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Abstract

Spectral clustering, a graph partitioning technique, has
gained immense popularity in machine learning in the
context of unsupervised learning. This is due to con-
vincing empirical studies, elegant approaches involved
and the theoretical guarantees provided in the litera-
ture. To tackle some challenging problems that arose in
computer vision etc., recently, a need to develop spec-
tral methods that incorporate multi-way similarity mea-
sures surfaced. This, in turn, leads to a hypergraph par-
titioning problem. In this paper, we formulate a cri-
terion for partitioning uniform hypergraphs, and show
that a relaxation of this problem is related to the mul-
tilinear singular value decomposition (SVD) of sym-
metric tensors. Using this, we provide a spectral tech-
nique for clustering based on higher order affinities,
and derive a theoretical bound on the error incurred by
this method. We also study the complexity of the algo-
rithm and use Nystrém’s method and column sampling
techniques to develop approximate methods with sig-
nificantly reduced complexity. Experiments on geomet-
ric grouping and motion segmentation demonstrate the
practical significance of the proposed methods.

Introduction

Spectral methods lead to an elegant class of methods in un-
supervised learning. One of its most common form is the
spectral clustering technique, where one views clustering as
a problem of partitioning an unweighted graph so as to mini-
mize the normalized cut. The spectral connection is that this
can be relaxed to a problem of finding the leading eigenvec-
tors of the normalized affinity matrix (Shi and Malik 2000;
Ng, Jordan, and Weiss 2002). Along with the empirical suc-
cess of this method, recent studies have proved its theoretical
merits (Rohe, Chatterjee, and Yu 2011).

However, the expressibility and efficiency of pairwise re-
lationships do not suffice in a variety of applications encoun-
tered in machine learning and computer vision. For instance,
one cannot construct a suitable pairwise relations for group-
ing overlapping geometric figures (see Figure 1). Hence, one
is often forced to consider multi-point similarities to capture
the connection among objects. From a graph theoretic per-
spective, these multi-way relationships may be viewed as a
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Figure 1: (a) Kanisza figure containing 3 lines and 3 circular
arcs; (b) spectral clustering groups points using proximity;
(c) our method detects the underlying geometric structures.

set of weighted hyperedges. Thus, in these situations, hyper-
graph partitioning methods appear to be an obvious choice.

Though the hypergraph partitioning problem originated in
1980s (Fiduccia and Mattheyses 1982), the use of hyper-
graphs to encode affinities has been made popular in ma-
chine learning recently. Algorithms have been proposed in
context of subspace clustering (Agarwal et al. 2005; Elham-
ifar and Vidal 2013), motion segmentation (Govindu 2005;
Ochs and Brox 2012), semi-supervised learning (Zhou,
Huang, and Scholkopf 2007; Hein et al. 2013), image
segmentation (Kim et al. 2011; Ducournau et al. 2012)
etc. These works study a variety of techniques for hyper-
graph based clustering, which include approximating hyper-
graphs by graphs (Agarwal et al. 2005), defining cut for-
mulations for hypergraphs (Hein et al. 2013), using low-
rank matrix representations (Elhamifar and Vidal 2013; Jain
and Govindu 2013), viewing clustering as non-cooperative
game (Rota Bulo and Pelillo 2013), formulating various op-
timization criteria (Liu, Latecki, and Yan 2010; Ochs and
Brox 2012), using IThara zeta functions (Ren et al. 2011) etc.

This paper focuses on a special class of hypergraphs,
called m-uniform hypergraphs, that are constructed from m-
ary affinity relations for some m > 2. Such hypergraphs
arise naturally in geometric grouping and motion segmenta-
tion. For such hypergraphs, the affinities can be expressed
as a m*"-order symmetric affinity tensor. Thus one can em-
ploy standard results related to tensor decompositions. For
instance, the cluster assignments can be extracted from non-
negative factorization of the affinity tensor (Shashua, Zass,
and Hazan 2006), or from eigenvectors of a similarity ma-
trix, estimated by sampling columns of flattened affinity ten-
sor (Govindu 2005). Similar decompositions have also been
used in other clustering methods (Huang et al. 2008).



In this paper, (1) we propose a method for partitioning
uniform hypergraphs by maximizing the squared associativ-
ity of the partition, and show that a relaxation of this prob-
lem is related to multilinear SVD of tensors (De Lathauwer,
De Moor, and Vandewalle 2000). (2) We use matrix pertur-
bation analysis to provide theoretical bounds on the fraction
of data misclustered by the proposed algorithm. Next, (3)
we focus on the complexity of the algorithm, and develop
techniques for approximating the tensor decomposition us-
ing linear-time SVD (Drineas, Kannan, and Mahoney 2006)
and the Nystrom approximation (Fowlkes et al. 2004). This
leads to a significant reduction of running time of the algo-
rithm. (4) Experiments on geometric grouping and motion
segmentation show the practical importance of our method.

Tensors and Uniform hypergraphs

The problem at hand is that of grouping n given objects,
V = {v1,...,v,}, into k disjoint clusters, C1,...,Cg. A
weighted undirected m-uniform hypergraph H on V is a
triplet H = (V,&,w), where V is a set of vertices and &
is the set of hyperedges, with each hyperedge being a col-
lection of m vertices. The function w : £ — R assigns a
real-valued weight to each hyperedge. Our primary aim for
constructing a hypergraph is to capture the similarity among
m-tuples of vertices (data points), which are used to parti-
tion V into the k disjoints sets.

One can represent the affinities of a m-uniform hyper-
graph by a m?"-order W € R™*"*--X" guch that

ifde € & e={vi,,...,vi, },
otherwise.

w(e
Wi i = { O( )

Since the hypergraph is undirected, the tensor W is sym-
metric, i.e., for any permutation o of indices, we have
Wiliz...im = Wiﬂ(l)ia(2)“'io(m) for all tuples (ilig .. im).

For partitioning the hypergraph, we need a notion of total
similarity of any group of vertices. We define this in terms
of the associativity, as described below.

Definition 1. Let C' C V be a group of vertices. The asso-
ciativity of C is defined as

Viq yVig 5eesViy, €C

In addition, for a partition C1,...,Cy of V, we define the
squared associativity of the partition as

= w;

Assoc(C)

192 0m *

SqAssoc(Ch, . ..

where |C| denotes the number of vertices in cluster C.

Though the above definition looks similar to association
score of kernel k-means (Zha et al. 2001), it is significantly
different as it incorporates multi-way affinities, and it does
not correspond to a Euclidean norm minimization as in k-
means. In the next section, we formulate an approach that
partitions the hypergraph by maximizing (1), and relax it
to obtain a spectral algorithm. For undirected graphs (2-
uniform hypergraphs), the above discussion holds for the

2611

symmetric affinity matrix, and maximization of (1) is an al-
ternative to the normalized associativity problem (Shi and
Malik 2000). We conclude this section by defining an oper-
ation for tensors that will be used in subsequent discussions.

Definition 2. Let A € R™M*n2XX"m gqpd [J € RP*™k,
The mode-k product of A and U is a m'"-order tensor, de-
noted by A X U € R™M > h—1 XPXNk1 XTom - gych that

ny,
(A Xk Uiy iy i i = E Al i viningn.imUjig-

in=1

Uniform hypergraph partitioning algorithm
We begin with mathematically formulating the problem of
maximizing squared associativity. For this, we follow the
approach used in case of graphs. Let H € R™** such that
H;j = |C;|~Y?if v; € C}, and zero otherwise. Using the
definition of mode-k product, one can write the maximiza-
tion of (1) as the following optimization:

k

o T T T\ 2
mavimize Y- (W 1 < xn ), @

where h; denotes the 4t column of H. Note that hy, . .., hy
are orthonormal. However, the above problem is hard. So we
relax it by allowing H € R"** to be any matrix with or-
thonormal columns. At this stage, we rely on the multilinear
SVD of symmetric tensors. The following theorem summa-
rizes a number of results in (De Lathauwer, De Moor, and
Vandewalle 2000; Chen and Saad 2009).

Theorem 3. Let W be a m'"-order n-dimensional symmet-
ric tensor. Then the solution to the problem

k
E (WX1U?X2’U,]T.

Jj=1

maximize

2
C Xom uJT)
UeRnxk.UTU=]

is the matrix U containing the k leading orthonormal left
== m—1
singular vectors of the matrix, W € R"*™" | given by

whenj =1+ (i1 —1)n'"2. (3)
=2

Wi; = Wiy i,

Furthermore, if U € R (") contains the remaining left
singular vectors of W, then one can express W as

W =3, [U U]l xg... % [U U, 4

S being a mt"-order n-dimensional all-orthogonal tensor:

The decomposition in (4) is known as the multilinear SVD
of symmetric tensors. The above result states that the solu-
tion to the relaxed pg{titioning problem is given by the left
singular vectors of W corresponding to the largest singu-
lar values. One can also think of the optimizer U as the k
leading orthonormal eigenvector matrix of WWT.Based on
this, we propose the algorithm that is listed as Algorithm 1.
The primary reason for clustering the rows of U is as fol-
lows: U acts as an approximation of the matrix H in (2) for
which the rows corresponding to vertices in same cluster are



Algorithm 1 Clustering using m-ary affinity relations

Given: An m!"-order affinity tensor W that contains the m-
ary affinity relations among objects V = {v1,...,v,}.
1. Construct W from W using (3).

Let U € R™ ¥ be the matrix of k leading orthonormal
left singular vectors of W (or eigenvectors of wwT,

. Cluster the rows of U into £ clusters using k-means, and
partition V accordingly.

identical. Hence, it must hold approximately for U also. A
more concrete justification is presented in the next section.
One can observe the resemblance of Algorithm 1 with the
spectral clustering algorithm (Ng, Jordan, and Weiss 2002).
The method in (Govindu 2005) is also similar to Algo-
rithm 1, but includes certain additional steps such as normal-

ization of WWT and approximation of the tensor. More-
over, the method in (Govindu 2005) does not arise from a
hypergraph partitioning formulation.

Perturbation analysis of proposed method

We now study the theoretical validity of the above approach.
Formally, we derive an upper bound on the error made by
Algorithm 1. The subsequent discussion is based on matrix
perturbation analysis, which has been often used to analyze
spectral techniques. Error bounds for spectral clustering us-
ing perturbation analysis have been studied in (Ng, Jordan,
and Weiss 2002; Rohe, Chatterjee, and Yu 2011). Chen and
Lerman (2009) used similar techniques to analyze an ap-
proach similar to (Govindu 2005), while Ghoshdastidar and
Dukkipati (2014) used perturbation bounds to provide simi-
lar guarantees in a semi-random setting.

The idea of perturbation analysis is to study the method
in an ideal case, and then provide bounds by considering the
affinity relations in the general case as a perturbation of the
ideal scenario. In the ideal case, we assume that the partition
is known and there is a hyperedge of unit weight on a set of
m distinct vertices only when all the vertices belong to the
same cluster. So the ideal affinity tensor is given as

1 iféq,...,4,, are distinct and
* _ . . . -
Wiis.. iy = Viys wees Uiy, € O for some 7,
0 otherwise.

A similar tensor has been used in (Chen and Lerman 2009),
and the performance of the algorithm using such tensor can
be found in (Chen and Lerman 2009, Proposition 4.8). How-
ever, while studying the general case, we deviate from the
analysis in (Chen and Lerman 2009), and use a variant of
the Davis-Kahan sin © theorem (Rohe, Chatterjee, and Yu
2011) which helps us to bound the fraction of misclustered
nodes, thereby providing a more useful result. The analysis
of Algorithm 1 is summarized in the following proposition.
th

&)

Proposition 4. let W be an m*"*-order n-dimensional affin-
ity tensor of a hypergraph with k partitions, W* be the cor-
responding ideal affinity tensor and W, W* be their respec-
tive flattened matrices. Let the following conditions hold:
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there exists € > 0 such that size of each cluster is at least

max{%, 2m — 1},

n > \/2(m—1) (2 — 2k +2
T _ Tt 1 m

3NWWT—WW* |2 < 55 (55) n™ for some o > 0

where || - ||2 is matrix operator norm. Then the fraction of
nodes, misclustered by Algorithm 1 is at most kn =2,

2. )7’”—2

, and

Proof. Due to the form of W* (5), the matrix ﬁ/\*ﬁ/\*T
has a block diagonal structure when the vertices are ordered
according to the true partition. Here, each non-zero block
corresponds to each cluster. The eigen-gap, J, between the

—T
k' and (k + 1)*" largest eigenvalues of W*W* can be
bounded below as (Chen and Lerman 2009, Proposition 4.8)

o> (%)m —(m-1) (n - %en)nkz

en

1 m
>3 (5%)" ©
where the first inequality uses condition 1, and the second
relies on condition 2 of the proposition. From condition 3

and Weyl’s inequality, the absolute difference between the

ih largest eigenvalues of WWT and ﬁ/\*ﬁ/\*T is bounded
above by %6 (i)m nm™m* < % foralls =1,...,n.Based on
this, we use the Davis-Kahan perturbation theorem to claim
the following: If U,U* € R™** are matrices of k leading

orthonormal eigenvectors of WWT and ﬁ/\*VV\*T, respec-
tively, then there is a rotation matrix O € R*** such that

—~ — T
2WWT —W*Ww= |2 < 1 )

(6/2)? — 8n2a’
where the last inequality follows from (6) and condition
3. We can combine this with the fact |[U — U*Ol]%2 <
k||U — U*O||3 to obtain a bound on Frobenius norm. More-
over, since § > 0, one can see that U™ has exactly k distinct
rows, each corresponding to a particular cluster.

Assume that the k-means step in Algorithm 1 achieves its
global optimum. Let ¢; € R¥ denote the k-means centroid
corresponding to the i*" data instance, and ¢} € R¥ be the
it row of U*O. It is observed in (Rohe, Chatterjee, and Yu
2011, Lemma 3.2) that if ||¢; — ¢}|| < 1/v/2nmax, then the
itP node is correctly clustered. Here, ny,ax is the maximum
cluster size which is bounded as 72,5 < (1— %e)n Thus,
the number of misclustered nodes is bounded by the num-
ber of nodes for which ||¢; — ¢f|| > 1/v/2nmax, Which can
be in turn bounded using the fact that c;’s are obtained by
minimizing objective of k-means algorithms. So, we have
fraction of misclustered nodes

< it llei — i1l = 1/v2nmax} < 8numax||U — U*O”%‘
B n - n
which can be bounded using (7) to arrive at the claim.

IU~U"0l3 <

O

The above result implies that as n increases, if the con-
ditions hold for some fixed a > 0, then the fraction of
misclustered nodes goes to zero. Hence, Algorithm 1 pro-
vides accurate clustering as the sample size increases. The
use of operator norm helps to obtain a less strict assumption
in condition 3, as compared to the Frobenius norm consid-
ered in (Rohe, Chatterjee, and Yu 2011; Ghoshdastidar and
Dukkipati 2014).



Complexity and approximations

While the previous section shows that the Algorithm 1 is ac-
curate for large sample size, the complexity of the method
(in its crude form) is as large as O(n™*1). This is mainly
due to the large number of computations required to com-
pute all the entries of the tensor. In this section, we study
some techniques to determine the eigenvector matrix U by
sampling elements of the tensor. This significantly reduces
the complexity as one only needs to compute values of
the sampled entries. Our discussion is based on two popu-
lar sampling techniques for matrices, namely column sam-
pling (Drineas, Kannan, and Mahoney 2006) and Nystrém
approximation (Fowlkes et al. 2004). In the latter case, we
generalize the existing approach to the case of symmetric
tensors. We also discuss a simple technique to extend the
clustering to a large number of unsampled entries.

Column sampling and Linear-time SVD

We recall that our primary interest is to compute the k lead-

ing left singular vectors of the matrix W e R We
can solve this using the linear-time SVD algorithm (Drineas,
Kannan, and Mahoney 2006), which uses only some ¢ num-
ber of sampled columns to compute an approximate SVD.
However, this approach requires to read the matrix once
from an external storage to determine the probabilities for
sampling each column. Since, this process is extremely
costly in our case, we use a variation of linear-time SVD.
Below, we state the modification of Algorithm 1 combined

with this approximation. Note here that each column of W

corresponds to fixing (m — 1) vertices, while the entries are
computed by varying the m'" vertex.

Algorithm 2 Column sampling variant of Algorithm 1

Given: An m-way affinity measure among {v1,...,v,};
Number of sampled columns c; Threshold parameter 7 > 0.

1. Compute a matrix C' € R™*€ as follows:
Fort=1toc
(a) Randomly select (m — 1) vertices.

(b) Compute w € R™ whose entries are m-way affinities
of all vertices with (m — 1) chosen vertices.

(c) If |lw|| < 7, goto 1(a), else set t*" column of C as w.
2. Let U be the matrix of k leading left eigenvectors of C'.

3. Cluster the rows of U into k clusters using k-means, and
partition V accordingly.

The above algorithm can be performed in O(1*5, + kn?),
where 7 is the rate of rejecting columns in Step 1(c).
Govindu (2005) also used a column sampling heuristic, but
did not consider rejecting columns. Rejection is essential
because of the following reason. Consider the line cluster-

ing problem stated in the introduction. Here, any column
of W contains useful information only if the correspond-
ing (m — 1) vertices belong to the same cluster. Otherwise,
all the entries in the column contain small values, and it is
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hence, uninformative. Reducing the rejection can be pos-
sible in certain problems as motion segmentation and sub-
space clustering by choosing vertices that are in close prox-
imity or closely define a subspace. This can be achieved by
performing an initial run of k-means or k-subspaces (Ho et
al. 2003) algorithms. However, the number of initial clusters
required depends on the nature of problem at hand. One can
derive error bounds for above method by combing Propo-
sition 4 with (Drineas, Kannan, and Mahoney 2006, Theo-
rem 4). The method of rejecting columns of small magnitude
is essential to achieve reasonable bounds.

Nystrom approximation

This method approximates the eigen-decomposition of sym-
metric matrices using only a sampled set of entries (Fowlkes
et al. 2004; Drineas and Mahoney 2005). One randomly
samples ¢ columns of the matrix, and computes the % lead-
ing eigenvectors of the matrix formed by intersection of the
sampled c columns with corresponding c rows. The Nystrom
extension of the above eigenvectors are then computed us-
ing other entries of the sampled columns. The key observa-
tion at this stage lies in the fact that the Nystrom extension
of eigenvectors is such that, if &k ¢, then the ¢ sampled
columns of the original matrix are accurately reproduced in
the Nystrom approximation of the matrix. Using this fact,
we present a similar method for symmetric tensors.
Suppose we have a m!"-order n-dimensional symmet-
ric tensor W. We focus on an approximate decomposition
similar to the one in (4) (Proposition 3), with time com-
plexity significantly less than O(n™*1). Following the strat-
egy of Nystrom’s method, we sample a m!”-order subtensor
A € R™*" which contains m-way affinities of r sam-
pled vertices. Let the multilinear SVD of A be given by

A:21X1U1X2U1X3...XmU1, (8)
where U; € R"*" is the left singular vector matrix of A, the
flattening matrix of A.

Next, we compute an extension of U; in a spirit similar
to that of Nystrom extension, i.e., by closely approximating
the affinities among sampled and unsampled instances. In
the case of matrices, we require only O(r(n — r)) memory
to represent all such affinities. However, in case of m-way
affinity, the number of possible entries is (n—7)rn™~2 con-
sidering all the cases where affinity is constructed over a set
of size m that includes at least one sampled and one unsam-
pled instance. To avoid such high memory requirement, we
use only the m-way affinities defined over one unsampled
instance and (m — 1) of the sampled points. This can be rep-
resented in a mt"-order tensor B € R("—7)X7X... X7 whoge
first index varies over all unsampled data instances and the
rest over the r sampled instances.

Let Uy € R(™=")%" be an extension of the eigenvectors
to the unsampled instances. Using this, we may write the
approximation of the tensor W as

\7\7:21><1<g;>><2...><m<

9



Our objective here is to find Us such that we can approxi-
mate the subtensor B well in (9). Note, if W ~ W then
B%El ><1U2 ><2U1...><mU1:A><1 (UQUiT),
(10)
where we use (8) to simplify the expression. However,
this may not be achieved in general because (10) imposes
r™~1(n —r) conditions, while there are only r(n — r) vari-
ables in U>. Hence, we opt for a least squares solution, where
we minimize the || || #-norm of the difference of the two ten-
sors. This norm is defined similar to the Frobenius norm of
matrices, i.e., || - ||% denotes the sum of squares of all en-
tries of a tensor. The solution to this problem is given in the
following result.

Proposition 5. Let A, B and Uy be as above. Then

U, arg min ||B7A><1 (ZUlT)Hi
ZeR(n—r)xr

BATU, (UlT EETUl) o

where A € R™™" " and B € RO=%"""" 4re obtained
from A and B, respectively, by flattening (3). Thus, the
Nystrom extension of Uy is given by

U
U= 5+ ~ -1
BATU, (UlTAATUl)
Proof. The key in this proof is to appropriately express the

the norm || - || for tensor in terms of the corresponding flat-
tened matrix. One can verify that

IB - A x, (2UT)|[5 = 1B - 2UT A%,

the latter being the standard Frobenius norm for matrices.
The minimizer Us of the above problem satisfies

BATU, = U, (UlTﬁflTUl) :

and hence, the claim.

Y

O

We note that the matrix U7 AAT U, is diagonal with non-
negative entries. Hence, one can simply use the pseudo-
inverse in case some diagonal entries are zero. Moreover, we
are interested in only the k leading orthonormal eigenvec-
tors. This can be simply obtained by selecting the k leading
eigenvectors in Uj, and orthonormalize the corresponding
columns of Nystrom extension.

One requires to choose the r vertices wisely. For this, we
use the idea in (Zhang, Tsang, and Kwok 2008), where the
authors suggest an initial k-means clustering to select the r
landmark points, which are centers of k clusters. However,
in our case, it is more appropriate to perform an initial k-
means or k-subspaces clustering and choose at least (m — 1)
points from each cluster as one requires expects high m-way
affinity for other points in same cluster with a chosen col-
lection of points. The intuition for effectiveness for initial
k-means clustering is that in a number of subspace cluster-
ing or motion segmentation problems, closely located data
instances often lie in same cluster. Based on this, we present
Algorithm 3 which has O(r™*! +kr?4+knr™~1) time com-
plexity, where = n..k,, k, being the initial number of clus-
ters and n,. the number of points chosen from each cluster.
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Algorithm 3 Nystrom approximation of Algorithm 1

Given: An m-way affinity measure among {v1,...,v,};
Number of initial clusters k,; Number of vertices chosen
from each cluster n,.(> (m — 1)).

1. Form initial k, clusters using k-means or k-subspaces.

2. From each cluster, randomly sample n,. data instances to

form the set of r = n,.k, vertices.

. Compute the m"-order affinity tensor, A, for the sam-
pled vertices, and compute U; € R"*¥, the k leading left

singular vector matrix of A.
4. Compute B as describe above.

Find the Nystrom extension U & Rn <k using (11), and
orthonormalize its columns.

Cluster the rows of U into k clusters using k-means, and
partition V accordingly.

Extending labels by fitting

Often in problems such as subspace clustering and geomet-
ric grouping, each cluster represents a geometric object, and
the m-way affinities are computed based on the error of fit-
ting m points in such a model. For these problems, one can
often work on a sampled set of data instances. Provided that
the clusters are accurately detected on this sampled set, one
can easily extend the clustering result to other unsampled
data points by the following procedure.

1. For each of the k obtained clusters, fit a model based on
the data assigned to the cluster.

2. For each new sample, compute the fitting error for each of
the £ models, and assign it to the cluster for which fitting
error is least.

This approach runs in linear time, but requires a good initial
labeling to start with. Hence, we recommend this approach
only when the data is considerably large, and a small fraction
of data can be accurately clustered using Algorithms 2 or 3.

Experimental validation

In this section, we conduct experiments on geometric group-
ing and motion segmentation. Figure 1 in introduction shows
that one cannot group geometric objects using pairwise
affinities. Hence, one requires higher order similarities based
on error on fitting geometric models. In such problems, we
choose a geometric structure, and for any set of m points,
we compute the error (f) of fitting these points into the as-
sumed model. The m-way affinity is simply e~¢/ for some
parameter ¢ > 0. Note that one has to choose m larger
than the number points that uniquely define the model. A
suitable choice is m 3 for line fitting, and m 4
for circle and plane fitting. The sample size (n) and the
tensor order (m) in Figure 2 show that the computational
time required to work with the complete tensor is difficult
in such cases, and so the works in (Agarwal et al. 2005;
Zhou, Huang, and Schélkopf 2007; Rota Bulo and Pelillo
2013) etc. cannot be used. Hence, approximate methods



such as Algorithms 2 and 3 are required. Figure 2 (right
column) clearly shows that these approximation techniques
work quite well in such problems. Moreover, in case of the
second problem in Figure 2, even approximate methods re-
quire significant time. So we use only 1% of the data and
extend the labeling by the method of fitting discussed above.

Clustering
edge pixels

-3

Detected edges | Clustered edges

Clustering
cube faces

n = 38726

Depth map Clustered faces

Figure 2: Geometric grouping using proposed method.

To give an experimental comparison of the two proposed
approximation methods, we consider a problem of grouping
points on three randomly generated intersecting lines using
374 order affinities based on line fitting error. In this case, us-
ing the entire affinity tensor is similar to the ideal case, and
hence, the leading eigenvectors are indicators of the true as-
signments. In Figure 3, we compare the errors incurred and
time taken by Algorithms 2 and 3 as the fraction of entries
sampled from the tensor increases. The error is measured in
terms of difference in the subspaces spanned by the lead-
ing orthonormal eigenvectors of the entire tensor and the ap-
proximate eigenvectors computed by the Algorithms. This
difference can be computed as in (Rohe, Chatterjee, and Yu
2011, Appendix B). Figure 3 clearly shows that when less
entries are sampled, column sampling gives better approx-
imation. But, as sampling increases error incurred by both
methods are quite similar. This shows that the variation of
similarities over the entire data is not captured well when
less samples are used in Nystrom approximation. On the
other hand, for higher number of samples, column sampling
requires more time due to rejection of columns.

o

-
@
=

Time {sec)

o
=
=

Diffegence in subspace .

-

o Fraction EF.;ETVITDI-ES_-
=2 g 52 ol

10 10 10 10

raction of sanp)

Figure 3: (left) Error incurred and (right) time taken by Al-
gorithms 2 and 3 as the number of sampled entries varies.
Black line is for Algorithm 2 and red line for Algorithm 3.
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Finally, we conduct experiments on the Hopkins 155 mo-
tion segmentation database (Tron and Vidal 2007), where
each video contains two or three independent motions. There
are 120 videos with two motions, and 35 videos with three
motions. It is well known that trajectories of each rigid mo-
tion span a low-dimensional subspace. For each problem,
we use 4*"-order tensors, and fit group of four trajectories
in a subspace of dimension 2. The affinities are of the form
e~°f() where f(-) is the fitting error. Table 1 reports the
mean and median percentage error of clustering computed
for all datasets with 2 or 3 motions. The table compares our
method with 7 existing approaches for motion segmentation.
The results in top six rows have been taken from (Jain and
Govindu 2013). The results in Table 1 clearly show that our
method achieves almost best performance in case of 2 mo-
tion problems. For 3 motion segmentation, the mean error
is worse than LRR-H, SSC and SGC, but the median of
the errors is better than these. Overall, though SGC (Jain
and Govindu 2013) gives best performance on Hopkins 155
database, our approach achieves almost similar accuracy. We
also note that an initial clustering before sampling helps to
significantly reduce the error compared to (Govindu 2005).

Method 2 motions 3 motions All videos
Mean Median | Mean Median | Mean Median

LSA 423 056 | 7.02 145 | 486 0.89
SCC 289 000 | 825 024 |410 0.00
LRR 410 022 |989 622 |541 0.53
LRR-H | 2.13 0.00 | 403 143 | 256 0.00
LRSC | 369 029 |769 380 |459 0.60
SSC 1.52 000 | 440 0.56 |2.18 0.00
SGC 1.03 0.00 |553 035 |205 0.00
Govindu | 1.83 0.00 | 9.31 571 |352 0.03
Ours 1.05 000 |572 028 | 211 0.00

Table 1: Mean and median of percentage error incurred by
different algorithms on the Hopkins 155 dataset.

Conclusion

In this paper, we studied an extension of spectral clustering
to the case of uniform hypergraphs. We formulated the prob-
lem of maximizing squared associativity of uniform hyper
graphs, and showed that a relaxation of this problem is re-
lated to the multilinear SVD of the affinity tensor of the hy-
pergraph. Based on this, we proposed a spectral hypergraph
partitioning algorithm, and derived a theoretical bound for
the fractional error incurred by the algorithm. We also devel-
oped approximation techniques to reduce the time complex-
ity of the algorithm using linear-time SVD and Nystrom’s
method, and experimentally compared these two approxi-
mations. We also demonstrated the accuracy of the proposed
algorithm in geometric grouping and motion segmentation.
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