
Learning Relational Sum-Product Networks

Aniruddh Nath and Pedro Domingos
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350, U.S.A.
{nath, pedrod}@cs.washington.edu

Abstract

Sum-product networks (SPNs) are a recently-proposed deep
architecture that guarantees tractable inference, even on cer-
tain high-treewidth models. SPNs are a propositional ar-
chitecture, treating the instances as independent and identi-
cally distributed. In this paper, we introduce Relational Sum-
Product Networks (RSPNs), a new tractable first-order prob-
abilistic architecture. RSPNs generalize SPNs by modeling
a set of instances jointly, allowing them to influence each
other’s probability distributions, as well as modeling proba-
bilities of relations between objects. We also present LearnR-
SPN, the first algorithm for learning high-treewidth tractable
statistical relational models. LearnRSPN is a recursive top-
down structure learning algorithm for RSPNs, based on Gens
and Domingos’ LearnSPN algorithm for propositional SPN
learning. We evaluate the algorithm on three datasets; the
RSPN learning algorithm outperforms Markov Logic Net-
works in both running time and predictive accuracy.

Introduction
Graphical probabilistic models compactly represent a joint
probability distribution among a set of variables. Unfortu-
nately, inference in graphical models is intractable. In prac-
tice, using graphical models for most real-world applications
requires either using approximate algorithms, or restricting
oneself to a subset of graphical models on which inference
is tractable. A common restriction that ensures tractabil-
ity is to use models with low treewidth (Bach and Jordan
2001). However, not all tractable models have low treewidth.
Poon and Domingos (2011) recently proposed Sum-Product
Networks (SPNs), a tractable probabilistic architecture that
guarantees efficient exact inference. SPNs subsume most
known tractable probabilistic models, and can compactly
represent some high-treewidth distributions. SPNs can be
seen as a deep architecture with alternating layers of sum
nodes and product nodes. Since their introduction, several
SPN learning algorithms have been proposed, and SPNs
have been applied to a variety of problems (Delalleau and
Bengio 2011; Dennis and Ventura 2012; Amer and Todor-
ovic 2012; Peharz et al. 2013; Gens and Domingos 2013,
etc.).

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Besides intractability, one other key shortcoming of most
widely used graphical models is their reliance on the i.i.d.
assumption. In many real-world applications, instances are
not truly independent, and can be better modeled if their in-
teractions are taken into account. This is one of the key in-
sights of the Statistical Relational Learning (SRL) commu-
nity. SRL techniques have been applied to a wide variety of
tasks, including collective classification, link prediction, nat-
ural language processing, etc. However, most SRL methods
build on graphical models (e.g. Markov logic; Richardson
and Domingos 2006), and suffer from the same computa-
tional difficulties; these are compounded by the additional
problem of modeling interactions between instances.

In this paper, our goal is to combine these two lines of
research: tractable probabilistic models and relational learn-
ing. One line of related work uses Naı̈ve Bayes models in
structured domains (Flach and Lachiche 2004; Landwehr
et al. 2005; Davis et al. 2007). Although tractable, Naı̈ve
Bayes models are quite limited in expressiveness. PRISM
is a probabilistic logic that supports efficient inference, but
only under a very restrictive set of assumptions (Sato and
Kameya 2008). PSL (Bröcheler et al. 2010) supports effi-
cient inference, but uses fuzzy logic-based semantics instead
of standard probabilistic semantics. TML (Domingos and
Webb 2012) is a subset of Markov logic on which efficient
inference can be guaranteed. TML is surprisingly expres-
sive, subsuming most previous tractable models. However, a
TML knowledge base determines the set of possible objects
in the domain, and the relational structure among them. This
limits the applicability of TML to learning; a TML knowl-
edge base cannot be learned on one set of objects and applied
to another mega-example with different size or structure.

To address this, we propose Relational Sum-Product Net-
works (RSPNs), a new tractable relational probabilistic ar-
chitecture. RSPNs generalize SPNs by modeling a set of in-
stances jointly, allowing them to influence each other’s prob-
ability distributions, as well as modeling the probabilities of
relations between objects. An RSPN can be trained on a set
of mega-examples, and applied to a previously unseen mega-
example with different structure (given a part decomposi-
tion as input). We also introduce LearnRSPN, the first algo-
rithm for learning tractable statistical relational models. In-
tractable inference has historically been a major obstacle to
the wider adoption of statistical relational methods; the de-

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

2878

velopment of learning and inference algorithms for tractable
relational models could go a long way towards making SRL
more widely applicable.

Background
Sum-Product Networks
A sum-product network (SPN) is a rooted directed acyclic
graph with univariate distributions at the leaves; the internal
nodes are (weighted) sums and (unweighted) products.

Definition 1. (Gens and Domingos 2013)

1. A tractable univariate distribution is an SPN.
2. A product of SPNs with disjoint scopes is an SPN. (The

scope of an SPN is the set of variables that appear in it.)
3. A weighted sum of SPNs with the same scope is an SPN,

provided all weights are positive.
4. Nothing else is an SPN.

See fig. 1 for an example SPN.
A univariate distribution is tractable iff its partition func-

tion and mode can be computed in constant time.
Intuitively, an SPN can be thought of as an alternating

set of mixtures (sums) and decompositions (products) of the
leaf variables. If the values at the leaf nodes are set to the
partition functions of the corresponding univariate distribu-
tions, then the value at the root is the partition function (i.e.
the sum of the unnormalized probabilities of all possible as-
signments to the leaf variables). This allows the partition
function to be computed in time linear in the size of the SPN.

If the values of some variables are known, the leaves cor-
responding to those variables’ distributions are set to those
values’ probabilities, and the remainder are replaced by their
(univariate) partition functions. This yields the unnormal-
ized probability of the evidence, which can be divided by
the partition function to obtain the normalized probabil-
ity. The most probable state of the SPN, viewing sums as
marginalized-out hidden variables, can also be computed in
linear time.

Learning SPNs
The first learning algorithms for sum-product networks used
a fixed network structure, and only optimized the weights
(Poon and Domingos 2011; Amer and Todorovic 2012; Gens
and Domingos 2012). The network structure is domain-
dependent; applying SPNs to a new problem required man-
ually designing a suitable network structure.

More recently, several algorithms have been proposed that
learn both the weights and the network structure, allowing
SPNs to be applied out-of-the-box to new domains. Den-
nis and Ventura (2012) suggested an algorithm that builds
an SPN based on a hierarchical clustering of variables.
Gens and Domingos (2013) construct SPNs top-down, re-
cursively partitioning instances and variables. Peharz et al.
(2013) construct SPNs bottom-up, greedily merging SPNs
into models of larger scope. These algorithms have been
shown to perform well on a variety of domains, making
more accurate predictions than conventional graphical mod-
els, while guaranteeing tractable inference.

Figure 1: Example SPN over the variables ‘Smokes’ and
‘Cancer’. The weights of the sum node are indicated next
to the corresponding edges. At the leaves, each variable is
modeled via a Bernoulli distribution; the numbers next to
each leaf are the success probabilities of the corresponding
Bernoulli distributions.

Statistical Relational Learning

SPNs are a propositional representation, modeling instances
as independent and identically distributed (i.i.d.). Although
the i.i.d. assumption is widely used in statistical machine
learning, it is often an unrealistic assumption. In practice,
objects usually interact with each other; Statistical Rela-
tional Learning algorithms (Getoor and Taskar 2007) can
capture dependencies between objects, and make predictions
about relationships between them.

Markov Logic Networks (MLNs; Richardson and Domin-
gos 2006) are a widely-used representation for relational
learning. An MLN is a first-order representation of the de-
pendencies between objects in a domain. Given a mega-
example (a set of related objects), an MLN can be grounded
into a propositional graphical model representing a joint
probability distribution over the attributes and relations
among those objects. Unfortunately, the resulting graphi-
cal model is typically high-treewidth, and inference is in-
tractable. In practice, users of SRL methods typically re-
sort to approximate inference algorithms based on MCMC
or loopy belief propagation, resulting in long runtimes and
unreliable predictions. Like propositional graphical models,
statistical relational models can be trivially restricted to the
low-treewidth case, but this comes at great cost to the repre-
sentational power of the model.

Tractable Markov Logic (TML; Domingos and
Webb 2012; Webb and Domingos 2013) is a subset of
Markov Logic that guarantees polynomial-time inference,
even in certain cases where the ground propositional model
would be high-treewidth. TML is expressive enough to
capture several cases of interest, including junction trees,
non-recursive PCFGs and hierarchical mixture models.
A TML knowledge base is a generative model that de-
composes the domain into parts, with each part drawn
probabilistically from a class hierarchy. Each part is further

2879

probabilistically decomposed into subparts (according to
its class). The key limitation of TML is that the knowledge
base fully specifies the set of possible objects in the domain,
and their class and part structure. A TML knowledge base
cannot generalize across mega-examples of varying size or
structure.

This paper uses some first-order logic terminology. ‘Pred-
icate’ refers to a first-order logic predicate. (Our representa-
tion and algorithm support numeric attributes and relations
as well, but for simplicity we focus on the Boolean case.) A
grounding of a predicate (or a ground atom) is a replacement
of all its variables by constants.

Relational Sum-Product Networks
Exchangeable Distribution Templates
Before we define RSPNs, we first define the notion of an
Exchangeable Distribution Template (EDT).
Definition 2. Consider a finite set of variables
{X1, . . . , Xn} with joint probability distribution P .
Let S(n) be the set of all permutations on {1, . . . , n}.
{X1, . . . , Xn} is a finite exchangeable set with respect to P
if and only if P (X1, . . . , Xn) = P (Xπ(1), . . . , Xπ(n)) for
all π ∈ S(n). (Diaconis and Freedman 1980).

Note that finite exchangeability does not require indepen-
dence: a set of variables can be exchangeable despite hav-
ing strong dependencies. (For example, consider binary vari-
ablesX1, . . . , Xn, with a uniform distribution over value as-
signments with an even number of non-zero variables.)
Definition 3. An Exchangeable Distribution Template
(EDT) is a function that takes a set of variables
{X1, . . . , Xn} as input (n is unknown a priori), and re-
turns a joint probability distribution P with respect to which
{X1, . . . , Xn} is exchangeable. We refer to the probability
distribution P returned by the EDT for a given set of vari-
ables as an instantiation of that EDT.
Example 1. The simplest family of EDTs simply returns
a product of identical univariate distributions over each of
X1, . . . , Xn. For example, if the variables are binary, then
an EDT might model them as a product of Bernoulli distri-
butions with some probability p.
Example 2. Consider an EDT over a set of binary vari-
ables X1, . . . , Xn, returning the following distribution:
P (X1, . . . , Xn) ∝ λk

k! e
−λ, where k =

∑
Xi

1[Xi]. λ is a
parameter of the EDT. This is an EDT with a Poisson dis-
tribution over the number of variables in the set with value
1. (The probabilities must be renormalized, since the set of
variables is finite.) Note that this EDT does not assume in-
dependence among variables.

Intuitively, EDTs can be thought of as probability distri-
butions that depend only on aggregate statistics, and not on
the values of individual variables in the set.

Relational Sum-Product Networks
Relational Sum-Product Networks (RSPNs) jointly model
the attributes and relations among a set of objects. RSPNs
inherit TML’s notion of parts and classes. As in TML, each

part of a class also belongs to some class. Unlike TML, an
RSPN class’s parts may be unique or exchangeable. An ob-
ject’s unique parts are those that play a special role, e.g. the
commander of a platoon, the queen of a bee colony, or the
hub of a social network. The exchangeable parts are those
that behave interchangeably: soldiers in a platoon, worker
bees in a colony, spokes in a network, and so on.

Definition 4. A definition for class C in an RSPN consists
of:

• A set of attributes: unary predicates A applicable to indi-
viduals of C.
• A vector UC = (P1, . . . , Pn) specifying the classes of

unique parts.
• A vector EC = (P1, . . . , Pn) of classes of exchangeable

parts
• A set of relations between parts: predicates of the form
R1(P1, P2) or R2(C,P1), where P1 and P2 are either
unique or exchangeable part classes of C. Predicates may
be of any arity.

• A class SPN whose leaves fall into three categories:
– LCA is a univariate distribution over attribute A of C;
– LCR is an EDT over binary (or higher-order) predicate
R involving C and/or its part types (e.g. formulas of
the form R1(P1, P2) or R2(C,P1), where P1 and P2

are part classes of C);
– LCP is a sub-SPN for part class P (i.e. a valid class SPN

for class P).
All attributes, relations and parts of class C must be in-
cluded in the class SPN. The class SPNs can have arbi-
trary internal structure.

Each Pk in UC and EC is an RSPN class. In principle, a
class may occur multiple times in each part vector. In this
case, each part may be uniquely identified by its index in the
corresponding vector. However, to simplify this discussion,
we assume that each class occurs at most once in (UC , EC).

Example 3. The following is a partial class specification for
a simple political domain. A ‘Region’ consists of an arbi-
trary number of nations, and relationships between nations
are modeled at this level. A ‘Nation’ has a unique govern-
ment and an arbitrary number of people. National properties
such as ‘High GDP’ are modeled here. The ‘Supports’ rela-
tion can capture a distribution over the number of people in
the nation who support the government.

class Region:
exchangeable part Nation
relation Adjacent(Nation,Nation)
relation Conflict(Nation,Nation)

class Nation:
unique part Government
exchangeable part Person
attribute HighGDP
relation Supports(Person,Government)

See fig. 2 for an example class SPN.

2880

Figure 2: Partial SPN for the ‘Nation’ class (example 3). The
sum node at the root represents a mixture model over two
possible SPNs for ‘Nation’: one with high GDP (left), and
the other with low GDP (right; omitted). The ‘HighGDP’ at-
tribute is modeled by a Bernoulli distribution, and the ‘Sup-
ports’ relation is modeled by an EDT of the form described
in example 1.

Grounding an RSPN
Like MLNs, RSPNs are templates for propositional models.
To generate a ground SPN from an RSPN, we take as input
a part decomposition:

Definition 5. For RSPN class C, a C-rooted part decompo-
sition consists of:

• An object O of class C (‘root’);
• Exactly one P -rooted part decomposition for each unique

part class P in UC (‘unique child’);
• A (possibly empty) set of P -rooted decompositions for

each exchangeable part class P in EC (‘exchangeable
children’).

The decomposition must be acyclic, i.e. an object may not
be its own child or descendant. (This ensures that the ground
SPN is acyclic even when the RSPN class structure contains
cycles.)

To ground a class SPN is to instantiate the template for
a specific set of objects. Given a class C and a part decom-
position D rooted at object O, grounding C’s SPN yields
a propositional SPN whose leaf distributions are over at-
tributes and relations involving the objects inD. This is done
recursively as follows:

• For leaves of the form LCA: replace the univariate distribu-
tion over predicate A in the class SPN with a univariate
distribution over A(O) in the ground SPN.

• For leaves of the formLCR: replace the EDT overR(X,Y)
in the class SPN with an instantiation of that EDT over the
groundings of R.

• For leaves of the form LCP : recursively ground P ’s class
SPN over each type-P child of object O. Replace the leaf
with a product over the resulting ground SPNs.

Figure 3: Example grounding of the ‘Nation’ class, with
SPN from fig. 2.

Note that each attribute/relation/part may correspond to
more than one leaf in the SPN (in different children of a sum
node), potentially modeled by a different univariate distribu-
tion/EDT/class SPN. See fig. 3 for an example ground SPN.

Representational Power
The main limitation of the RSPN representation is that indi-
vidual relational atoms are not modeled directly, but through
aggregations. In this respect, it is similar to Probabilistic
Relational Models (PRMs; Friedman et al. 1999)—though
RSPNs guarantee tractable inference, unlike PRMs. Aggre-
gations are extremely useful for capturing relational depen-
dencies (Natarajan et al. 2012). For example, a person’s
smoking habits may depend on the number of friends she
has who smoke, and not the smoking habits of each individ-
ual friend. Nevertheless, aggregations are not well-suited to
capturing relational patterns that depend on specific paths of
influence, such as Ising models.

It is important to note than RSPNs (and SPNs) are not
simply tree-structured graphical models. The graph of an
RSPN is not a conditional dependency graph, but a graphical
representation of the computation of the partition function.
A ground RSPN can be converted into an equivalent graph-
ical model, but the resulting model may be high-treewidth,
and computationally intractable as such.

In effect, RSPNs are a way to compactly represent
context-specific independences in relational domains: differ-
ent children of a sum node may have different variable de-
compositions in their product nodes. These context-specific
independences are what give RSPNs more expressiveness
than low-treewidth tractable models.

Learning RSPNs
The learning task for RSPNs is to determine the structure
and parameters of all the class SPNs in the domain. In this
work, we assume that the part relationships among classes
are known, i.e. the user determines what types of unique and

2881

Algorithm 1 LearnRSPN(C, T , V)
input: C, a class

T , a set of instances of C
V , a set of attributes, relation aggregates, and parts

output: an RSPN for class C
if |V | = 1 then

if v ∈ V is an attribute then
return univariate estimated from v’s values in T

else if v is a relation aggregate then
return EDT estimated from v’s values in T

else
Cchild ← class of v //v is a part
Tchild ← parts of t ∈ T of type Cchild
Vchild ← attributes, relations and parts of Cchild
return LearnRSPN(Cchild, Tchild, Vchild)

end if
else

partition V into approximately independent subsets Vj
if success then

return
∏
j LearnRSPN(C, T, Vj)

else
partition T into sets of similar subsets Ti
return

∑
i
|Ti|
|T | .LearnRSPN(C, Ti, V)

end if
end if

exchangeable parts are allowed for each class. The input for
the learning algorithm is a set of part decompositions, and
an evidence database specifying the values of the attributes
and relations among the objects in those decompositions.

Our learning algorithm is based on the top-down
LearnSPN algorithm (Gens and Domingos 2013).
LearnSPN(T, V) is a propositional SPN learning algo-
rithm, and takes as input a set of training instances T
and variables V . The algorithm attempts to decompose
V into independent subsets V1, . . . , Vk (using pairwise
statistical independence tests); if such a decomposi-
tion exists, LearnSPN recurses over each set (calling
LearnSPN(T, V1),. . .,LearnSPN(T, Vk)), and returns a
product node over the recursively learned sub-SPNs. If
V does not decompose, LearnSPN instead clusters the
instances T , recursively learns a sub-SPN over each subset
T1, . . . , Tk, and returns a sum-node over the sub-SPNs,
weighted by the mixture proportions. Under certain assump-
tions, LearnSPN can be seen as a greedy search maximizing
the likelihood of the learned SPN.

Given an RSPN classC, LearnSPN could be used directly
to learn an SPN overC’s attributes. However,C’s exchange-
able parts pose a problem for LearnSPN: the number of leaf
variables in the ground SPN can differ from one training in-
stance to another, and between training instances and test
instances. To address this, we propose the LearnRSPN al-
gorithm (Alg. 1), a relational extension of LearnSPN. (For
the purpose of this discussion, parts are assumed to be ex-
changeable; attributes of unique parts can be handled the
same way as attributes of the parent part, and represented
as separate leaves in the class SPN.)

LearnRSPN is a top-down algorithm similar to Learn-
SPN; it attempts to find independent subsets from among
the object’s set of attributes, relations and parts; if multi-
ple subsets exist, the algorithm learns a sub-SPN over each
subset, and returns a product over the sub-SPNs. If indepen-
dent subsets cannot be found, LearnRSPN instead clusters
the instances, returning a sum node over the components,
weighted by the mixture proportions.

LearnRSPN exploits the fact that predicates involving ex-
changeable parts are grounded into finite sets of exchange-
able variables. Instead of treating each ground atom as a sep-
arate leaf in the SPN, LearnRSPN summarizes a set of ex-
changeable variables with an aggregate statistic (in our ex-
periments, we used the fraction of true variables in the set,
though other statistics can be used). This summary statis-
tic is treated as a single variable in the decomposition stage
of RSPN. Thus, attributes that are highly predictive of the
statistics of the groundings of a relation will be grouped with
that relation. Parts are similarly summarized by the statistics
of their attribute and relation predicates.

The base case of LearnRSPN (when |V | = 1) varies de-
pending on what v is. When v is an attribute, the RSPN to be
returned is simply a univariate distribution over the attribute,
as in the propositional version of LearnSPN. When v is an
aggregate over an exchangeable relation, the RSPN to be re-
turned is an EDT over the relation. The final base case is
when v is a part of class Cchild. In this case, LearnRSPN re-
turns an SPN for class Cchild. Crucially, different SPNs are
learned for Cchild in different children of a sum node in par-
ent class C (since the recursive call is made with a different
set of instances).

Like LearnSPN, LearnRSPN can be seen as an algorithm
schema rather than a single algorithm; the user is free to
choose a clustering algorithm for instances, a dependency
test for variable splitting, an aggregate statistic, and a fam-
ily of EDTs for exchangeable relations. Note that different
families of EDTs may require different aggregate statistics
for parameter estimation. The fraction of true groundings is
sufficient for the two EDTs described in examples 1 and 2.

Evaluation
Methodology
We compared a Python implementation of LearnRSPN to
two MLN structure learning algorithms:

• MSL (Kok and Domingos 2005), as implemented in the
widely-used ALCHEMY system (Kok et al. 2008);

• LSM (Kok and Domingos 2010), a state-of-the-art MLN
learning method.

We also evaluated a simple baseline (BL) that simply pre-
dicts each atom according to the global marginal probability
of its predicate.

To cluster instances in LearnRSPN, we used the EM im-
plementation in SCIKIT-LEARN (Pedregosa et al. 2011), with
two clusters. To test independence, we fit a Gaussian dis-
tribution (for aggregate variables) or Bernoulli distribution
(for binary attributes), and computed the pairwise mutual
information (MI) between the variables. The test statistic

2882

class Area:
exchangeable part Group

class Group:
unique part Professor
exchangeable part Student
exchangeable part GroupPaper
exchangeable part NonGroupPaper
relation Author(Professor, GroupPaper)
relation Author(Professor, NonGroupPaper)
relation Author(Student, GroupPaper)
relation Author(Student, NonGroupPaper)

class Professor:
attribute Position_Faculty
attribute Position_Adjunct
attribute Position_Affiliate

class Student:
attribute InPhase_PreQuals
attribute InPhase_PostQuals
attribute InPhase_PostGenerals

Figure 4: Part structure for UW-CSE domain.

used was G = 2N ×MI (N being the number of samples),
which in the discrete case is equivalent to the G-test used
by Gens and Domingos (2013). In this case, G’s distribution
is approximately chi-square. To discourage excessively fine-
grained decomposition during structure learning, we used a
high threshold of 0.5 for the one-tailed p-value. For EDTs,
we used the independent Bernoulli form, as described in ex-
ample 1 in the main paper. All Bernoulli distributions were
smoothed with a pseudocount of 0.1.

For MLN inference, we used the MC-SAT algorithm, the
default choice in ALCHEMY 2.0, with the default parame-
ters. For LSM, we used the example parameters in the im-
plementation (Nwalks = 10, 000, π = 0.1; remaining pa-
rameters as specified by Kok and Domingos 2010).

We report results in terms of area under the precision-
recall curve (AUC; Davis and Goadrich 2006) and the av-
erage conditional marginal log-likelihood (CMLL) of test
atoms. AUC is a prediction quality measure that is insen-
sitive to the fraction of true negative atoms. CMLL di-
rectly measures the quality of the probability estimates. For
LearnRSPN, we also report test set log-likelihood (LL) nor-
malized by the number of queries, as an alternate measure of
prediction quality. (ALCHEMY does not compute this quan-
tity, since it is intractable for MLNs.) Unlike CMLL, LL
captures the joint likelihood, rather than just the individual
marginal likelihoods.

UW-CSE
The UW-CSE database (Richardson and Domingos 2006)
has been used to evaluate a variety of statistical relational
learning algorithms. The dataset describes the University of
Washington Computer Science & Engineering department,
and includes advising relationships, paper authorships, etc.

The database is divided into five non-overlapping mega-
examples, by research area.

To generate a part structure for this domain (fig. 4), we
separated the people into one research group per faculty
member, with students determined using the AdvisedBy
and TempAdvisedBy predicates (breaking ties by number
of coauthored papers). Publications are also divided among
groups: each paper is assigned to the group of the profes-
sor who wrote it, voting by the number of student authors
in the group in the event of a tie. The prediction tasks are
to infer the roles of faculty (Professor, Associate Professor
or Assistant Professor) and students (Pre-Quals, Post-Quals,
Post-Generals), as well as paper authorships. The part struc-
ture is also made available to ALCHEMY in the form of
predicates Has(Area,Group), Has(Group, Professor),
Has(Group, Student), Has Group(Group, Paper), and
Has NonGroup(Group, Paper).

We performed leave-one-out testing by area, testing on
each area in turn using the model trained from the remain-
ing four. 80% of the groundings of the query predicates were
provided as evidence, and the task was to predict the remain-
ing atoms. Table 1 shows the results on all five areas, and the
average. The RSPN approach is orders of magnitude faster
than the other systems, and significantly more accurate. Av-
erage training times in this domain are 9s (RSPN), 14,094s
(MSL) and 1,620s (LSM).

Social Network Link Prediction
Link prediction is a challenging statistical relational learning
problem (Popescul and Ungar 2003; Taskar et al. 2003). The
task is to predict missing links in a partially observed graph,
taking into account observed attributes of the nodes.

We generated artificial social networks in the Friends-
and-Smokers domain (Singla and Domingos 2008), using
a generalization of the Barabási-Albert preferential attach-
ment model (Barabási and Albert 1999). A network with N
nodes is generated as follows:

• For some fraction psmokes = 0.3 of nodes x, set
Smokes(x) to ‘true’, and set the remainder to ‘false’.

• For each node, sample another node and create an
undirected edge. In the basic Barabási-Albert model,
the probability of choosing a node is proportional to
its degree. To encourage homophily, we multiply the
unnormalized probability of an edge by a factor of
hsmokes,smoker = 100 for smoker-smoker edges, and
hnonsmoker,nonsmoker = 10 for edges between non-
smokers.

• Iterate, creating more edges for each node using the above
distribution. We generate 2 or 3 edges (with equal prob-
ability) for each smoker node, and 1 or 2 edges for each
non-smoker node.

This procedure results in graphs with small, dense com-
munities of smokers, sparser communities of non-smokers,
and relatively few links between smokers and non-smokers
(fig. 5).

For training data, we generated five 100-person graphs.
We tested on graphs of size ranging from 100 to 400 nodes

2883

Table 1: UW-CSE results. |Q| is the number of query atoms.
Area |Q| Inference time (s) AUC-PR CMLL LL/|Q|

RSPN MSL LSM RSPN MSL LSM BL RSPN MSL LSM BL RSPN
AI 1,414 0.10 7.18 5.32 0.71 0.36 0.29 0.36 -0.10 -0.16 -0.17 -0.16 -0.09

Graphics 171 0.03 0.82 0.50 0.80 0.59 0.38 0.35 -0.13 -0.28 -0.31 -0.26 -0.13
PL 17 0.01 0.05 0.05 0.81 0.84 0.69 0.42 -0.46 -0.81 -0.84 -0.80 -0.45

Systems 1,120 0.01 8.81 4.33 0.75 0.76 0.25 0.28 -0.07 -0.08 -0.14 -0.14 -0.07
Theory 308 0.04 1.01 0.94 0.79 0.51 0.37 0.32 -0.11 -0.29 -0.21 -0.20 -0.10
Average 606 0.05 3.57 2.22 0.77 0.61 0.39 0.34 -0.17 -0.32 -0.33 -0.31 -0.17

Table 2: Friends & Smokers link prediction results. N is the number of people in the network.
N |Q| Inference time (s) AUC-PR CMLL LL/|Q|

RSPN MSL LSM RSPN MSL LSM BL RSPN MSL LSM BL RSPN
100 2,000 0.10 25.31 8.11 0.22 0.08 0.02 0.02 -0.09 -0.13 -0.13 -0.12 -0.09
200 8,000 0.34 202.14 51.29 0.16 0.03 0.01 0.01 -0.05 -0.54 -0.06 -0.07 -0.05
300 18,000 0.75 740.64 150.13 0.13 0.01 0.00 0.00 -0.04 -3.24 -0.04 -0.06 -0.03
400 32,000 1.29 1753.14 330.92 0.13 0.00 0.00 0.00 -0.03 -6.10 -0.04 -0.05 -0.02

Figure 5: Sample 100-node social network. Red nodes are
smokers.

(10,000 to 160,000 possible edges), to evaluate how well
the structures learned by LearnRSPN generalize to mega-
examples of different size.

At test time, all the Smoker labels and 80% of the
Friendship edges are known; the prediction task is to in-
fer the marginal probabilities of the remaining 20% of the
graph edges.

An RSPN was trained with two classes: Network
and Person. Network has both classes as exchangeable
subparts. The part decompositions were generated using
the Louvain method1 (Blondel et al. 2008), and the re-
sulting community structure was also made available to
ALCHEMY in the form of Has(Network,Network) and
Has(Network, Person) predicates.

Table 2 shows the inference time and accuracy of the three
systems. Results are averaged over five runs. Figures in bold
are statistically significant improvements over all other sys-

1http://perso.crans.org/aynaud/communities/

tems (using the sign test, with a p-value of 0.05). Aver-
age training times for the three systems are 168s (RSPN),
31,083s (MSL) and 105,018s (LSM).

This is an extremely challenging link prediction task, due
to the sparsity of the domain, and the relatively weak depen-
dence between a node’s attributes and links. MSL’s greedy
structure learning fails to find formulas that either exploit
the provided community structure or capture the relation-
ship between a person’s friendships and smoking habits. Ad-
ditionally, the weights learned by MSL on 100-node net-
works become increasingly inappropriate as the network
size changes. On larger graphs, MLNs become prone to pre-
dicting that everybody is friends, a known pathology in so-
cial network models. Nevertheless, MSL outperforms the
baseline in the AUC metric, which corrects for sparsity.
LSM avoids the above pathology, learning a model similar
to the baseline. As in the UW-CSE domain, RSPNs greatly
outperform the other systems in both speed and accuracy.

Automated Debugging
We applied RSPNs to a fault localization problem. The task
is to predict the location of the bug in a faulty program.

The test corpus consists of four short Python program-
ming assignments from MIT edX introductory program-
ming course (6.00x) (Singh, Gulwani, and Solar-Lezama
2013): oddTuples, derivatives, isWordGuessed
and newtons method. We developed a suite of ten unit
tests for each assignment, and identified ten buggy but syn-
tactically valid responses to each question. (We filtered out
submissions with multiple bugs, non-terminating loops, etc.)
We manually annotated the location of the bug in each of the
40 programs in the corpus.

The corpus included several other programs, which were
unusable for the following reasons:
• ate1 and biggest had a single example each.
• polynomials and getAvailableWords predomi-

nantly contained syntactic errors; we did not find exam-
ples that met the constraints above.

2884

Table 3: Fault localization results.
Program Avg. LOC Inference time (s) Fraction skipped CMLL LL/|Q|

RSPN MSL RSPN MSL TAR BL RSPN MSL TAR BL RSPN
oddTuples 10.9 0.004 0.030 0.66 0.63 0.80 0.58 -0.65 -3.65 -1.47 -0.74 -0.64
derivatives 15.3 0.005 0.055 0.66 0.54 0.53 0.47 -0.36 -4.31 -0.62 -0.42 -0.35

isWordGuessed 15.8 0.004 0.056 0.70 0.58 0.63 0.42 -0.49 -3.35 -0.57 -0.40 -0.41
newtons method 22.1 0.007 0.077 0.54 0.74 0.51 0.47 -0.41 -2.69 -0.80 -0.37 -0.41

Average 16.5 0.005 0.055 0.64 0.62 0.62 0.48 -0.60 -3.50 -0.86 -0.48 -0.45

class Program:
exchangeable part IfStmt
exchangeable part LoopStmt
exchangeable part AtomicStmt

class IfStmt:
unique part Program
attribute Buggy

class LoopStmt:
unique part Program
attribute Buggy

class AtomicStmt:
attribute Buggy

Figure 6: Part structure for debugging domain.

• hangman and simple hangman were interactive pro-
grams, incompatible with our automated testing environ-
ment.

• The predominant cause of failure in getGuessedWord
was that the output string was formatted differently from
our reference implementation.

The program parse tree provides the part structure. The
parse tree is mapped to the part structure in fig. 6; this part
structure is also provided to ALCHEMY as evidence. The
aggregation used by LearnRSPN is simply a discrete vari-
able indicating which class of statement is most common in
the subprogram (IfStmt, LoopStmt, or AtomicStmt).
This information is also provided as evidence to ALCHEMY.
The systems were trained on three programs and tested on
the fourth; reported results are averaged over the 10 buggy
versions of each program.

In addition to MSL, we compared RSPNs to TARAN-
TULA (TAR; Jones and Harrold 2005), a well-established
fault localization approach. A common evaluation metric for
fault localization systems is the fraction of program lines
ranked lower than the buggy line. Higher scores indicate
better localization. Ties in the line ranking are broken ran-
domly. TARANTULA scores are computed in closed form
from the coverage matrix. We also report the CMLL; for
TARANTULA, this was computed by treating the suspicious-
ness score (which falls between 0 and 1) as a probability.
As seen in table 3, RSPNs are competitive with both MSL
and TARANTULA in ranking quality, and outperform them in
CMLL. Average training times are 0.37s (RSPN) and 188s

(MSL).

Discussion
SRL algorithms have been successfully applied to several
problems, but the difficulty, cost and unreliability of approx-
imate inference has limited their wider adoption. In practice,
applying SRL methods to a new domain requires substantial
engineering effort in choosing and configuring the approxi-
mate learning and inference algorithms. The expressiveness
of languages like Markov logic is both a boon and a curse:
although these languages can compactly represent sophisti-
cated probabilistic models, they also make it easy for prac-
titioners to unintentionally design models too complex even
for state-of-the-art inference algorithms.

In the propositional setting, several approaches have been
recently proposed for learning high-treewidth tractable mod-
els (Lowd and Domingos 2008, Gogate et al. 2010, Poon
and Domingos 2011). To our knowledge, LearnRSPN is
the first algorithm for learning high-treewidth tractable re-
lational models. Empirically, LearnRSPN outperforms con-
ventional statistical relational methods in accuracy, infer-
ence time and training time.

A limitation of RSPNs is that they require a known, fixed
part decomposition for all training and test mega-examples.
Applying RSPNs to a new domain does require the user to
specify the part decomposition; this is analogous to speci-
fying the relational structure in PRMs. Many domains have
a natural part structure that can be exploited (like the UW-
CSE and debugging domains); in other cases, part structure
can be created using existing graph-cut or community detec-
tion algorithms (as in our link prediction experiments). An
important direction for future work is to develop an efficient,
principled method of finding part structure in a database.

Acknowledgments
This research was partly funded by ARO grant W911NF-08-
1-0242, ONR grants N00014-13-1-0720 and N00014-12-1-
0312, and AFRL contract FA8750-13-2-0019. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies, either expressed or implied, of
ARO, ONR, AFRL, or the United States Government.

References
Amer, M. R., and Todorovic, S. 2012. Sum-product net-
works for modeling activities with stochastic structure. In
Proceedings of CVPR.

2885

Bach, F., and Jordan, M. I. 2001. Thin junction trees. In
Advances in NIPS.
Barabási, A. L., and Albert, R. 1999. Emergence of scaling
in random networks. Science 286:509–512.
Blondel, V. D.; Guillaume, J.; Lambiotte, R.; and Lefebvre,
E. 2008. Fast unfolding of communities in large networks.
Journal of Statistical Mechanics: Theory and Experiment
10:10008–10019.
Bröcheler, M.; Mihalkova, L.; and Getoor, L. 2010. Proba-
bilistic similarity logic. In Proceedings of UAI.
Davis, J., and Goadrich, M. 2006. The relationship between
precision-recall and ROC curves. In Proceedings of ICML.
Davis, J.; Ong, I.; Struyf, J.; Burnside, E.; Page, D.; and
Costa, V. S. 2007. Change of representation for statistical
relational learning. In Proceedings of IJCAI.
Delalleau, O., and Bengio, Y. 2011. Shallow vs. deep sum-
product networks. In Advances in NIPS.
Dennis, A., and Ventura, D. 2012. Learning the architecture
of sum-product networks using clustering on variables. In
Advances in NIPS.
Diaconis, P., and Freedman, D. 1980. De Finetti’s gener-
alizations of exchangeability. In Studies in Inductive Logic
and Probability 2:235–250.
Domingos, P., and Webb, A. 2012. A tractable first-order
probabilistic logic. In Proceedings of AAAI.
Flach, P., and Lachiche, N. 2004. Naive Bayesian classifica-
tion of structured data. Machine Learning 57(3):233–269.
Friedman, N.; Getoor, L.; Koller, D.; and Pfeffer, A. 1999.
Learning probabilistic relational models. In Proceedings of
IJCAI.
Gens, R., and Domingos, P. 2012. Discriminative learning
of sum-product networks. In Advances in NIPS.
Gens, R., and Domingos, P. 2013. Learning the structure of
sum-product networks. In Proceedings of ICML.
Getoor, L., and Taskar, B., eds. 2007. Introduction to Statis-
tical Relational Learning. MIT Press.
Gogate, V.; Webb, W. A.; and Domingos, P. 2010. Learning
efficient Markov networks. In Advances in NIPS.
Jones, J. A., and Harrold, M. J. 2005. Empirical evaluation
of the TARANTULA automatic fault-localization technique.
In Proceedings of ASE.
Kok, S., and Domingos, P. 2005. Learning the structure of
Markov logic networks. In Proceedings of ICML.
Kok, S., and Domingos, P. 2010. Learning markov logic
networks using structural motifs. In Proceedings of ICML.
Kok, S.; Sumner, M.; Richardson, M.; Singla, P.; Poon, H.;
Lowd, D.; Wang, J.; and Domingos, P. 2008. The Alchemy
system for statistical relational AI. Technical report, Univer-
sity of Washington. http://alchemy.cs.washington.edu.
Landwehr, N.; Kersting, K.; and De Raedt, L. 2005. nFOIL:
Integrating Naive Bayes and FOIL. In Proceedings of AAAI.
Lowd, D., and Domingos, P. 2008. Learning arithmetic cir-
cuits. In Proceedings of UAI.

Natarajan, S.; Khot, T.; Kersting, K.; Gutmann, B.; and
Shavlik, J. 2012. Gradient-based boosting for statistical re-
lational learning: The relational dependency network case.
Machine Learning 86(1):25–56.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research 12:2825–2830.
Peharz, R.; Geiger, B. C.; and Pernkopf, F. 2013. Greedy
part-wise learning of sum-product networks. In Proceedings
of ECML-PKDD.
Poon, H., and Domingos, P. 2011. Sum-product networks:
A new deep architecture. In Proceedings of UAI.
Popescul, A., and Ungar, L. H. 2003. Structural logistic
regression for link analysis. In Proceedings of 2nd Interna-
tional Workshop on Multi-Relational Data Mining.
Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Machine Learning 62:107–136.
Sato, T., and Kameya, Y. 2008. New advances in logic-based
probabilistic modeling by PRISM. In Proceedings of PILP.
Singh, R.; Gulwani, S.; and Solar-Lezama. 2013. Automated
feedback generation for introductory programming assign-
ments. In Proceedings of SIGPLAN.
Singla, P., and Domingos, P. 2008. Lifted first-order belief
propagation. In Proceedings of AAAI.
Taskar, B.; Wong, M. F.; Abbeel, P.; and Koller, D. 2003.
Link prediction in relational data. In Advances in NIPS.
Webb, W. A., and Domingos, P. 2013. Tractable probabilis-
tic knowledge bases with existence uncertainty. In StaR-AI.

2886

