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Abstract

Multi-label image classification is of significant interest due
to its major role in real-world web image analysis applica-
tions such as large-scale image retrieval and browsing. Re-
cently, matrix completion (MC) has been developed to deal
with multi-label classification tasks. MC has distinct advan-
tages, such as robustness to missing entries in the feature and
label spaces and a natural ability to handle multi-label prob-
lems. However, current MC-based multi-label image classi-
fication methods only consider data represented by a single-
view feature, therefore, do not precisely characterize images
that contain several semantic concepts. An intuitive way to
utilize multiple features taken from different views is to con-
catenate the different features into a long vector; however,
this concatenation is prone to over-fitting and leads to high
time complexity in MC-based image classification. There-
fore, we present a novel multi-view learning model for MC-
based image classification, called low-rank multi-view matrix
completion (lrMMC), which first seeks a low-dimensional
common representation of all views by utilizing the proposed
low-rank multi-view learning (lrMVL) algorithm. In lrMVL,
the common subspace is constrained to be low rank so that
it is suitable for MC. In addition, combination weights are
learned to explore complementarity between different views.
An efficient solver based on fixed-point continuation (FPC) is
developed for optimization, and the learned low-rank repre-
sentation is then incorporated into MC-based image classifi-
cation. Extensive experimentation on the challenging PAS-
CAL VOC’ 07 dataset demonstrates the superiority of lr-
MMC compared to other multi-label image classification ap-
proaches.

Introduction

Multi-label image classification (Ciresan et al. 2011; Ma et
al. 2013), in which multiple labels are assigned to a given
image, is critical for many web-based image analysis appli-
cations. For example, a multi-label image classifier might
be used to annotate a newly uploaded image to facilitate re-
trieval by a text-based search engine.

Over the last decade, a number of multi-label algorithms
have been proposed (Boutell et al. 2004; Tsoumakas and
Katakis 2007; Hariharan et al. 2010). However, none of
these methods are able to handle situations in which some
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features are missing or parts of training data labels are un-
known. In addition, most algorithms are not sufficiently ro-
bust to outliers and background noise. To tackle these prob-
lems, matrix completion (MC) has recently been introduced
as an alternative methodology for multi-label classification
(Goldberg et al. 2010; Cabral et al. 2011; Xu, Jin, and Zhou
2013; Yu et al. 2014). In MC-based multi-label classifica-
tion, a feature-by-item and label-by-item stacked matrix is
first concatenated, and then the unknown feature or label en-
tries in the concatenated matrix are completed in accordance
with the rank minimization criterion. In this way, the MC-
based methods infer the labels of unlabeled data, estimate
the values of missing features, and de-noise the observed
features.

Although MC-based algorithms have many advantages
for general multi-label classification tasks, they cannot di-
rectly handle image classification problems (Luo et al.
2014a) when images are represented by multiple views. An
intuitive solution is to concatenate multi-view features into
a long vector, but this strategy neglects the fact that these
views are extracted from different feature spaces with differ-
ent statistical properties, and as a consequence this approach
suffers from an over-fitting problem when the dimension of
image features is much larger than the sample size. In ad-
dition, feature concatenation often leads to high time com-
plexity in matrix completion and, sometimes, this time cost
is intolerable (Cai, Candès, and Shen 2010).

Here, we present a novel multi-view learning model,
termed low-rank multi-view matrix completion (lrMMC),
which effectively fuses different kinds of features in matrix
completion. Specifically, the different views are first pro-
jected into a low-dimensional subspace by the proposed low-
rank multi-view learning (lrMVL) algorithm; the subspace is
forced to be low rank to satisfy the assumption in MC. By
simultaneously minimizing the reconstruction errors and the
subspace rank, a common representation of all the views is
learned. To further explore the complementarity of different
views, a weight for the reconstruction of each view is also
learned. The optimization problem is efficiently solved using
an alternating algorithm, in which the sub-problem of learn-
ing the common representation is based on fixed-point con-
tinuation (FPC). The learned representation is then utilized
as feature data for MC-based multi-label image classifica-
tion. The main advantages of the proposed lrMMC model
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Figure 1: System diagram of the low-rank multi-view matrix completion (lrMMC) model. Features from different views (SIFT,
GIST, etc.) are extracted from all images, then lrMVL seeks a low-rank common representation B from multiple views. Finally,
the common representation B is divided into two feature sets, training set Xtr and test set Xts. The label matrix of Xtr is
known as Ytr, while the label matrix of Yts needs to be predicted. Under the assumption that the stacked feature and label
matrix Z is low-rank, the unknown label matrix Yts can be completed by matrix completion (MC).

are that the low-rank property of the original features is well
preserved, and the complementarity of the different views is
explored.

We use the very challenging PASCAL VOC’ 07 dataset
(Everingham et al. 2007) to evaluate the lrMVL algorithm.
To the best of our knowledge, no other MC-specific multi-
view algorithms exist. Therefore, lrMMC is first compared
to some MC baselines in which the features from the sin-
gle view (MC), a concatenation of all views (CMC), and the
subspace is learned using a distributed multi-view strategy
(DMC) (Long, Philip, and Zhang 2008). To further validate
the proposed model, lrMMC is compared to some popular
and competitive multi-view image classification approaches,
namely SimpleMKL (Rakotomamonjy et al. 2008) and Hi-
erSVM (Kludas, Bruno, and Marchand-Maillet 2008) in
terms of mean average precision (mAP) (Zhu 2004), Ham-
ming loss (HL) (Schapire and Singer 2000), and ranking
loss (RL) (Schapire and Singer 2000). Our experimental re-
sults demonstrate that the low-dimensional representation
produced by lrMVL is suitable for MC-based image clas-
sification, and the performance of the lrMMC model even
surpasses that of competitive non-dimensionality reduction
multi-view learning algorithms.

Related Work

This section reviews related work on MC using rank mini-
mization and multi-view learning.

Matrix Completion Using Rank Minimization

MC is the process of filling in unknown entries in an un-
completed matrix M . It is theoretically impossible to recon-
struct an uncompleted matrix without any hypotheses about
the properties of the matrix. Most MC algorithms assume
that the matrix to be recovered is low rank (Nie, Huang,
and Ding 2012; Ding, Shao, and Fu 2014). In other words,
MC aims to find a matrix X that minimizes the difference
with the known entries in M so that the rank of X reaches
its minimum. This rank minimization approach has received

a lot of attention and has become popular due to its suc-
cess in the Netflix challenge. The rank minimization prob-
lem is NP-hard, and is therefore ineffective for most practi-
cal applications. However, (Candès and Recht 2009) found
that rank(X) and its convex envelope, the nuclear norm
‖X‖∗, have the same unique solution, and they proved that
only a limited number of samples are needed to recover a
low-rank matrix, where ‖X‖∗ is the sum of singular val-
ues of X (Fazel 2002). Under this relaxation, several MC
methods have been proposed (Candès and Recht 2009; Cai,
Candès, and Shen 2010; Keshavan, Montanari, and Oh 2010;
Ma, Goldfarb, and Chen 2011). In addition, interior point
methods, such as the semi-definite programming (SDP) al-
gorithm, have been successfully applied to this convex opti-
mization problem; however, the off-the-shelf interior point
methods can only handle small matrices, and the singu-
lar value thresholding (SVT) algorithm was developed to
overcome this difficulty (Cai, Candès, and Shen 2010). Al-
though SVT effectively handles large matrices, it may fail
because the rank of the uncompleted matrix is very low. The
more robust fixed-point continuation (FPC) algorithm (Ma,
Goldfarb, and Chen 2011) was therefore proposed, which
probably converges to the optimal solution for the uncon-
strained problem under certain conditions. Empirically, FPC
has much better recoverability than SDP, SVT, and other al-
gorithms on the MC problem.

Multi-view Learning

Multi-view learning is an active research topic (Xia et al.
2014; Luo et al. 2014b; Xu, Tao, and Xu 2014). In this paper,
multiple views mean various descriptions of a given sample.
Many methods have been proposed for multi-view classifi-
cation (Zien and Ong 2007), retrieval (Kludas, Bruno, and
Marchand-Maillet 2008), and clustering (Bickel and Schef-
fer 2004). Depending on the level of fusion being carried
out, the multi-view classification methods can be grouped
into two major categories: feature-level fusion and classifier-
level fusion. This paper will focus on the former. A direct
strategy for feature-level fusion is to concatenate the differ-
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ent kinds of features into a long vector. However, this often
leads to the curse of dimensionality problem and renders it
impractical. As a result, many sophisticated techniques have
been developed to overcome this problem, and we refer the
interested reader to (Xu, Tao, and Xu 2013) for a literature
survey of multi-view learning.

Low-rank Multi-view Matrix Completion

In this section, we introduce the low-rank multi-view ma-
trix completion (lrMMC) model (see overview in Figure 1).
lrMMC has two main parts: the novel low-rank multi-view
learning (lrMVL) method and MC-based image classifica-
tion. The former seeks a low-rank common representation
for all views, which is then embedded into the latter. Specif-
ically, we first extract different kinds of features from the
images in the dataset, such as SIFT (Lowe 2004) and GIST
(Oliva and Torralba 2001). The obtained feature matrix is
denoted as X(i) ∈ R

di×n, i = 1, 2, . . . m, where n and m
are the number of samples in the dataset and feature views,
respectively, and di is the dimensionality of the i’th view.
Alternatively, X(i) can be preprocessed using dimensional-
ity reduction strategies to derive the pattern matrix A(i), and
in this paper we assume A(i) = X(i). The different A(i) is
then projected into a low-dimensional common representa-
tion B by utilizing the mapping matrix P (i). Each A(i) can
be reconstructed using B and P (i). By simultaneously min-
imizing the total reconstruction errors of all the views and
the rank of B, both optimal B and each P (i) can be learned.
Finally, the representation B is divided into training and test
sets. Labels for the training set are known and labels for the
test set can be completed by MC. The details of the tech-
nique are given below.

Problem Formulation of lrMVL

Given a multi-view dataset consisting of n samples with m
views that are denoted as a set of feature matrices X =
{X(i) ∈ R

di×n}mi=1, we represent their pattern matrices
as A = {A(i) ∈ R

ki×n}mi=1. To find a low-dimensional
common representation B, the traditional distributed strat-
egy (Long, Philip, and Zhang 2008) is to optimize the fol-
lowing problem:

min
BBT=I,{P (i)}

m∑
i=1

‖P (i)B −A(i)‖2F , (1)

where P = {P (i) ∈ R
ki×k}mi=1 is a set of mapping ma-

trices. The global optimal solution of this formulation is
given by performing eigenvalue decomposition of the ma-
trix ATA, where A = [A(1); · · · ;A(m)] is a concatenation
of the pattern matrices. Although simple and efficient, this
multi-view strategy is unsuitable for MC and usually per-
forms less well than the best single-view strategy, as shown
in our follow-up experiments. The main reason for this un-
derperformance is that B is forced to be orthogonal, and thus
the low-rank assumption in MC is violated. Therefore, we
propose to constrain B to be low rank. To further explore the
complementarity of different views, we also learn the non-
negative weight θi for the i’th view. Thus, the optimization

problem becomes

min
B,{P (i),θi}

μ‖B‖∗ +
m∑
i=1

θi‖P (i)B −A(i)‖2F +
γ

2
‖θ‖22

s.t. θi ≥ 0,
∑

θi = 1, i = 1, . . . ,m,

(2)

where A(i) ∈ R
ki×n, B ∈ R

k×n and P (i) ∈ R
ki×k.

Both μ ≥ 0 and γ ≥ 0 are trade-off parameters.
Since the Frobenius norm is a separable distance func-
tion (Long, Philip, and Zhang 2008), by letting A =

[
√

(θ1)A
(1); . . . ;

√
(θm)A(m)] ∈ R

(
∑m

i ki)×n and P =

[
√

(θ1)P
(1); . . . ;

√
(θm)P (m)] ∈ R

(
∑m

i ki)×k, we can
rewrite (2) in a compact form:

min
B,P,θ

μ‖B‖∗ + ‖PB −A‖2F +
γ

2
‖θ‖22

s.t. θi ≥ 0,
∑

θi = 1, i = 1, . . . ,m.
(3)

Optimization Algorithm of lrMVL

Three variables B, P and θ need to be optimized in (3), and
there is currently no direct way to find the global optimal so-
lution. Therefore, we have developed an iterative algorithm
to find the optimal solution, which alternately updates these
variables and efficiently solves each sub-problem.

Update for P . By initializing B with a random matrix
and θi =

1
m , i = 1, . . . ,m, we can rewrite (3) with respect

to P as
min
P

‖PB −A‖2F . (4)

Let L(P ) denote the objective function in Equation (4).
By taking the derivative of L(P ) with respect to P and set-
ting it to zero, we obtain

P = ABT (BBT )−1. (5)

However, BBT is a semi-definite matrix since B is low
rank. Thus BBT is irreversible, and this problem can be
dealt with the regularization or pseudoinverse tricks. We
choose the regularization strategy, and then the solution be-
comes

P ∗ = ABT (BBT + ηI)−1, (6)
where η is a small regularization parameter and I is the iden-
tity matrix. Each P (i)∗ can be obtained by dividing the i’th
block of P ∗ with

√
(θi).

Update for B. With the obtained P ∗ and fixed θ, the sub-
problem for optimizing (3) with respect to B is given by

min
B

μ‖B‖∗ + ‖PB −A‖2F . (7)

We introduce the FPC algorithm (Ma, Goldfarb, and Chen
2011) to obtain the solution of B. The FPC algorithm is
comprised of a series of gradient updates h(·) = I(·)−τg(·)
and shrinkage, where τ is the step size. The gradient descent
is given by

h(B) = B − 2τPT (PB −A) , (8)

where B in this inner iteration is initialized with the rank-1
approximation of B in the last iteration of the outer iteration.
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The shrinkage operator Sv(·) = max(0, · − v) is applied to
the singular values of the result of (8) to ensure that the rank
of B is minimized. The gradient update and shrinkage steps
are alternated until convergence, which is guaranteed since
h(B) is contractive with a properly chosen step size (Ma,
Goldfarb, and Chen 2011).
Theorem 1. Provided the step size τ ∈ (0, 1

λmax(PTP )
),

then h(B) is a contraction.

Proof. Assume that the step size τ ∈ (0, 1/λmax(P
TP )),

then −1 < λi(I − 2τPTP ) ≤ 1, where λi(I − 2τPTP ) is
the i’th eigenvalue of I − 2τPTP . Hence,

‖h(B1)− h(B2)‖F = ‖(B1 −B2)(I − 2τPTP )‖F
≤ ‖B1 −B2‖F ‖I − 2τPTP‖2
≤ ‖B1 −B2‖F

(9)
then h(B) is contractive.

Update for θ. With the obtained P ∗ and B∗, we can
rewrite (3) with respect to θ as:

min
θ

θT q +
γ

2
‖θ‖22

s.t. θi ≥ 0,
∑

θi = 1, i = 1, . . . ,m,
(10)

where q = [q1, . . . , qm]T with each qi = ‖P (i)∗B∗ −
A(i)‖2F . We adopt the coordinate descent algorithm to solve
(10). Therefore, in each iteration of the descent procedure,
only two elements θi and θj are selected to be updated; the
others are fixed. By using the Lagrangian of problem (10)
and considering the sum to one constraint, we obtain the fol-
lowing updating rule:⎧⎨

⎩
θ∗i =

γ(θi + θj) + (qj − qi)

2γ

θ∗j = θi + θj − θ∗i

. (11)

The obtained θ∗i or θ∗j may violate the constraint θi ≥ 0.
Thus we set θ∗i = 0 if γ(θi + θj) + (qj − qi) < 0, and vice
versa for θ∗j .

The learning procedure of the low-rank multi-view learn-
ing method is summarized in Algorithm 1. The stopping cri-
terion for the algorithm is the difference between the objec-
tive values of two consecutive steps. The lrMVL algorithm
is guaranteed to converge to the local optimum of (3), since
each of the aforementioned sub-problems is convex.

Transduction with Matrix Completion

After obtaining the low-rank common representation B
from multiple views, it is embedded into matrix comple-
tion for image classification, thereby achieving the low-rank
multi-view matrix completion (lrMMC) model. Specifically,
we divide B into two parts: training set Btr and test set Bts.
The label matrix Ytr of Btr is already known, and the label
matrix Yts needs to be predicted. By replacing the feature
matrix X in (Cabral et al. 2011) with B, we have

Z =

⎡
⎣

Y
B
1T

⎤
⎦ =

⎡
⎣

Ytr Yts

Btr Bts

1T

⎤
⎦ , (12)

Algorithm 1 The learning procedure of low-rank multi-view
learning (lrMVL) method.

Input: Multi-view feature matrices A = [A(1); . . . ;A(m)]
and the dimension k of B;

Output: low-rank common representation B;
1: initialize B with a random matrix and θi = 1

m , i =
1, . . . ,m;

2: while globalRelError > δ do
3: update P using Equation (6).
4: for μ = μ1 > μ2 > ... > μs = μ do
5: while fpcRelError > ε do
6: Gradient: M = B − 2τPT (PB −A);
7: update B with shrinking:
8: M = UΣV T ; B = USτμ(Σ)V

T ;
9: end while

10: end for
11: update θ using Equation (11).
12: end while

where Btr ∈ R
k×ntr , Bts ∈ R

k×nts , Ytr ∈ R
c×ntr and

Yts ∈ R
c×nts . Yts can be obtained by solving MC-1 prob-

lem as presented in (Goldberg et al. 2010, Cabral et al.
2011), which predicts unknown labels from the stacked fea-
ture and label matrix.

Complexity Analysis

The complexity of lrMMC has two parts: the first is for the
developed lrMVL and the other is for MC-1 (Goldberg et
al. 2010; Cabral et al. 2011). For lrMVL (see Algorithm
1), the calculation of P (step 3) consists of some matrix
multiplication and inversion. This leads to a complexity of
O(n2(2k +

∑m
i=1 ki + n)). From step 6 to step 8, there is a

singular value decomposition of M , as well as some matrix
multiplications to obtain M and B. Usually, the SVD com-
putation cost of a (k × n) matrix is taken as O(nk2 + n3),
and thus the complexity of step 6 to step 8 is given by
O(n3 + k3 + n2k + nk2). Suppose the number of inner
iterations (step 5 to step 9) is t, then the time complexity of
updating B is O(st(n3 + k3 + n2k + nk2)), where s is the
number of elements in the μ sequence. The time cost for cal-
culating θ (step 11) can be omitted since it is usually much
smaller than the update of P and B.

It can be seen that the time cost of lrMVL is dominated by
the calculation of B, and thus the time complexity of lrMVL
is O(Tst(n3+ k3+n2k+nk2)), where T is the number of
outer iterations (step 2 to step 12). In practice, t is frequently
smaller than 5; s and T are smaller than 10. Therefore, the
proposed lrMVL algorithm is quite efficient. Similarly, the
time complexity for MC-1 is t′s′(O(n3+(k+ c)3+n2(k+
c) + n(k + c)2)), where c is the number of classes, t′ is the
number of iterations, and s′ is the number of elements in the
μ sequence for MC-1. The time complexity of the lrMMC
model is a sum of these two parts.

Experiments

Here, we present an experimental evaluation of the perfor-
mance of lrMMC on PASCAL VOC’ 07 dataset. We first
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Figure 2: Classification results of the compared MC-based methods in terms of mAP. The dimensions are fixed for the single-
view method and CMC, and thus their mAP scores remain the same. The solid curves show how the dimension of B affects
DMC and lrMMC. The standard deviations are around 0.005, and thus are invisible.

investigate the performance of lrMMC with respect to the di-
mension of the common representation by comparing it with
some MC-based strategies. Then the average performances
of the compared methods using their best dimensions are
presented. Finally, to further verify the effectiveness of the
proposed model, we compare lrMMC with some compet-
itive non-dimensionality reduction multi-view algorithms,
namely SimpleMKL (Rakotomamonjy et al. 2008) and Hi-
erSVM (Kludas, Bruno, and Marchand-Maillet 2008), in
terms of mean average precision (mAP) (Zhu 2004), Ham-
ming loss (HL) (Schapire and Singer 2000), and ranking loss
(RL) (Schapire and Singer 2000). Before all of these evalu-
ations, we present the dataset and features we used, as well
as our experimental settings.

Dataset, Features, and the Evaluation Criteria

The PASCAL VOC’ 07 (VOC for short) dataset (Evering-
ham et al. 2007) consists of 9,963 images in 20 object
classes. We use the features from (Guillaumin, Verbeek, and
Schmid 2010), which provides several different image rep-
resentations and tags. For this paper, we chose three repre-
sentative feature views: the local SIFT (Lowe 2004), global
GIST (Oliva and Torralba 2001), and TAG, which is the tex-
tual information. The dimensions of SIFT, GIST, and TAG
are 1,000, 512, and 804, respectively.

Three popular evaluation criteria for multi-label classi-
fication are used: average precision (AP), Hamming loss
(HL), and ranking loss (RL). AP is the ranking performance
computed for each label, and the mean value for all the la-
bels, i.e., mAP, is reported. HL and RL are used to evaluate
the label set predictions for each instance. All three criteria
are widely used to evaluate the performance of multi-label
classification (Zhang and Zhou 2007).

The positive and negative samples are quite unbalanced in
the VOC dataset. Thus, for each object class, 30, 50, and 70
positive samples, and the same number of negative samples,
are randomly selected to form three labeled sets of different
size: Set30, Set50, and Set70. The standard VOC test set
(Everingham et al. 2007) is used for testing, and 20% of the
4,952 test images are randomly selected for validation. The

best-performing parameters on the validation set are used for
the final test. All the experiments are run ten times, and both
the mean and standard deviation are reported.

Comparisons with the MC-based Methods

The experimental setup of the compared methods is as fol-
lows:

MC: uses the single-view features, where the methods for
different views are denoted as MC GIST, MC DenseSIFT,
and MC TAG, respectively. The MC-based transduction
(also multi-label classification here) is performed by adopt-
ing the MC-1 algorithm, as presented in (Goldberg et al.
2010; Cabral et al. 2011). The candidate set for choosing
λ is {10i|i = −4, . . . , 2}. The parameter μ is initialized as
μ0 = 0.25σ1, where σ1 is the largest singular value of Z0,
and decreases with a factor of 0.25 in the continuation steps
until μ = 10−12.

CMC: uses the concatenation of the normalized features
of all views in MC. Parameters μ and λ are the same as in
MC.

DMC: seeks the common representation B using the dis-
tributed strategy, as presented in (Long, Philip, and Zhang
2008). The dimension k of B is chosen from the set
{10, 30, 50, 70, 90, 100, 200, 300, 400, 500}.

lrMMC: induces the common representation B by the
proposed lrMVL algorithm. The parameter μ in lrMVL is
determined as in MC-1, and the parameter γ is tuned over
the set {10i|i = −4, . . . , 3}. The algorithm stops the itera-
tion when the difference of the objective function is smaller
than 10−3.

The performance of DMC and lrMMC in terms of mAP
with respect to the dimension k of the common represen-
tation, as well as the other methods with fixed dimensions,
are shown in Figure 2. It can be seen that: 1) the TAG fea-
tures perform the best, followed by SIFT and GIST. The con-
catenated method (CMC) is inferior to the best single-view
method due to over-fitting, illustrating the benefit of the pro-
posed multi-view learning algorithm; 2) when k increases,
the performance of both DMC and lrMMC improves sharply
at first but then declines. This is because a rapidly increasing
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Figure 3: Performances of the compared MC-based methods
on the VOC dataset with labeled sets of different size.

amount of information contained in the original features is
first explored, but, when the dimension is large, the learned
variables in MC may be not reliable due to the limited num-
ber of labeled samples; 3) the optimal dimension of lrMMC
is larger than DMC, and the superiority of lrMMC over
DMC becomes larger with increasing k. This is because the
learned B tends not to be low rank when the dimension is too
small; 4) DMC sometimes performs worse than MC TAG,
while the proposed lrMMC is consistently better than the
other methods when k ≥ 100. This benefit is significant at
its optimal dimension.

The mAP values of MC, CMC, DMC, and lrMMC under
their optimal parameters are shown in Figure 3. It is clear
that lrMMC achieves the best performance with all settings.
In particular, there is a 3.5%, 2.27%, and 2.78% improve-
ment over DMC for Set30, Set50, and Set70, respectively.

Comparison with Non-dimensionality Reduction
Multi-view Algorithms

The final experiment compares lrMMC with two non-
dimensionality reduction multi-view algorithms, HierSVM
and SimpleMKL. Their details are as follows:

HierSVM: learns SVM classifiers for each view sepa-
rately, and then fuses the results by using an additional
SVM classifier. This algorithm is named after its hierar-
chical SVM structure. The values of the tradeoff param-
eter C for each SVM classifier are optimized on the set
{10i|i = −1, . . . , 6}.

SimpleMKL: deals with the multiple kernel learning task
by solving a standard SVM optimization problem. Sim-
pleMKL first constructs a kernel for each view and then
learns a linear combination of the different kernels and a
classifier based on the combined kernel. The penalty factor
C of SimpleMKL is tuned on the same set as in HierSVM.

The performances of these methods and lrMMC on the
VOC dataset are reported in Table 1. It can be seen that: 1)
the mAP scores of lrMMC are consistently higher than Hi-
erSVM and SimpleMKL for all three different labeled sets;
2) under the HL criterion, SimpleMKL only performs well
on Set30, while lrMMC performs better when more labeled
samples are available; the HL performance of HierSVM is
always unsatisfactory; 3) in contrast, HierSVM is promis-
ing in terms of RL, especially on Set30, while lrMMC out-

Methods Set30 Set50 Set70

mAP ↑ versus #labeled samples
HierSVM 0.401 ± 0.004 0.421 ± 0.005 0.432 ± 0.006

SimpleMKL 0.497 ± 0.006 0.514 ± 0.006 0.519 ± 0.001
lrMMC 0.502 ± 0.005 0.515 ± 0.003 0.524 ± 0.002

HL ↓ versus #labeled samples
HierSVM 0.067 ± 0.001 0.066 ± 0.001 0.066 ± 0.001

SimpleMKL 0.059 ± 0.001 0.056 ± 0.001 0.055 ± 0.001
lrMMC 0.069 ± 0.001 0.052 ± 0.001 0.050 ± 0.000

RL ↓ versus #labeled samples
HierSVM 0.124 ± 0.002 0.116 ± 0.001 0.113 ± 0.001

SimpleMKL 0.173 ± 0.009 0.167 ± 0.012 0.158 ± 0.004
lrMMC 0.145 ± 0.005 0.116 ± 0.001 0.110 ± 0.001

Table 1: A comparison of non-dimensionality reduction
multi-view algorithms on the VOC dataset using different
evaluation criteria. ↑ indicates the larger the better; ↓ indi-
cates the smaller the better.

performs it with more labeled samples; the performance of
SimpleMKL is poor. In summary, lrMMC is superior to Hi-
erSVM and SimpleMKL in most cases, and the performance
of HierSVM and SimpleMKL varies significantly under dif-
ferent criteria. It should be noted that both HierSVM and
SimpleMKL are non-dimensionality reduction methods and
SimpleMKL is carried out in the kernel space, whereas lr-
MMC is a dimensionality reduction approach aided by a lin-
ear MC technique.

Conclusions

In this paper, we present a low-rank multi-view matrix com-
pletion (lrMMC) model for multi-label image classification.
We first developed a low-rank multi-view learning (lrMVL)
algorithm to seek a common low-dimensional representa-
tion from features of multiple views; the learned representa-
tion is then embedded into MC for classification. Our model
has the advantages of being able to preserve the low-rank
property of the natural features and explore the complemen-
tary properties of different views. We also developed an effi-
cient solver for optimization based on fixed-point continua-
tion (FPC). Experiments on the challenging PASCAL VOC
’07 dataset show that our proposed lrMMC not only out-
performs single-view or multi-view MC-based strategies but
also other competitive multi-view approaches.
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