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Abstract

If we know most of Smith’s friends are from Boston, what can
we say about the rest of Smith’s friends? In this paper, we fo-
cus on the node classification problem on networks, which is
one of the most important topics in Al and Web communi-
ties. Our proposed algorithm which is referred to as OMNI-
Prop has the following properties: (a) seamless and accurate;
it works well on any label correlations (i.e., homophily, het-
erophily, and mixture of them) (b) fast; it is efficient and guar-
anteed to converge on arbitrary graphs (c) quasi-parameter
free; it has just one well-interpretable parameter with heuris-
tic default value of 1. We also prove the theoretical connec-
tions of our algorithm to the semi-supervised learning (SSL)
algorithms and to random-walks. Experiments on four real,
different network datasets demonstrate the benefits of the
proposed algorithm, where OMNI-Prop outperforms the top
competitors.

Introduction

If most of Smith’s friends are from Boston, what would you
say about the rest of Smith’s friends? Most people would
say that the rest of friends are also from Boston. In this pa-
per, we address the problem of node classification on net-
works where nodes are classified into one of the prede-
fined labels. There are various kinds of labels people may
concern: demographic labels of people on social networks
such as gender, locations, and education (Mislove et al.
2010); research areas of researchers on co-authorship net-
works (Sun et al. 2009); and political leanings of blogs on
blogosphere (Adamic and Glance 2005). Although these la-
bels are important for many practical applications (e.g., mar-
keting products and forecasting the election outcome), a sig-
nificant part of labels on networks are typically unavailable,
meaning that a lot of practical applications benefit from node
classification.

The node classification problem can be formulated as fol-
lows: A number of important tasks have been solved in the
form of node classification problem: user profiling (Jurgens
2013), blog classification (Ikeda, Takamura, and Okumura
2008), recommendations (Ha et al. 2012), and word sense
disambiguation (Pham, Ng, and Lee 2005). For this reason,
the node classification on networks, which is also known as
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(b) The main result
POKEC-G network.
Figure 1: (a) Hypothesis: If the most of followers are males,
then the rest is also male. (b) Proposed OMNI-Prop wins:
against top competitors on the network with neither ho-
mophily nor heterophily.
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the collective classification, has been one of the most ac-
tive and important research fields in AI and Web commu-
nities (Neville and Jensen 2000)(Zhu et al. 2003)(Sen et al.
2008).

There are two major research issues on this problem,
which we tackle with in this paper.
Label correlation types. Node classification is often solved
based on the label correlations known as homophily (i.e.,
love of similar) or heterophily (i.e., love of different). On
the homophily networks, nodes with similar characteristics
tend to connect to each other, while the reverse is true on
the heterophily networks. As well as the above two popular
cases, there is also the case of mixture of homophily and het-
erophily. For example, on social networks, talkative people
tend to prefer talkative friends but some talkative people pre-
fer silent friends. In contrast to homophily and heterophily,
this mixed correlation depends on the preference of each
node and therefore no clear correlation is observed at the
network level. Most of node classification algorithms (Zhu
et al. 2003)(Goldberg, Zhu, and Wright 2007) assume one of
these label correlations and propagate signals on the graph.
However, as pointed out by (Bilgic and Getoor 2010), prop-
agating signals in the wrong way causes misclassifications.
Hence, we need the seamless node classification algorithm
that can be applied to any kind of label correlations without
any assumption about it.
Evidence sufficiency. The majority of nodes have the small
number of degrees on most of real-world networks with
power law degree distributions (Faloutsos, Faloutsos, and



Faloutsos 1999). Unfortunately, it is inherently difficult to
classify such nodes because we cannot obtain sufficient ev-
idences from their neighbors. In some practical applica-
tions, one’s first priority is the accuracy of the classification
while the recall is not that important (e.g., a situation that
false alarms cause a serious problem). Therefore, we should
choose not to classify such nodes to achieve reasonable clas-
sifications, which is known as the reject option.

Our main ideas. In this paper, we propose a node classi-
fication algorithm called OMNI-Prop, which tackles with
the above mentioned two research issues. Our algorithm is
based on the very intuitive and natural hypothesis that if the
most of followers' have the same label, then the rest also
have the same label. For example, Figure 1(a) illustrates this
hypothesis; node B is probably a male because node A has a
lot of males as its followers. In this way, OMNI-Prop prop-
agates labels on the graph. Thanks to this idea, OMNI-Prop
can handle any types of label correlations because we do not
mind the label of node A.

Furthermore, we adopt Bayesian-like fashion to consider
the evidence sufficiency. OMNI-Prop assigns every node
with the prior belief about its label and then it is updated
using the evidence from its neighbors. After the priors are
updated, we can choose to take a reject option or not for
each node by considering the shape of the probability distri-
bution.

Figure 1(b) shows our main result, which illustrates that
OMNI-Prop achieves substantial improvement against top
competitors to infer the genders of users on POKEC-G
dataset (see Experiments Section for the detail). The impor-
tant point is that OMNI-Prop works well although there is no
clear label correlation (neither homophily nor heterophily)
observed on this network.

Contributions. Our contributions of OMNI-Prop algorithm
are summarized as follows:

1. Seamless and Accurate: OMNI-Prop achieves good accu-
racy on arbitrary label correlation types.

2. Fast. each iteration of the propagation computation of
OMNI-Prop is linear on the input size and is proved to
converge on any graph structures.

3. Quasi-Parameter Free: OMNI-Prop has just one parame-
ter with default value of 1, meaning no parameter tuning
is needed.

Also, we offer a set of theorems that state theoretical connec-
tions to the semi-supervised learning (SSL) algorithms and
the random-walk on the specific type of graph which we call
twin graph. These connections indicate that our algorithm
has solid theoretical foundations.

Furthermore, we performed the extensive experiments us-
ing four different labeled networks: a blog citation network,
a co-authorship network, and two social networks. The re-
sults show that our algorithm outperforms top competitors
in terms of classification accuracy on all networks that have
different label correlation types.

"We adopt the term followers for in-neighbors, and followees
for out-neighbors.
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Table 1: Qualitative comparison

[ LP | RWR | BP || OMNI-Prop
] vV |V

Homophily v
Heterophily v v

Mix v

No parameters to tune || v v v
Convergence v v ? v

To the best of our knowledge, our algorithm is the first
solution to handle arbitrary label correlation without any pa-
rameters to tune. We believe that our proposal helps prac-
titioners solve the node classification problem without la-
borious preliminary investigation on label correlations and
parameter tuning.

Outline. The rest of the paper is organized as standard: prob-
lem definition, method description, theoretical analysis, ex-
perimental analysis, and conclusion.

Related work

As major algorithms that solve the node classification prob-
lem, we briefly survey Random Walk with Restarts (RWR),
Label Propagation (LP), and Belief Propagation (BP).

RWR is based on the Personalized PageRank (Jeh and
Widom 2003) (Page et al. 1999), where the random walk
goes back to seed nodes with a certain probability. RWR has
applied to many practical applications, including recommen-
dations (Liu et al. 2010) and link prediction (Liben-Nowell
and Kleinberg 2007).

LP is proposed by (Zhu et al. 2003), which is one of the
most well-known graph-based SSL algorithms. Graph-based
SSL algorithms have been actively studied in the Al commu-
nity (Zhou et al. 2004)(Baluja et al. 2008)(Gong et al. 2014).
Although there are some algorithms that can address the het-
erophily networks (Goldberg, Zhu, and Wright 2007)(Tong
and Jin 2007), no algorithm can be applied to arbitrary net-
works (including mixture) without parameter tuning. Since
LP and RWR have similar characteristics, we mainly com-
pare our algorithm with LP theoretically and experimentally.

BP is originally proposed as an efficient inference algo-
rithm for probabilistic graphical models (Pearl 1982), but it
has been applied to various problems like RWR and LP. Al-
though BP is very effective, its recursive calculation has no
guarantee to converge on arbitrary graphs.

Table 1 shows the qualitative comparison between our al-
gorithm and these major competitors. BP can handle het-
erophily, but it requires K2 parameters to tune where K
is the number of different labels. None of these three can
handle mixture of homophily and heterophily, which is ad-
dressed by our algorithm.

Problem Formulation

This section defines some terminologies and formulates the
node classification problem. Let G = (V, E) be a partially
labeled graph where V' is set of N nodes and E is set of
M edges. The set of nodes is composed of two types of
components V' = VE U VY where VE = {vy, -+, v}
is a set of L labeled nodes whose labels are known, while



Table 2: Symbols and Definitions

Symbols [ Definitions
A Adjacency matrix.

N, M, K || #of nodes, edges, and labels.
L # of labeled nodes.
U # of unlabeled nodes.
Sij Self-score that node 7 has label j.
ti; Follower-score that node ¢’s followers have label ;.
b, Prior belief that nodes have label j
A Prior strength parameter

VN = {vpy1,--- ,vpyu} is a set of U unlabeled noes

whose labels are unavailable. Let ) be the set of K pos-
sible labels, and Y7, = {y1,y2, - -, yr} be the label assign-
ments for the corresponding nodes in V%, Using these ter-
minologies, the node classification problem is formulated as
follows:

Problem 1 (Node Classification).
e Given: a partially labeled graph G = (V, E).
o Find: score s;; that unlabeled node 7 has label j.

e so that the classification function C(v;) = arg maxs;;
J
outputs the same label as the ground truth.

Note that a larger value of s;; indicates that node 7 is more
likely to have label j. If we can acquire well calibrated
scores, we can make a reasonable decision to take a reject
option or not.

Proposed Algorithm

In this section we propose OMNI-Prop, which is based on
the following hypothesis:

Hypothesis 1. If the most of followers of a node have the
same label, then the rest also have the same label.

By adopting followers rather than followees, OMNI-Prop is
robust to the suspicious connecting behaviors (Sun et al.
2005) because it is difficult for fraudulent nodes to control
followers of a node. OMNI-Prop formulates this hypothesis
by the following two basic ideas:

o Mutual-induction: OMNI-Prop considers that each node
has two scores: self-scores s;; and follower-scores t;;.
The self-score s;; denotes how likely node ¢ has label j,
while the follower-score ¢;; denotes how likely node #’s
followers have label j. These two scores are calculated on
the mutually-induced fashion.

o Bayesian-like inference: OMNI-Prop assigns each node
with the prior scores for both self-scores and follower-
scores, which are updated by the evidence from its neigh-
bors.

Here we assume we are given a directed graph, but the
OMNI-Prop is also applicable to undirected graphs if we
consider there are two opposite directed edges between con-
nected nodes. Table 2 gives the list of symbols we use.
Iterative algorithm. The basic scheme of OMNI-Prop is
to perform self-score update step and follower-score update
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step iteratively. In the self-score update step, s;; of unla-
beled nodes are calculated by aggregating follower-scores
of their followees as follows:

S Ajti + by
Zj‘vzl Aij + A

where by, is the prior score and A > 0 is the parameter. Each
labeled node has fixed value as s;;, = d(y;, k) that takes 1 if
y; equals to k, O otherwise.

In the follower-score update step, each node adaptively
adjusts the follower-score by looking around its followers’
self-scores as follows:

Sik <

)

Sy Aigsin + Abi
Ly Ay + A

Intuitively, if node ¢ has a lot of followers with label k,
follower-score t;;, gets large and in turn every follower of
node ¢ will gets large self-score s;;. This mutually-induced
calculation formulates our hypothesis.

Priors and the parameter. It is worth noting that the priors
and parameter A play a crucial role. The parameter controls
how much evidence is needed to update the priors, which
can be regarded as the strength of the prior in analogous to
Bayesian inference. Although one can use arbitrary values
(e.g., the class mass ratio) for priors, we adopt the uniform
prior (i.e., by = 1/K) in this paper according to our pre-
liminary study, which leads to the good result. Note that we
use the same priors and parameter for s;; and ?;; because
there is no reason to differentiate them. As discussed in our
experiments later, we can always use A = 1.0, meaning that
no parameter tuning is needed.

Matrix form of iterative algorithm. Hereafter, we formu-
late the matrix form of OMNI-Prop. Let S = {s;;} and
T = {t;} be row normalized N x K matrices. We write S
and the adjacency matrix A as sub-matrices as follows:

(St (AL
s=(50)-4=(a0):

where Sy, and Sy are L x K and U x K matrices, and Ay,
and Ay are L x N and U x N matrices, respectively. The
subscript L and U mean that the sub-matrices correspond
to the labeled nodes in V£ and unlabeled nodes in VU, re-
spectively. Recall that each labeled node has s;;, = 6(y;, k),
which corresponds to the elements of Sy,.

Using these matrices, the self-score and follower-score
update steps can be written in matrix form as follows:

tjk <

2)

3)

Sy (Dy + M)~ (AUT + )\lUbT) : )

T (F+ M)~} (ATS + )\leT> : )

where 17 and 1 is U and /N dimensional column vectors
where each component is 1, and bl = (b1, - ,bk). Dy

and F are U x U and N x N diagonal matrices defined as
follows:

N N
[Dulii =Y _[Avlijs Fii =

j=1



Algorithm 1 Iterative Algorithm

Require: explicit labels Y7,, adjacency matrix A, parameter A
: b+ uniform()

SO «— initializeS(Yr)

T° < initializeT()

k<0

repeat
SEF  (Dy + AD)7? (AUT"" + AlUbT)
TH  (F+AD 7! (AT S 4+ a1nbT)
k< k+1

until error between SSJA and S [’3 becomes sufficiently small

return S[’j and T*

YRR N2

Ju—

OMNI-Prop repeats these two steps iteratively until it

converges. As stated in the later section, it is proved that
OMNI-Prop with the positive parameter always converges.
The iterative algorithm of OMNI-Prop is shown in Algo-
rithm 1. s;; of unlabeled nodes and ¢;; of all nodes are ini-
tialized as arbitrary values.
Reject option After we obtain Sy, we can choose not to
classify the node v; if the value of maxy, s;; is small, which
means that there is not sufficient evidence to classify v;. In
our experiments, we report the precision@p that is the pre-
cision for top p% nodes ordered by maxy, s;x.

Theoretical Analysis

In this section, we offer a set of theorems that show the theo-
retical foundation of OMNI-Prop. All omitted proofs are on
the supplementary file.

Complexity Analysis
This section shows the time complexity of OMNI-Prop.

Theorem 1. The time complexity of OMNI-Prop is
O(RK(N + M)) where h is the number of iterations.

Proof . Omitted for brevity. See the supplementary file. [

Convergence and Fixed Point Solution

In this section, we prove the convergence of OMNI-Prop and
show the fixed point solution.

Lemma 1. The iterative algorithm of OMNI-Prop always
converges on arbitrary graphs if A > 0.

Proof . Omitted for brevity. See the supplementary file.

Theorem 2. The fixed point solution of OMNI-Prop is writ-
ten as:

Sy =(I—-Quuy)~" (QULSL + rbT) ) (6)

where

Q

r

(D+X)""A(F 4+ I AT,
(Dy + My) ™" (Mu + MMy (F + My) "' 1n) ,

Quu is the right-most and bottom-most U x U sub-matrix
of Q, and Qu 1, is the left-most and bottom-most U X L sub-
matrix of Q

Proof . Omitted for brevity. See the supplementary file.
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Figure 3: Label distributions.

Theoretical Connection to SSL

In this section, we show the theoretical connection between
the OMNI-Prop algorithm and LP, which is one of the well-
known SSL algorithms. To show that, we first introduce the
special graph that we call rwin graph.

Definition 1 (Twin graph). Twin graph TG = (V, E’g is
a graph with 2N nodes where V! = VEUVU UVC. VY is
the set of N twin nodes that correspond to original nodes in
VLUV one by one. Nodes in twin graph T'G are connected
as denoted by the adjacency matrix below:

I O O
A=0 0 Ay, )
AT AT 0

where A is the adjacency matrix of the original graph G.
The first L rows of A’ correspond to V¥, the next U rows
correspond to VY, and the last N rows corresponds to V°.

The intuition of the twin graph is to separate two scores
of each node by assigning self-score to the original node and
follower-score to its twin node. By doing so, we can discuss
our algorithm in the same scheme as LP where each node has
just one variable. Figure 2 illustrates an example of the twin
graph construction. There are only edges between VI U VY
and V¢ except for the self loops in V'©.

Lemma 2. The special case of OMNI-Prop with parameter
A = 0 on graph G is equivalent to LP on twin graph TG.
Proof . Omitted for brevity. See the supplementary file.
Corollary 1. The special case of OMNI-Prop with parame-

ter A\ = 0 converges if there is at least one labeled node in
each connected component on twin graph TG.

Proof . It follows directly from Lemma 2 and the conver-
gence condition of LP (see (Zhu et al. 2003)). O]

Theoretical Connection to Random Walk
In this section, we show the theoretical connection between
OMNI-Prop and the random walk.

Lemma 3. The probability a random walk on twin graph
TG starting at unlabeled node v; € VU ends at a labeled
node with label k is equal to s;j, obtained on G with A = (.
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Figure 4: Label correlations.

Proof . It follows directly from Lemma 2 and the random
walk interpretation of LP (see (Zhu et al. 2003)). O

Now, we show that the OMNI-Prop with A > 0 can also
be explained by the random walk. We introduce K adsorb-
ing nodes on twin graph T'G, where each adsorbing node is
regarded as a labeled node with the different label out of K.
Let the probability to reach the adsorbing node with label &
from node v; € VY be Aby/(k?** + )), and the probability
to reach it from node v; € V¢ be Aby /(K5 + X), where

k¢ut and ki" are the numbers of followees and followers,
respectively. On the other hand, all the other transition prob-
abilities from node v; € VY or v; € V¢ are discounted by
A/ (Eg¥ + X) or X/ (k%™ + X), respectively. If a random walk
reaches an adsorbing node, it ends there. Using this modified
twin graph T'G*, we can state the following theorem:

Theorem 3. The probability that a random walk on modified
twin graph TG* starting at unlabeled node v; € VY ends
at a labeled node with label k including adsorbing nodes is
equal to s;i; obtained on G with \ > 0.

Proof . Omitted for brevity. See the supplementary file.

The line of theorems shown in this section indicates that
OMNI-Prop has the solid theoretical foundation and allow
us to discuss it in the scheme of SSL and the random walk.

Experiments
Here we answer the following questions:

o QI - Parameter: How does the parameter affect the per-
formance of OMNI-Prop?

o (2 - Convergence: How many iterations does OMNI-Prop
need to converge?

e (3 - Accuracy: How accurate OMNI-Prop is compared to
LP and BP?

Datasets. Five network datasets®> used in our experiments
are described in Table 3. POLBLOGS is a blog-citation
network where the labels are political leanings of blogs.
COAUTHOR is a co-authorship network where node 7 and
7 are connected if they co-write a paper. Labels are
the research fields of authors (DB, DM, ML, and Al).
FACEBOOK, POKEC—-G, and POKEC—-L are SNSs where la-
bels on FACEBOOK and POKEC—-G are genders and labels
on POKEC-L are locations of users. Figure 3 shows the label
distributions (i.e., the distribution of the number of different
labels) for each dataset. We omit the figures for POLBLOGS
and POKEC-G because they are almost the uniform. Figure 4

2POKEC-G and POKEC-L are the same network but the differ-
ent labels.
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Table 3: Datasets

N M K | Directed Correlation
POLBLOGS
(Adamic and Glance 2005) 1,490 19,090 2 v homophily
COAUTHOR
(Sun et al. 2009) 27,644 66,832 4 homophily
FACEBOOK mixture
(Leskovec and Mcauley 2012) 4,039 88,239 2 slight homophily
POKEC-G mixture
(Takac and Zabovsky 2012) 1,632,803 | 30,622,564 2 slight heterophily
POKEC-L
(Takac and Zabovsky 2012) 1,632,803 | 30,622,564 | 183 homophily
1 1
g,
0.8 | g 0.8 |
8§ \\ | & rrrreibe.
H 0.6 \ < 06 [~
2 100 —— (7]
g 04 10 1 g 04 fter=1 ——
o 1 a #iter=3
0.2 0.1 1 0.2 #iter=5
0.01 #iter=10
0 0.001 0 #iter =20
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
P P

(a) Parameter (b) Convergence

Figure 5: (a) 1.0 default: Our algorithm achieves good result
with the default parameter of 1, which means it needs no pa-
rameters to tune. (b) 10 iterations: Our algorithm converges
after about 10 iterations.

shows the label correlations where cell 75 illustrates the ratio
of the edges from label ¢ to j. White and black cells denote
small and large values, respectively. We omit the figures for
POLBLOGS and POKEC-L because the label correlations of
them are clear homophily. We can see that there are varieties
of labels with different characteristics.

Evaluation. In our experiments, we hide labels of 70% of
labeled nodes on each network. Then we perform node clas-
sification algorithm to infer hidden labels. We report the
precision@p that is the precision of top p% nodes ordered
by their maximum self-scores maxy, S;x.

Reproducibility. The datasets we use in this experiments
are all available on the web. Our code is also made available
on the web?.

Q1 - Parameter

We varied the parameter from 0.001 to 100. We report only
the result on POKEC—-G in Figure 5(a) because the results of
the rest of networks show the same trend. The x-axis and y-
axis of this figure indicate the value of p and precision@p,
respectively. The large value of the parameter leads to high
precision for small p, but low precision for large p, whereas
the small value of the parameter leads to high precision for
large p, but low precision for small p. Although it is not the
best result for all p, we can say that the setting of A = 1
achieves high precision overall on all networks.

Observation 1 (1.0 default). OMNI-Prop achieves good re-
sults with the default parameter A = 1 on all networks.

This observation means that practitioners do not need to tune
the parameter when using our algorithm. Hence, hereafter,
we use this default value for all experiments.

*http://www.kde.cs.tsukuba.ac.jp/“yuto_ymgc
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Figure 6: Proposed OMNI-Prop wins: against top competitors on all datasets, especially for the small value of p.

Table 4: Summary of the results. Each cell shows the precision@p.

I POLBLOGS | COAUTHOR | FACEBOOK | POKEC-G | POKEC-L
10% | 50% | 100% || 10% | 50% | 100% || 10% | 50% | 100% || 10% | 50% | 100% | 10% | 50% | 100%
OMNI-Prop || 1.00 | 0.99 | 0.84 || 0.95 | 0.86 | 0.63 || 0.78 | 0.68 | 0.62 || 0.92 | 0.82 | 0.70 | 091 | 0.75 | 0.49
BP 099 1097 ] 0.84 || 0.90 | 0.83 | 0.65 || 0.70 | 0.66 | 0.62 || 0.65 | 0.59 | 0.59 | 0.84 | 0.68 | 0.47
LP 0.94 1097 | 0.84 || 0.89 | 0.88 | 0.67 || 0.59 | 0.65 | 0.60 || 0.50 | 0.50 | 0.50 ][ 0.66 | 0.69 | 0.49

Q2 - Convergence

We varied the number of iterations of the iterative algorithm
of OMNI-Prop. Figure 5(b) shows the results on POKEC-G.
Figure 5(b) shows the results on POKEC—-G. Here, we also
omit the results of the rest of networks for the same reason.
According to the results, we can say that OMNI-Prop almost
converges after 10 iterations on all networks.

Observation 2 (10 iterations). OMNI-Prop converges after
about 10 iterations on all networks.

Q3 - Accuracy

We compared OMNI-Prop with LP and BP by 5 trials using
randomly constructed 5 test sets for all networks to compute
the standard deviations of the precision.

BP requires the K x K propagation matrix as a param-
eter that specifies label correlations between each pair of
labels (Pandit et al. 2007). We use the matrix with diago-
nal elements 1/K + «, and off-diagonal elements 1/K —
a/(K — 1). According to our preliminary study, we deter-
mine the value of o as 0.001 for POLBLOGS, COAUTHOR,
FACEBOOK, and POKEC-L, while —0.001 for POKEC-G.
With such propagation matrices, BP converges for all these
datasets and shows good results. Note that we also tried
propagation matrices constructed from the label correlation
shown in Figure 4, but they lead to poor results, which indi-
cates that the parameter tuning for BP is not trivial.

Figure 6 and Table 4 show the results. Error bars in the
figure show the standard deviation. Overall, we can see that
OMNI-Prop performs either at least equaling or surpassing
two competitors on all types of label correlations in terms
of precision. Moreover, OMNI-Prop achieves significant im-
provement against tow competitors (1) on networks with the
mixture label correlation, and (2) for small p value (i.e.,
nodes with much evidence). These results demonstrate that
OMNI-Prop works well on various types of label correla-
tions, and can consider the amount of evidence.
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Observation 3. OMNI-Prop outperforms LP and BP on
various kinds of label correlations, especially for nodes with
much evidence.

Conclusion

We presented OMNI-Prop, which addresses the node clas-
sification problem on networks. The main idea is to as-
sign each node with two scores and to calculate them on
mutually-induced and Bayesian-like fashion. The advan-
tages of our algorithm are:

1. Seamless and accurate: it outperforms top competitors on

arbitrary label correlations (Figure 6 and Table 4).

Fast: each iteration of the algorithm scales linearly with
the input size, and is proved to converge on any graphs
(Theorem 1, Lemma 1, and Figure 5(b)).

Quasi-parameter free: it has just one parameter with the
effective default value 1 (Figure 5(a)).

We also showed the set of theorems that state theoreti-
cal connections to the SSL algorithms (Lemma 2) and the
random-walk (Theorem 3). We believe our proposal pro-
vides practitioners in the Al and Web community with sim-
ple but effective way to perform node classification.
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