
Learning to Hash on Structured Data

Qifan Wang, Luo Si and Bin Shen
Computer Science Department, Purdue University

West Lafayette, IN 47907, US
wang868@purdue.edu, lsi@purdue.edu, bshen@purdue.edu

Abstract

Hashing techniques have been widely applied for large scale
similarity search problems due to the computational and
memory efficiency. However, most existing hashing meth-
ods assume data examples are independently and identically
distributed. But there often exists various additional depen-
dency/structure information between data examples in many
real world applications. Ignoring this structure information
may limit the performance of existing hashing algorithms.
This paper explores the research problem of learning to Hash
on Structured Data (HSD) and formulates a novel framework
that considers additional structure information. In particular,
the hashing function is learned in a unified learning frame-
work by simultaneously ensuring the structural consistency
and preserving the similarities between data examples. An
iterative gradient descent algorithm is designed as the opti-
mization procedure. Furthermore, we improve the effective-
ness of hashing function through orthogonal transformation
by minimizing the quantization error. Experimental results on
two datasets clearly demonstrate the advantages of the pro-
posed method over several state-of-the-art hashing methods.

Introduction
With the explosive growth of the Internet, a huge amount of
data has been generated, which indicates that efficient sim-
ilarity search becomes more important. Traditional similar-
ity search methods are difficult to be directly used for large
scale applications since linear scan between query exam-
ple and all candidates in the database is impractical. More-
over, the similarity between data examples is usually con-
ducted in high dimensional space. Recently, hashing meth-
ods (Wang, Zhang, and Si 2013b; Rastegari et al. 2013;
Bergamo, Torresani, and Fitzgibbon 2011; Liu et al. 2011;
2012b; Salakhutdinov and Hinton 2009; Wang et al. 2014b;
2014a) are proposed to address the similarity search prob-
lem within large scale data. These hashing methods design
compact binary code in a low-dimensional space for each
data example so that similar examples are mapped to similar
binary codes. In the retrieval process, these hashing methods
first transform each query example into its corresponding bi-
nary code. Then similarity search can be simply conducted
by calculating the Hamming distances between the codes of

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Data examples with structure information. (a)
Webpages link to each other. (b) Images share semantic la-
bels.

available data examples and the query and selecting data ex-
amples within small Hamming distances, which can be cal-
culated using efficient bitwise operator XOR.

Hashing methods generate promising results by success-
fully addressing the storage and search efficiency chal-
lenges. However, most existing hashing methods assume
that data examples are independently and identically dis-
tributed. But in many applications, the dependencies be-
tween data examples naturally exist and if incorporated in
models, they can potentially improve the hashing code per-
formance significantly. For example, many webpages have
hyperlinks pointing to other related webpages (see Fig.1(a)).
The contents of these linked webpages are usually relevant,
which present similar topics. The hyperlinks among web-
pages provide important structure knowledge. Another ex-
ample is that similar images often share semantic labels (see
Fig.1(b)). The more labels two images have in common,
the more similar the images are. The shared semantic labels
among images offer valuable information in binary codes
learning. These structure information have been utilized in
clustering (Shen and Si 2010) and classification (Zhang et
al. 2011) problems, and proven to be helpful knowledge.
Therefore, it is important to design hashing method that pre-
serve the structure information among data examples in the
learned Hamming space.

This paper proposes a novel approach of learning to Hash
on Structured Data (HSD) that incorporates the structure
information associated with data. The hashing function is

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

3066



learned in a unified learning framework by simultaneously
ensuring the structural consistency and preserving the simi-
larities between data examples. In particular, the objective
function of the proposed HSD approach is composed of
two parts: (1) Structure consistency term, which ensures the
hashing codes to be consistent with the structure informa-
tion. (2) Similarity preservation term, which aims at pre-
serving the similarity between data examples in the learned
hashing codes. An iterative gradient descent algorithm is de-
signed as the optimization procedure. We further improve
the quality of hashing function by minimizing the quantiza-
tion error. Experimental results on two datasets demonstrate
the superior performance of the proposed method over sev-
eral state-of-the-art hashing methods.

The rest of this paper is organized as follows. Section 2
reviews previous hashing methods. Section 3 presents the
formulation of the proposed HSD hashing method. Section
4 describes the optimization method together with the or-
thogonal transformation. Some analysis of the algorithm is
also provided. The experimental results and discussions are
given in Section 5. Section 6 concludes and points out some
future directions.

Related Work
Locality-Sensitive Hashing (LSH) (Datar et al. 2004) is
one of the most commonly used data-independent hash-
ing methods. It utilizes random linear projections, which
are independent of training data, to map data points from
a high-dimensional feature space to a low-dimensional bi-
nary space. This method has been extended to Kernelized
Locality-Sensitive Hashing (Raginsky and Lazebnik 2009;
Kulis and Grauman 2009) by exploiting kernel similarity for
better retrieval efficacy. Another class of hashing methods
are called data-dependent methods, whose projection func-
tions are learned from training data. These data-dependent
methods include spectral hashing (SH) (Weiss, Torralba, and
Fergus 2008), principal component analysis based hashing
(PCAH) (Lin, Ross, and Yagnik 2010), self-taught hashing
(STH) (Zhang et al. 2010) and iterative quantization (ITQ)
(Gong et al. 2012). SH learns the hashing codes based on
spectral graph partitioning and forcing the balanced and un-
correlated constraints into the learned codes. PCAH utilizes
principal component analysis (PCA) to learn the projection
functions. STH combines an unsupervised learning step with
a supervised learning step to learn effective hashing codes.
ITQ learns an orthogonal rotation matrix to refine the ini-
tial projection matrix learned by PCA so that the quantiza-
tion error of mapping the data to binary codes is minimized.
Compared with the data-independent methods, these data-
dependent methods generally provide more effective hash-
ing codes.

Recently, supervised hashing methods (Liu et al. 2012a;
Wang, Zhang, and Si 2013a; Wang et al. 2013; Wang, Si, and
Zhang 2014; Wang et al. 2014c) have incorporated labeled
data/information, e.g. semantic tags, for learning more effec-
tive hashing function. For example, in semi-supervised hash-
ing (Wang, Kumar, and Chang 2012) method, pairwise sim-
ilarity constraints are imposed in the learning framework.
In work (Wang, Si, and Zhang 2014), tags are incorporated

to obtain more effective hashing codes via a matrix factor-
ization formulation. More recently, some multi-view hash-
ing methods (Gong et al. 2014; Zhang, Wang, and Si 2011;
Ding, Guo, and Zhou 2014) have been proposed to deal with
multi-modal data for cross-view similarity search. These
multi-view methods can be applied by treating the structure
information as second view. However, structure information
is usually very sparse, e.g., each webpage may contain very
few hyperlinks. Directly using it as a second information
source can lead to unreliable results. More discussion will
be provided later in the experiments.

Hashing on Structured Data
Problem Setting
Before presenting the details, we first introduce some no-
tations. Assume there are total n training examples. Let us
denote their features as: XXX = {x1, x2, . . . , xn} ∈ Rd×n,
where d is the dimensionality of the feature. A directed or
undirected graph G = (V,E) is used to depict the struc-
ture between data examples. Each node v ∈ V corresponds
to a data example, and an edge e = (i, j) ∈ E with a
weightwij represents a link/connection between nodes i and
j. The larger the weight wij is, the more relevant xi and xj
should be. We will discuss how to assign w later. The goal
is to obtain a linear hashing function f : Rd → {−1, 1}k,
which maps data examples XXX to their binary hashing codes
YYY = {y1, y2, . . . , yn} ∈ {−1, 1}k×n (k is the length of
hashing code). The linear hashing function is defined as:

yi = f(xi) = sgn(HHHTxi) (1)

where HHH ∈ Rd×k is the coefficient matrix representing the
hashing function and sgn is the sign function. yi ∈ {−1, 1}k
is the binary hashing code1 of xi.

The objective function of HSD is composed of two com-
ponents: (1) Structure consistency, which ensures that the
hashing codes are consistent with the structure information.
(2) Similarity preservation, which aims at preserving the
data similarity in the learned hashing codes. In the rest of
this section, we will present the formulation of these two
components respectively. Then we will describe the opti-
mization algorithm together with a scheme that can further
improve the quality of the hashing function by minimizing
the quantization error.

Structure Consistency
Our motivation is that the similarity between the learned
hashing codes should agree or be consistent with the struc-
ture information defined on the graph G. Specifically, a pair
of nodes linked by an edge tend to have similar hashing
codes. The larger the weight between nodes i and j, the
smaller the Hamming distance between their codes should
be. For webpages, we define the weight wij associated with
edge (i, j) to be the number of hyperlinks between the two
webpages. Similarly for images, we assign weight wij using
the number of common labels shared by image xi and xj .

1We generate hashing bits as {−1, 1}, which can be simply
converted to {0, 1} valued hashing codes.

3067



Then a structure consistency component can be directly
formulated as:∑

(i,j)∈E

wijdH(yi, yj) =
1

4

∑
(i,j)∈E

wij‖yi − yj‖2 (2)

where dH(yi, yj)= 1
4‖yi−yj‖

2 is the Hamming distance be-
tween binary codes yi and yj . This definition says that for
each linked node pair (i, j), the Hamming distance between
the corresponding hashing codes yi and yj should be con-
sistent with the edge weight wij . In other words, we assign
a heavy penalty if two strongly connected data examples are
mapped far away.

By substituting Eqn.1 with some additional mathematical
operations, the above equation can be rewritten as a compact
matrix form as:

tr
(
YYY W̄̄W̄WYYY T

)
= tr

(
sgn(HHHTXXX)W̄̄W̄Wsgn(XXXTHHH)

)
(3)

where tr() is the matrix trace function. W̄̄W̄W = DDD −WWW is
called graph Laplacian (Weiss, Torralba, and Fergus 2008)
andDDD is a diagonal n×n matrix whose entries are given by
DDDii =

∑n
j=1 wij . By minimizing the structure consistency

term, structure information is well preserved in Hamming
space by hashing functionHHH .

Similarity Preservation
One of the key problems in hashing algorithms is similar-
ity preserving, which indicates that similar data examples
should be mapped to similar hashing codes within a short
Hamming distance. To measure the similarity between data
examples represented by the binary hashing codes, one nat-
ural way is to minimize the weighted average Hamming dis-
tance as follows: ∑

i,j

SSSij‖yi − yj‖2 (4)

Here,SijSijSij is the pairwise similarity between data example xi
and xj . To meet the similarity preservation criterion, we seek
to minimize this quantity, because it incurs a heavy penalty
if two similar examples have very different hashing codes.

There are many different ways of defining the similarity
matrix SSS. In SH (Weiss, Torralba, and Fergus 2008), the au-
thors used the global similarity structure of all data pairs,
while in (Zhang, Wang, and Si 2011), the local similarity
structure, i.e., k-nearest-neighborhood, is used. In this pa-
per, we use the local similarity, due to its nice property in
many machine learning applications. In particular, the cor-
responding weights are computed by Gaussian functions:

SSSij =

 e
−
‖xi−xj‖

2

σ2
ij , if xi ∈ Nk(xj) or xj ∈ Nk(xi)

0, otherwise
(5)

The variance σij is determined automatically by local scal-
ing (Zelnik-Manor and Perona 2004), and Nk(x) represents
the set of k-nearest-neighbors of data example x. Similarly,
Eqn.4 can be rewritten as a compact form:

tr
(
YYY S̄̄S̄SYYY T

)
= tr

(
sgn(HHHTXXX)S̄̄S̄Ssgn(XXXTHHH)

)
(6)

By minimizing this term, the similarity between different
data examples can be preserved in the learned hashing codes.

Overall Objective
The entire objective function consists of three components:
the structure consistency term in Eqn.3, the similarity preser-
vation term given in Eqn.6 and an orthogonal constraint term
as follows:

min
HHH

tr
(
sgn(HHHTXXX)W̄̄W̄Wsgn(XXXTHHH)

)
+α tr

(
sgn(HHHTXXX)S̄̄S̄Ssgn(XXXTHHH)

)
+ β ‖HHHTHHH − III‖2F

(7)
where α and β are trade-off parameters to balance the
weights among the terms. The orthogonality constraint en-
force the hashing bits to be uncorrelated with each other and
therefore the learned hashing codes can hold least redundant
information.

Optimization Algorithm
Relaxation
Directly minimizing the objective function in Eqn.7 is in-
tractable since it is an integer programming problem, which
is proven to be NP-hard to solve. Therefore, we use the
signed magnitude instead of the sign function as suggested
in (Wang et al. 2013; Wang, Si, and Zhang 2014). Then the
relaxed objective function becomes:

min
H̃̃H̃H

tr
(
H̃̃H̃HTLLLH̃̃H̃H

)
+ β ‖H̃̃H̃HT H̃̃H̃H − III‖2F (8)

where LLL ≡ XXX(W̄(W̄(W̄ + αS̄)S̄)S̄)XXXT and can be pre-computed. H̃̃H̃H
represents the relaxed solution. Although the relaxed objec-
tive in Eqn.8 is still non-convex, it is smooth and differen-
tiable which enables gradient descent methods to be applied
for efficient optimization. The gradients of the two terms
with respect to H̃̃H̃H are given below:

d Eqn.8

d H̃̃H̃H
= 2LH̃LH̃LH̃ + 4βH̃̃H̃H(H̃̃H̃HT H̃̃H̃H − III) (9)

With this obtained gradient, L-BFGS quasi-Newton method
(Liu and Nocedal 1989) is applied to solve the optimization
problem.

Orthogonal Transformation
After obtaining the optimal hashing function H̃̃H̃H from the re-
laxation, the hashing codes YYY can be generated using Eqn.1.
It is obvious that the quantization error can be measured as
‖YYY − H̃TXXXH̃TXXXH̃TXXX‖2F . Inspired by (Gong et al. 2012), we propose
to further improve the hashing function by minimizing this
quantization error using an orthogonal transformation. We
first prove the following orthogonal invariant theorem.
Theorem 1. Assume QQQ is a k × k orthogonal matrix, i.e.,
QQQTQQQ = III . If H̃̃H̃H is an optimal solution to the relaxed problem
in Eqn.8, then H̃QH̃QH̃Q is also an optimal solution.

Proof. By substituting H̃QH̃QH̃Q into Eqn.8, we have:
tr
(

(H̃QH̃QH̃Q)TLLLH̃QH̃QH̃Q
)

= tr
(
QQQT H̃̃H̃HTLLLH̃QH̃QH̃Q

)
= tr

(
H̃̃H̃HTLLLH̃̃H̃H

)
,

and ‖(H̃QH̃QH̃Q)TH̃QH̃QH̃Q − III‖2F = ‖QQQT (H̃̃H̃HT H̃̃H̃H − III)QQQ‖2F =

‖H̃̃H̃HT H̃̃H̃H − III‖2F .
Thus, the value of the objective function in Eqn.8 does not
change by the orthogonal transformation.

3068



According to the above theorem, we propose to find a bet-
ter hashing functionHHH = H̃QH̃QH̃Q by minimizing the quantiza-
tion error between the binary hashing codes and the orthog-
onal transformation of the relaxed solution as follows:

min
Y,QY,QY,Q
‖YYY − (H̃QH̃QH̃Q)TXXX‖2F

s.t. YYY ∈ {−1, 1}k×n, QQQTQQQ = III
(10)

Intuitively, we seek binary codes that are close to some
orthogonal transformation of the relaxed solution. The or-
thogonal transformation not only preserves the optimality
of the relaxed solution but also provides us more flexibil-
ity to achieve better hashing codes with low quantization er-
ror. The idea of orthogonal transformation is also utilized in
ITQ (Gong et al. 2012). However, ITQ method is not de-
signed for incorporating structure information into learning
effective hashing function and it does not preserve the local
similarities among data examples. The above optimization
problem can be solved by minimizing Eqn.10 with respect
to YYY andQQQ alternatively as follows:

Fix Q and update Y . The closed form solution can be
expressed as:

YYY = sgn
(

(H̃QH̃QH̃Q)TXXX
)

= sgn(HHHTXXX) (11)

which is identical with our linear hashing function in Eqn.1.
Fix Y and update Q. The objective function becomes:

min
QQQTQQQ=III

‖YYY −QQQT H̃̃H̃HTXXX‖2F (12)

In this case, the objective function is essentially the classic
Orthogonal Procrustes problem (Schonemann 1966), which
can be solved efficiently by singular value decomposition
using the following theorem (we refer to (Schonemann
1966) for the detailed proof).
Theorem 2. Let SΛVSΛVSΛV T be the singular value decomposi-
tion of YYYXXXT H̃̃H̃H . Then QQQ = V SV SV ST minimizes the objective
function in Eqn.12.

We then perform the above two steps alternatively to ob-
tain the optimal hashing codes and the orthogonal transform
matrix. In our experiments, we find that the algorithm usu-
ally converges in about 40∼60 iterations. The full learning
algorithm is described in Algorithm 1.

Complexity Analysis
This section provides some analysis on the training cost of
the optimization algorithm. The optimization algorithm of
HSD consists of two main loops. In the first loop, we itera-
tively solve for H̃̃H̃H to obtain the relaxed solution, where the
time complexities for computing the gradient in Eqn.9 are
bounded by O(nkd+ nk2). The second loop iteratively op-
timizes the binary hashing codes and the orthogonal trans-
formation matrix, where the time complexities for updating
YYY and QQQ are bounded by O(nk2 + nkd + k3). Moreover,
both two loops take less than 60 iterations to converge in our
experiments. Thus, the total time complexity of the learning
algorithm is bounded by O(nkd+ nk2 + k3), which scales
linearly with n given n � d > k. For each query, the hash-
ing time is constant O(dk).

Algorithm 1 Hashing on Structured Data (HSD)
Input: Data examples XXX , Structure graph G and trade-off

parameters
Output: Hashing functionHHH and Hashing codes YYY

InitializeHHH andQQQ = III , Calculate LLL.
repeat

Compute the gradient in Eqn.9 and update H̃̃H̃H
until the solution converges
repeat

Update YYY using Eqn.11
UpdateQQQ = V SV SV ST according to Theorem 2.

until the solution converges
Compute hashing functionHHH=H̃QH̃QH̃Q.

Experimental Results
Datasets and Setting
We evaluate our method on two datasets: WebKB and
NUS-WIDE. WebKB2 contains 8280 webpages in total
collected from four universities. The webpages without any
incoming and outgoing links are deleted, resulting in a sub-
set of 6883 webpages. The tf-idf (normalized term frequency
and log inverse document frequency) (Manning, Raghavan,
and Schütze 2008) features are extracted for each webpage.
90% documents (6195) are randomly selected as training
data, while the remaining (688) documents are used for test-
ing. NUS-WIDE3 (Chua et al. 2009) is created by NUS lab
for evaluating image annotation and retrieval techniques. It
contains 270k images associated with 81 ground truth la-
bels. A subset of 21k images associated with these seman-
tic labels are used in our experiments. 500-dimensional vi-
sual features are extracted using a bag-of-visual-word model
with local SIFT descriptor (Lowe 2004). We randomly par-
tition this dataset into two parts, 1k for testing and 20k for
training.

We implement our algorithm using Matlab on a PC with
Intel Duo Core i5-2400 CPU 3.1GHz and 8GB RAM. The
parameter α and β are tuned by 5-fold cross validation
through the grid {0.01, 0.1, 1, 10, 100} on the training set
and we will discuss more details on how it affects the per-
formance of our approach later. We repeat each experiment
10 times and report the result based on the average over these
runs. Each run adopts a random split of the dataset.

Comparison Methods
The proposed Hashing on Structure Data (HSD) approach
is compared with five different hashing methods, includ-
ing Locality Sensitivity Hashing (LSH) (Datar et al. 2004),
Spectral Hashing (SH) (Weiss, Torralba, and Fergus 2008),
ITerative Quantization (ITQ) (Gong et al. 2012), Compos-
ite Hashing from Multiple Information Sources (CHMIS)
(Zhang, Wang, and Si 2011) and Collective Matrix Factor-
ization Hashing (CMFH) (Ding, Guo, and Zhou 2014). LSH,
SH and ITQ methods do not use any structure knowledge
for learning hashing codes. We use the standard settings in

2http://www.cs.cmu.edu/∼WebKB
3http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

3069



WebKB NUS-WIDE
Methods 8 bits 16 bits 32 bits 64 bits 128 bits 8 bits 16 bits 32 bits 64 bits 128 bits

HSD 0.6060.6060.606 0.6690.6690.669 0.7320.7320.732 0.7630.7630.763 0.7860.7860.786 0.4060.4060.406 0.409 0.4450.4450.445 0.4780.4780.478 0.4930.4930.493
CMFH 0.571 0.635 0.650 0.704 0.722 0.371 0.4110.4110.411 0.427 0.436 0.468
CHMIS 0.511 0.558 0.613 0.646 0.674 0.334 0.367 0.369 0.373 0.386

ITQ 0.523 0.548 0.604 0.637 0.652 0.253 0.306 0.308 0.315 0.322
SH 0.504 0.513 0.536 0.541 0.547 0.251 0.264 0.282 0.297 0.304

LSH 0.339 0.377 0.389 0.387 0.401 0.234 0.226 0.247 0.258 0.261

Table 1: Precision of the top 100 retrieved examples using Hamming Ranking on both datasets with different hashing bits.

Figure 2: Precision on both datasets with different bits. (a)-
(b): Precision of the top 100 returned examples using Ham-
ming Ranking. (c)-(d): Precision within Hamming radius 2
using Hash Lookup.

their papers for our experiments. For the multi-view hash-
ing methods CHMIS and CMFH, the structure information
is treated as the second view. Specifically, the link informa-
tion from webpages and the binary labels on images are used
as the additional view in these methods.

Evaluation Metrics
To conduct fair evaluation, we follow two criteria which
are commonly used in the literature (Gong et al. 2012;
Wang, Kumar, and Chang 2012): Hamming Ranking and
Hash Lookup. Hamming Ranking ranks all the points in
the database according to their Hamming distance from the
query and the top k points are returned as the desired neigh-
bors. Hash Lookup returns all the points within a small Ham-
ming radius r of the query. We use several metrics to mea-
sure the performance of different methods. For Hamming
Ranking based evaluation, we calculate the precision at top
K which is the percentage of true neighbors among the top

K returned examples, where we setK to be 100 in the exper-
iments. A hamming radius of R = 2 is used to retrieve the
neighbors for Hash Lookup. The precision of the returned
examples falling within Hamming radius 2 is reported. Note
that if a query returns no points inside Hamming ball with
radius 2, it is treated as zero precision.

Results and Discussion
We first report precisions for the top 100 retrieved exam-
ples and the precisions for retrieved examples within Ham-
ming ball with radius 2 by varying the number of hash-
ing bits in the range of {8, 16, 32, 64, 128} in Table 1 and
Fig.2. From these comparison results, we can see that HSD
provides the best results among all compared methods in
most cases. LSH does not perform well since LSH method
is data-independent, which may generate inefficient codes
compared to those data-depend methods. SH and ITQ meth-
ods learn the hashing codes from data and try to preserve
similarity between data examples. Thus they usually obtain
higher precision results than LSH method. But both SH and
ITQ methods do not utilize the structure information con-
tained in data. CHMIS and CMFH methods achieve better
performance than SH and ITQ due to incorporating struc-
ture information as an additional view into hashing codes
learning. However, learning a common space between the
two views by treating the structure as a second view may
lead to unreliable results especially when structure informa-
tion is very sparse or incomplete (more discussion will be
provided later). Moreover, the data similarity is not well pre-
served in their hashing function learning. On the other hand,
our HSD not only exploits structure information via model-
ing the structure consistency, but also preserves data similar-
ity at the same time in the learned hashing function, which
enables HSD to generate higher quality hashing codes than
the hashing methods. In Fig.2(c)-(d), we observe the pre-
cision of Hash Lookup for most of the compared methods
decreases significantly with the increasing number of hash-
ing bits. The reason is that the Hamming space becomes in-
creasingly sparse with longer hashing bits and very few data
points fall within the Hamming ball with radius 2, which
makes many queries have 0 precision. However, the preci-
sion of HSD is still consistently higher than the other meth-
ods for Hash Lookup.

We also evaluate the effectiveness of the proposed HSD
when partial structure information is available since the
structure knowledge may be very sparse in real world ap-

3070



WebKB NUS-WIDE
ratio 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
HSD 0.6570.6570.657 0.6880.6880.688 0.7020.7020.702 0.7150.7150.715 0.7320.7320.732 0.3630.3630.363 0.3910.3910.391 0.4160.4160.416 0.4300.4300.430 0.4450.4450.445

CMFH 0.528 0.546 0.584 0.628 0.650 0.304 0.336 0.369 0.402 0.427
CHMIS 0.517 0.549 0.565 0.580 0.613 0.270 0.287 0.314 0.331 0.369

Table 2: Precision of the top 100 examples under different training ratios on both datasets with 32 hashing bits.

WebKB NUS-WIDE
Methods training testing training testing

HSD 24.13 0.6x10−4 54.33 0.4x10−4

CMFH 58.82 0.6x10−4 138.64 0.4x10−4

CHMIS 42.59 0.7x10−4 92.16 0.5x10−4

ITQ 10.67 0.6x10−4 20.96 0.4x10−4

SH 13.22 4.2x10−4 27.38 3.3x10−4

LSH 4.75 0.6x10−4 2.62 0.4x10−4

Table 3: Training and testing time (in second) on both
datasets with 32 hashing bits.

plications. For example, labels associated with image tend
to be incomplete and hyperlinks on the webpage are often
missing. We progressively increase the number of edges in
the structure graph by varying the edge ratio from {0.2, 0.4,
0.6, 0.8, 1} (edges are randomly sampled based on the ratio)
and compare HSD with the two multi-view hashing meth-
ods4 using 32 bits. The precision results of top 100 retrieved
examples are reported in Table 2. It can be seen from the
results that our HSD gives the best performance among all
methods. We also observe that the precision result of the
other two methods drops much faster than HSD when the
structure information reduces. Our hypothesis is that when
structure graph is very sparse, the common space learned
from structure information and data features by the multi-
view hashing methods is not accurate and reliable. There-
fore, the hashing codes generated by these methods have
lower performance compared to the HSD method, which not
only ensures the structure consistency but also preserves the
similarity between data examples.

The training cost for learning hashing function and testing
cost for encoding each query on both datasets with 32 bits
are reported in Table 3. We can see from this table that the
training cost of HSD is less than a hundred seconds, which is
comparable with most of the other hashing methods and it is
not slow in practice considering the complexity of training.
In contrast to the offline training, the online code generation
time is more critical for real-world search applications. The
test time for HSD is sufficiently fast especially when com-
pared to the nonlinear hashing method SH. The reason is
that it only needs linear projection and binarization to gen-
erate the hashing codes for queries.

To prove the robustness of the proposed method, we con-
duct parameter sensitivity experiments on both datasets. In

4LSH, SH and ITQ do not utilize structure information thus are
not necessary to be compared here.

Figure 3: Parameter sensitivity results of precision of the top
100 retrieved examples with 32 hashing bits.

each experiment, we tune the trade-off parameter β from the
grid {0.5,1,2,4,8,32,128}. We report the precision of top 100
examples with 32 hashing bits in Fig.3. It is clear from these
experimental results that the performance of HSD is rela-
tively stable with respect to β in a wide range of values.
We also observe similar behavior of parameter α. But due to
space limit, they are not presented here.

Conclusion
This paper proposes a novel approach of learning to Hash
on Structured Data (HSD), which aims at incorporating
the structure information associated with data. The hash-
ing function is learned in a unified learning framework by
simultaneously ensuring the structural consistency and pre-
serving the similarities between data examples. We develop
an iterative gradient descent algorithm as the optimization
procedure. The quality of hashing function is further im-
proved by minimizing the quantization error through orthog-
onal rotation. Experimental results on two datasets demon-
strate that structure information is indeed useful in hashing
codes learning. We also show the superior performance of
the proposed method over several state-of-the-art hashing
methods. In future, we plan to form theoretical analysis on
the generalization error bound of the HSD method. We also
plan to apply some sequential learning approach to acceler-
ate the training speed.

Acknowledgments
This work is partially supported by NSF research grants
IIS-0746830, DRL-0822296, CNS-1012208, IIS-1017837,
CNS-1314688 and a research grant from Office of Naval
Research (ONR-11627465). This work is also partially sup-
ported by the Center for Science of Information (CSoI), an
NSF Science and Technology Center, under grant agreement
CCF-0939370.

3071



References
Bergamo, A.; Torresani, L.; and Fitzgibbon, A. W. 2011.
Picodes: Learning a compact code for novel-category recog-
nition. In NIPS, 2088–2096.
Chua, T.-S.; Tang, J.; Hong, R.; Li, H.; Luo, Z.; and Zheng,
Y. 2009. Nus-wide: a real-world web image database from
national university of singapore. In CIVR.
Datar, M.; Immorlica, N.; Indyk, P.; and Mirrokni, V. S.
2004. Locality-sensitive hashing scheme based on p-stable
distributions. In Symposium on Computational Geometry,
253–262.
Ding, G.; Guo, Y.; and Zhou, J. 2014. Collective matrix
factorization hashing for multimodal data. In CVPR, 4321–
4328.
Gong, Y.; Lazebnik, S.; Gordo, A.; and Perronnin, F. 2012.
Iterative quantization: A procrustean approach to learning
binary codes for large-scale image retrieval. IEEE TPAMI.
Gong, Y.; Ke, Q.; Isard, M.; and Lazebnik, S. 2014. A
multi-view embedding space for modeling internet images,
tags, and their semantics. International Journal of Computer
Vision 106(2):210–233.
Kulis, B., and Grauman, K. 2009. Kernelized locality-
sensitive hashing for scalable image search. In ICCV, 2130–
2137.
Lin, R.-S.; Ross, D. A.; and Yagnik, J. 2010. Spec hashing:
Similarity preserving algorithm for entropy-based coding. In
CVPR, 848–854.
Liu, D. C., and Nocedal, J. 1989. On the limited mem-
ory bfgs method for large scale optimization. Mathematical
Programming 45:503–528.
Liu, W.; Wang, J.; Kumar, S.; and Chang, S.-F. 2011. Hash-
ing with graphs. In ICML, 1–8.
Liu, W.; Wang, J.; Ji, R.; Jiang, Y.-G.; and Chang, S.-F.
2012a. Supervised hashing with kernels. In CVPR, 2074–
2081.
Liu, W.; Wang, J.; Mu, Y.; Kumar, S.; and Chang, S.-F.
2012b. Compact hyperplane hashing with bilinear functions.
ICML.
Lowe, D. G. 2004. Distinctive image features from scale-
invariant keypoints. IJCV 60(2):91–110.
Manning, C. D.; Raghavan, P.; and Schütze, H. 2008. In-
troduction to information retrieval. Cambridge University
Press.
Raginsky, M., and Lazebnik, S. 2009. Locality-sensitive
binary codes from shift-invariant kernels. In NIPS, 1509–
1517.
Rastegari, M.; Choi, J.; Fakhraei, S.; III, H. D.; and Davis,
L. S. 2013. Predictable dual-view hashing. In ICML, 1328–
1336.
Salakhutdinov, R., and Hinton, G. E. 2009. Semantic hash-
ing. Int. J. Approx. Reasoning 50(7):969–978.
Schonemann, P. 1966. A generalized solution of the orthog-
onal procrustes problem. Psychometrika 31(1):1–10.
Shen, B., and Si, L. 2010. Non-negative matrix factorization
clustering on multiple manifolds. In AAAI.

Wang, J.; Liu, W.; Sun, A.; and Jiang, Y.-G. 2013. Learning
hash codes with listwise supervision. In ICCV.
Wang, Q.; Shen, B.; Wang, S.; Li, L.; and Si, L. 2014a.
Binary codes embedding for fast image tagging with incom-
plete labels. In ECCV, 425–439.
Wang, Q.; Shen, B.; Zhang, Z.; and Si, L. 2014b. Sparse
semantic hashing for efficient large scale similarity search.
In CIKM, 1899–1902.
Wang, Q.; Si, L.; Zhang, Z.; and Zhang, N. 2014c. Active
hashing with joint data example and tag selection. In SIGIR,
405–414.
Wang, J.; Kumar, S.; and Chang, S.-F. 2012. Semi-
supervised hashing for large-scale search. IEEE TPAMI
34(12):2393–2406.
Wang, Q.; Si, L.; and Zhang, D. 2014. Learning to hash with
partial tags: Exploring correlation between tags and hashing
bits for large scale image retrieval. In ECCV, 378–392.
Wang, Q.; Zhang, D.; and Si, L. 2013a. Semantic hashing
using tags and topic modeling. In SIGIR, 213–222.
Wang, Q.; Zhang, D.; and Si, L. 2013b. Weighted hashing
for fast large scale similarity search. In CIKM, 1185–1188.
Weiss, Y.; Torralba, A.; and Fergus, R. 2008. Spectral hash-
ing. In NIPS, 1753–1760.
Zelnik-Manor, L., and Perona, P. 2004. Self-tuning spectral
clustering. In NIPS.
Zhang, D.; Wang, J.; Cai, D.; and Lu, J. 2010. Self-taught
hashing for fast similarity search. In SIGIR, 18–25.
Zhang, D.; Liu, Y.; Si, L.; Zhang, J.; and Lawrence, R. D.
2011. Multiple instance learning on structured data. In
NIPS, 145–153.
Zhang, D.; Wang, F.; and Si, L. 2011. Composite hashing
with multiple information sources. In SIGIR, 225–234.

3072




