutorial on spectral clustering. Stat.
and Computing 17:395–416.
Mansour, Y.; Mohri, M.; and Rostamizadeh, A. 2009. Domain
adaptation: Learning bounds and algorithms. Conference on
Learning Theory (COLT).
Maurer, A. 2005. Algorithmic stability and meta-learning.
Journal of Machine Learning Research (JMLR) 967–994.
Platt, J. C. 1999. Fast training of support vector machines
using sequential minimal optimization. Advances in kernel
methods 185–208.
Saenko, K.; Kulis, B.; Fritz, M.; and Darrell, T. 2010. Adapt-
ing visual category models to new domains. European Con-
ference on Computer Vision (ECCV).
Salton, G., and Buckley, C. 1988. Term-weighting approaches
in automatic text retrieval. Information processing & manage-
ment 24(5):513–523.
Schweikert, G.; Ratsch, G.; Widmer, C.; and Scholkopf, B.
2009. An empirical analysis of domain adaptation algorithms
for genomic sequence analysis. Advances in neural informa-
tion processing systems (NIPS) 1433–1440.
Shalev-Shwartz, S., and Ben-David, S. 2014. Understand-
ing machine learning: From theory to algorithms. Cambridge
University Press.
Sugiyama, M., and Mueller, K. 2005. Generalization error
estimation under covariate shift. Workshop on Information-
Based Induction Sciences.
Sugiyama, M.; Krauledat, M.; and Mueller, K. 2007. Co-
variate shift adaptation by importance weighted cross valida-
tion. Journal of Machine Learning Research (JMLR) (8):985–
1005.
Thet, T. T.; Jin-Cheon, N.; Christopher, K.; and Subbaraj, S.
2009. Sentiment analysis of movie reviews on discussion
boards using a linguistic approach. CIKM workshop on Topic-
sentiment analysis for mass opinion 1:81–84.

2482




