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Abstract

In Kernel-based Learning the targeted phenomenon is
summarized by a set of explanatory examples derived
from the training set. When the model size grows with
the complexity of the task, such approaches are so com-
putationally demanding that the adoption of compre-
hensive models is not always viable. In this paper, a
general framework aimed at minimizing this problem is
proposed: multiple classifiers are stratified and dynam-
ically invoked according to increasing levels of com-
plexity corresponding to incrementally more expressive
representation spaces. Computationally expensive in-
ferences are thus adopted only when the classification
at lower levels is too uncertain over an individual in-
stance. The application of complex functions is thus
avoided where possible, with a significant reduction of
the overall costs. The proposed strategy has been inte-
grated within two well-known algorithms: Support Vec-
tor Machines and Passive-Aggressive Online classifier.
A significant cost reduction (up to 90%), with a negligi-
ble performance drop, is observed against two Natural
Language Processing tasks, i.e. Question Classification
and Sentiment Analysis in Twitter.

Introduction
Kernel methods, discussed in (Shawe-Taylor and Cristianini
2004) have been employed in many Machine Learning al-
gorithms, such as Support Vector Machines (Vapnik 1998)
achieving state-of-the-art performances in many tasks. One
drawback of expressive but complex kernel functions, such
as Sequence (Cancedda et al. 2003) or Tree kernels (Collins
and Duffy 2001) is the time and space complexity required
both in the learning and classification phases, that may pre-
vent the kernel adoption in real world applications or in sce-
narios involving large amount of data.

In this paper, we mitigate this issue by decomposing the
learning process into a sequence of incrementally complex
ones: in this way, a stratified model is acquired, whereas
first layers are always applied to simple examples, and more
expressive representations are employed just when needed.
Notice that learning algorithms usually apply the same in-
ductive inference to each example. This may lead to unnec-
essarily high computational costs when simple examples are
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managed by a complex model or, dually, to coarse errors
made by naı̈ve approaches. It is interesting to decompose a
target model into layers, according to a specific notion of
complexity. Ideally, if the complexity of each example were
known a priori, an ad-hoc strategy could be applied to each
example. While, in general, the complexity of an example
is unknown, it could be estimated through the classification
confidence. Let us consider margin classifiers, such as the
Perceptron (Rosenblatt 1958). From a geometric perspec-
tive, the confidence can be inferred by the distance of an
example from the classification hyperplane: the higher is the
distance, the higher is the confidence in the response of the
classifier. This intuition can be applied to pick the proper de-
cision from a pool of classifiers, that are stratified according
to their expressivity and complexity. If an example is clas-
sified according to a simpler (and more efficient) decision
function with a satisfactory confidence, the analysis ends;
on the contrary, the example is analyzed by the more com-
plex classifiers until a satisfactory confidence is achieved.
The proposed stratifies strategy is applied to two state-of-
the-art algorithms, Support Vector Machine (SVM) and the
Passive Aggressive (PA) algorithm (Crammer et al. 2006),
that is one of the most popular Online Learning algorithms.
Even thought SVM generally achieves better performance,
PA is even more appealing as it incrementally modifies the
learned models without a complete retraining.

Our framework is general and applicable to a variety of
application domains and tasks. However, we focused on Nat-
ural Language Processing tasks whereas increasingly com-
plex kernels correspond to increasingly expressive linguistic
representations. Two semantic processing tasks are thus con-
sidered in the experimental evaluation, i.e. Question Classi-
fication and Sentiment Analysis in Twitter. In both cases,
lower levels of the stratified model are characterized by lin-
ear (and efficient) learning algorithms based on just surface
lexical information, while upper levels make use of more
complex kernels able to better generalize lexical and syn-
tactic information. Results suggest that a stratified learning
approach is effective as no significant performance drop is
experimented, while a significant reduction (up to 90%) of
kernel computations is achieved.

In the remaining, first we discuss related works. Then, the
stratified framework is defined and instantiated to SVM and
PA. Finally, the experimental evaluations are reported.
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Related Work
The proposed approach consists in a combination of clas-
sifiers and differs from the majority of Ensemble Learning
approaches since its main purpose is improving the effi-
ciency in addition to enhancing classification accuracy. In
Adaboost, (Freund and Schapire 1997), a “weak” classi-
fier is iteratively applied, focusing on all the examples mis-
classified at previous stages. Complexity and expressiveness
do not increase at each stage. In literature, some ensemble
methods have also been used to reduce the computational
cost. In (Xu et al. 2013) and (Kusner et al. 2014) classifiers
are organized according to a tree taxonomy, called Cost-
Sensitive Tree of Classifiers (CSTC), automatically built to
reduce the average test-time complexity: each test example
traverses the tree of classifiers along different paths, that fo-
cus on specific and reduced subsets of features, with a sig-
nificant reduction in the classification time. The main limit
of the CSTC is that it requires the representation space to be
made explicit and it cannot be applied to richer but implicit
representation spaces as those obtained through kernel func-
tions. An efficient classification schema has been adopted
in (Viola and Jones 2001) for the for Visual Object Detec-
tion task. The underlying idea is that it is often possible to
rapidly determine where an object might occur in the entire
image. Weak classifiers are used to detect the more promis-
ing regions, then complex processing performed by the fol-
lowing classifiers is only targeted to the selected regions. In
(Weiss, Sapp, and Taskar 2012) a similar approach, applied
to structured classification tasks like Handwriting Recog-
nition and Part-of-Speech Tagging, were proposed. A cas-
cade of classifiers of increasing complexity was used to sup-
port fast processing: all the classifiers were consecutively
invoked, and the information provided by the previous mod-
els was used to reduce the search space of the later clas-
sification stages. The reduction of computational costs of
kernel-based learning algorithms has been traditionally tack-
led by imposing a budget in the number of support vectors
(Cesa-Bianchi and Gentile 2006; Dekel and Singer 2006;
Orabona, Keshet, and Caputo 2008; Wang and Vucetic 2010;
Filice et al. 2014). However, in complicated tasks, they usu-
ally need large budgets systematically triggering many ker-
nel computations.
Kernel-based Language Learning. Kernels can directly
operate on variegate forms of representation, such as fea-
ture vectors, trees, sequences or graphs (Haussler 1999). In
Natural Language Learning specific kernels can be defined
to capture different linguistic information. This similarity
functions can be exploited by learning algorithms to obtain
an expressive model for a specific linguistic phenomenon.
Three kernel functions, each emphasizing a set of particular
linguistic aspects, can be considered.
Bag of Word Kernel, LINbow: A basic kernel function ex-
ploits lexical information, expressed as the word overlap be-
tween texts; documents are represented as vectors whose bi-
nary dimensions suggests the presence of different terms.
Lexical Semantic Kernel, RBFadd: A second kernel func-
tion generalizes the lexical information, without exploiting
any manually coded resource. Lexical information is ob-
tained by a co-occurrence Word Space built accordingly to

the methodology described in (Sahlgren 2006). A word-by-
context matrix M is computed through large-scale corpus
analysis. Latent Semantic Analysis (Landauer and Dumais
1997) is then applied as follows. The matrix M is decom-
posed through Singular Value Decomposition (SVD), every
word is projected in the reduced k-dimensional Word Space,
and texts are represented by additive linear combinations
(add), (Mitchell and Lapata 2010). The resulting kernel is
then defined as the Radial Basis Function kernel between
vector pairs, (Cristianini, Shawe-Taylor, and Lodhi 2002).
Smoothed Partial Tree Kernel (SPTKgrct) Tree kernels ex-
ploit syntactic similarity through the idea of convolutions
among substructures. Any tree kernel evaluates the num-
ber of common substructures between two trees without ex-
plicitly considering the whole fragment space (Collins and
Duffy 2001). SPTK (Croce, Moschitti, and Basili 2011)
main characteristic is its ability to measure the similarity
between syntactic tree structures which are partially simi-
lar and whose lexical nodes (i.e. words) can differ but are
semantically related. The notion of word similarity can be
automatically acquired though a distributional analysis of
texts, i.e. the above Word Space.

Individual kernels give rise to classifiers guided by a spe-
cific linguistic perspective. These can be combined through
the (linear) combination of individual functions as this is still
a valid kernel. Kernels in the combination are normalized in
order to balance their contribution.

A Stratified Classification Approach
Automatic Classification is the task of identifying the cate-
gory y ∈ Y associated to an observation x ∈ X , on the basis
of a training data set containing instances whose member-
ship is known. In our setting, we will consider binary clas-
sification tasks, i.e. y ∈ {−1, 1}, and instances x consisting
in a series of r different representations of the same object,
i.e. x = x1, x2, . . . , xr. Each representation xi belongs to a
different space X i.

Let U = {X 1, . . . ,X r} be the set of r different spaces,
and H1,H2, . . . ,Hc be c different families of classification
hypothesis, each one trained in a non empty subset of spaces
derived from U . This allows to consider an implicit feature
space obtained combining different kernels, (Shawe-Taylor
and Cristianini 2004). H1 could be the hypothesis space of
the linear classification functions operating on BoW feature
vectors, while H2 could be the space of the classification
functions that simultaneously exploit a syntactic tree and
a Latent Semantic vector in a particular multi-kernel ap-
proach. Let f i : X i → R be the classification function
belonging to the Hi classification hypothesis space, and let
pit ∈ R its prediction on the t-th example xt. In the most
generic approach, we can assume to have c − 1 confidence
indicators e1, . . . , ec−1 each one producing a boolean con-
fidence score associated to the correspondent predictions
p1t ,. . . , pc−1t . As summarized in Algorithm 1, we propose a
stratified learning strategy that proceeds as follows: starting
from the first classifier f1, the example xt is consecutively
evaluated by each f i classifier until a suitable confident pre-
diction is found, or all the c classifiers have been invoked.
Then, the l ≤ c predictions of the invoked classifiers are ag-
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Algorithm 1 c-level Stratified Classifier
for i:=1 to c do
pit := f i(xit);
if ei(pit) = false ∨ i = c then

return vi(p
1
t , . . . , p

i
t);

end if
end for

gregated by an Ensemble Combination Rule vl(p1t , . . . , p
l
t),

and a single output pt is produced. The i-th classifier will
evaluate only those examples that all the previous i−1 clas-
sifiers predict with low confidence. It means that, if classi-
fiers are ordered with increasing complexity levels, the most
expensive evaluations are saved for all the examples that ear-
lier classifiers unambiguously classify. Let us consider c = 2
stratified classifiers operating on the same d-dimensional
feature vector space. The first layer is a linear classification
function producing unambiguous predictions the 90% of the
times, and the second classifier is a kernel machine adopting
a Radial Basis Function (RBF) Kernel. The first layer has a
complexity of d (i.e. a single dot product), while the second
one is d|SV | (i.e. a kernel operation for each support vec-
tor), thus depending on the number of support vectors |SV |.
When |SV | support vectors are selected, the non-stratified
kernel machine would approximately require d|SV | oper-
ations, while the proposed approach just d(1 + 0.1|SV |).
Notice how the stratified strategy also applies to the learning
process: later (i.e. more complex) classifiers could be trained
only on instances classified with poor confidence by lower
level classifiers. The advantage is two-folds: only the small
subset of the problematic examples is provided to the upper
levels, drastically reducing the learning time; furthermore, it
allows the upper levels to be specialized in treating complex
examples.

Multiple predictions (one for each invoked level) are re-
lated to a single example, and must be combined in order
to have a unique output. When l ≤ c classifiers are in-
voked with predictions p1t , . . . , p

l
t, several ensemble com-

bination rules can be defined. We explored three different
policies vl(p1t , . . . , p

l
t) producing the final prediction pt: in

Maximal Complexity policy (MCompl) the prediction as-
sociated to the highest invoked level is chosen, i.e. pt = plt,
assuming that this level has the most complex and accu-
rate reasoning; in Maximal Confidence policy (MConf) the
most confident of the l predictions is selected, i.e. pt = pit
where i = argmaxj≤l|p

j
t |; finally, in Average Confidence

policy (Aver) the mean of the predictions is computed, i.e.
pt =

1
l

∑l
i=1 p

i
t. Obviously, the proposed policies do not af-

fect the classification strategy at the different levels, so they
have no impact on the resulting computational cost.

Stratified Margin Classifiers
The general proposed framework does not specify which
particular learning algorithm corresponds to each level of
the stratified model, neither functions e1, . . . , ec that vali-
date the confidence of a prediction. Maximum margin clas-
sifiers perfectly fit in the stratified framework. Their classifi-
cation function f(x) is a hyperplane separating the training

instances. In the linear case, instances are represented as fea-
ture vectors x in a d-dimensional space, and the hyperplane
is explicit, i.e. f(x) = wTx + b. This linear version is ex-
tremely attractive as it is characterized by a complexity of
O(d) (i.e., a dot product in the d-dimensional space).

Kernel methods enable to learn nonlinear classifica-
tion functions and to exploit structured data, like parse
trees when tree kernels are applied (Collins and Duffy
2001). Generic data representations x can be exploited us-
ing an implicit mapping φ(x) into the Reproducing Ker-
nel Hilbert Space (RKHS) operated by the kernel func-
tion k(·, ·). The classification function in the RKHS is thus
ft(x) =

∑
xi∈SV αik(xi, x) + b where SV is the set of

support vectors. The higher expressivity of kernel methods
is paid in terms of computational cost, as a single classifi-
cation involves the computation of |SV | different kernel op-
erations. This can prevent the adoption of kernels for com-
plex tasks over large datasets, as a large number of support
vectors is required. The suggested stratified strategy applies
to such a computational issue in natural language tasks. As
shallow linguistic features allow to achieve good results in
several tasks, e.g. text classification (Moschitti and Basili
2004), we first exploit simple classifiers, i.e. linear algo-
rithms. They are supposed to handle most examples and only
when the result is uncertain, kernelized (i.e., more expres-
sive) classifiers are used. It drastically reduces the overall
classification cost and minimizes linguistic pre-processing
costs, e.g. the full parsing, when not needed by “shallower”
classifiers.

The output provided by margin classifiers is the distance
from the classification hyperplane, that heuristically reflects
a confidence measure. This idea, already exploited in Ac-
tive Learning (Settles 2010), can be used to model a simple
confidence indicator e(p) for margin classifiers, such that
e(p) = true iff |p| < m, where m is a proper margin defin-
ing the ambiguity region. More generally, at each level i,
an ambiguity margin mi and the corresponding confidence
indicator ei could be defined. In the following, the stratified
strategy will be applied to two popular learning schemas, i.e.
batch learners and online learners.
Stratified Batch Learning Algorithms. In the batch learn-
ing paradigm, the complete training dataset is supposed to
be available during the learning phase. All the examples are
simultaneously exploited in order to generate a model to be
used in the classification phase, when predictions on new
instances must be provided. Usually, the learning process
aims at minimizing a cost function, and a global optimiza-
tion is performed on the whole training set D. A largely
popular batch learning method is the Support Vector Ma-
chine (SVM) algorithm (Vapnik 1998) that achieves state-
of-art performances in many tasks. Embedding batch algo-
rithms, like SVM, into the proposed stratified framework is
quite straightforward: the first level classifier learns a classi-
fication function exploiting the complete training setD. The
generated classification function f1 is then used to classify
all examples and only the uncertain ones (falling in the re-
gion defined by the ambiguity margin m1) are selected as a
training set D2 for the second level. The procedure is recur-
sively applied for training the increasingly complex levels,
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Algorithm 2 c-level Stratified SVM learning

D1 := D;
for i:=1 to c do
f i := SVMlearn(D

i);
Di+1 := {};
for all xj ∈ Di do
pj = f i(xj)
if pj < mi then
Di+1 = Di+1 ∪ {xj};

end if
end for

end for

Algorithm 3 c-level Stratified PA Classifier
for all xt ∈ D do

for i:=1 to c do
pit := f i

t (x
i
t);

if max(0, 1− pityt) > 0 then
if i− th classifier is linear then

αt := yt ·min

{
Ci(yt),

1−pityt

‖xi
t‖2

}
;

wi
t+1 := wi

t + αtx
i
t;

else
αt := yt ·min

{
Ci(yt),

1−pityt

‖xi
t‖2Hi

}
;

f i
t+1(x) := f i

t (x) + αtk(x
i
t, x)

end if
end if
if pit ≥ mi ∨ i = c then

return vi(p
1
t , . . . , p

i
t);

end if
end for

end for

as reported in Algorithm 2.
Stratified Online Learning Algorithms. Online Learning
(OL) differs from batch learning because each individual
example is exploited as soon as it is available. A common
OL procedure exploits each training example through a se-
quence of two steps: a classification stage, followed by a
possible model correction stage. This paradigm is very ap-
pealing as its inherent updating capability allows to scale
without complete re-training and to capture shifting con-
cepts. The Passive Aggressive (PA) algorithm (Crammer et
al. 2006) is one of the most popular OL approaches. The
underlying idea is quite simple: when an example is mis-
classified, the model is updated selecting the most similar
hypothesis to the current one, among the set of classification
hypotheses that correctly classify the example.

The resulting stratified approach that embeds the PA al-
gorithm is described in Algorithm 3. At each level i the pre-
diction pit := f it (x

i
t) is evaluated and the model is updated

when a non zero hinge loss H(p, y) = max(0, 1 − py) oc-
curs. If a linear PA formulation is applicable, the explicit
hyperplane is directly updated, otherwise the novel exam-
ple is added as a support vector. The weight αt is computed
accordingly to the PA-I formulation (Crammer et al. 2006).
Finally, if a high-confidence response is observed (pit ≥ mi)
or the current level is the last (i = c) the ultimate prediction
is aggregated by the specific Ensemble Combination Rule
vi(p

1
t , . . . , p

i
t).
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Figure 1: QC results w.r.t. Savings at a given margin (re-
ported next to each point) with the MCompl policy

Experimental Evaluations
In this section the stratified strategy is evaluated w.r.t. to the
Question Classification and Sentiment Analysis tasks.

Question Classification
Question classification (QC) deals with the mapping of a
question into one of k predefined classes of questions, thus
posing constraints on the search space of possible answers.
We used the UIUC dataset (Li and Roth 2006). It is com-
posed by a training set of 5,452 questions and a test set of
500 questions, organized in 6 coarse-grained classes.

The previously discussed kernels are evaluated to investi-
gate the contribution of different information in our stratified
model. The deepest analysis, which considers also syntax, is
given by the Smoothed Partial Tree Kernel over Grammati-
cal Relation Centered Trees (SPTKgrct), as experimented
in (Croce, Moschitti, and Basili 2011). Lexical generaliza-
tion within RBFadd and SPTKgrct is derived through the
distributional analysis of UkWaC (Baroni et al. 2009) cor-
pus, which is a large-scale document collection made by 2
billion tokens. A co-occurrence Word-Space with a window
of size ±3 is acquired. Co-occurrencies are weighted by es-
timating the Point-wise Mutual Information between words.
The SVD reduction is then applied with a dimensionality cut
of d = 250. Classifier parameters are tuned with a Repeated
Random Sub-sampling Validation, consisting in a 10-fold
validation strategy. To emphasize the contribution of less
frequent classes, the cost factor within SVM and the aggres-
siveness parameter within PA have been modified according
to (Morik, Brockhausen, and Joachims 1999) and (Filice et
al. 2014), respectively. Results are reported in terms of ac-
curacy i.e. the percentage of correctly classified questions.

Table 1 reports results of the online learning (PA) and
the batch learning (SVM) algorithms organized according to
different kernels. Moreover, for each stratified analysis, dif-
ferent Ensemble Combination Rules are considered in the
three columns MCompl, MConf and Aver. In each row a
specific kernel is investigated and results of the monolithic
(i.e. non stratified) algorithm are compared with the 2-level
stratified counterpart with ambiguity margin m1 = 1. The
monolithic version always applies the most sophisticated
and computationally expensive processing of the kernelized
approach, so representing a sort of upper-bound. On the con-
trary, the stratified approach handles most of the instances in
the first layer by a linear (i.e. fast and non-kernelized) algo-
rithm operating on a BoW representation (*LINbow), while
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Table 1: Results w.r.t. QC task. The * indicates linear algorithms. The - indicates a monolithic approach, where the second stage is missing.

FirstLevel SecondLevel Online Batch
MCompl MConf Aver Sav. MCompl MConf Aver Sav.

*LINbow - 81.4% 84.2%
*LINbow *LINbow 81.9% 81.8% 82.0% - 84.0% 84.4% 85.4% -
RBFadd - 85.9% 75% 91.4% 83%
*LINbow RBFadd 86.7% 86.5% 87.3% 90.2% 88.8% 90.4%
SPTKgrct - 87.7% 74% 92.0% 77%
*LINbow SPTKgrct 87.5% 87.7% 86.4% 90.2% 90.2% 91.4%

LINbow+RBFadd - 88.3% 73% 88.2% 76%
*LINbow LINbow+RBFadd 87.7% 87.1% 86.1% 87.2% 85.8% 88.0%

LINbow+SPTKgrct - 87.8% 73% 90.4% 77%
*LINbow LINbow+SPTKgrct 87.4% 86.6% 86.4% 89.0% 87.0% 89.2%

LINbow+RBFadd+SPTKgrct - 89.3% 73% 90.8% 77%
*LINbow LINbow+RBFadd+SPTKgrct 88.6% 88.0% 86.6% 90.0% 88.0% 89.0%

Table 2: Results w.r.t. the QC task. The * indicates linear algorithms.

FirstLevel SecondLevel Third Level Online Batch
MCompl MConf Aver MCompl MConf Aver

SPTKgrct - - 87.0% 92.0%
*LINbow SPTKgrct - 87.5% 87.7% 86.4% 90.2% 90.2% 91.4%
*LINbow RBFadd SPTKgrct 87.9% 88.2% 88.6% 88.0% 90.0% 91.6%

the second level is a kernelized classifier. The * symbol in-
dicates that a linear algorithm is applied. As an example,
the third row shows the comparison between a monolithic
setting that operates with a SPTKgrct kernel and the strati-
fied counterpart. The monolithic *LINbow, that employs the
simplest representation and the most efficient linear algo-
rithm, is to be considered a lower-bound. As expected, the
introduction of lexical generalization in the RBFadd kernel
is beneficial, while results are further improved introducing
syntax through the SPTKgrct.

The effectiveness of the stratification is measured in terms
of Computational Saving (see column Sav. in table 1) as
the percentage of kernel operations avoided in the second
layer w.r.t. the corresponding monolithic algorithm during
the classification of the test set. For example, the monolithic
PA operating with a SPTKgrct kernel and the stratified coun-
terpart with ambiguity margin m1 = 1 achieve the same
accuracy (87.7%), although the stratified PA guarantees a
drastic reduction in the computational complexity: the strat-
ified PA performs only 26% of the kernel operations w.r.t.
the monolithic PA, with a computational saving of 74%.
It is worth noticing that the ambiguity margin represents
a model parameter that has a deep impact on the trade-off
between accuracy and computational cost, as shown in Fig-
ure 1. The curves are obtained varying the ambiguity margin
from 0.1 to 1 using the best configuration of both SVM (i.e.
SPTKgrct) and PA (i.e. LINbow+RBFadd+SPTKgrct). The
larger is the ambiguity margin, the higher is the computa-
tional cost. Values of m larger than 1 were not beneficial as
just higher computational costs are obtained, both in train-
ing and testing. The achieved results are straightforward: all
the considered kernels confirm the robustness of the strat-
ified approach with accuracies close to the upper-bounds,
even with lower ambiguity margins. At the same time, the
computational saving is impressive: for example, with an

ambiguity margin of 0.6 for the PA and 0.8 for the SVM,
no significant accuracy drop is observed, but the computa-
tional saving is approximately 90%, i.e. the total computa-
tional cost is reduced of an order of magnitude. The number
of times the kernel machine is invoked drastically decreases
both in testing and training; this leads to a reduction of the
number of training examples needed at the second level, that
produces a more compact model, i.e. a classifier with fewer
SVs. Regarding the ensemble combination policies, in the
OL setting better results are achieved by using the Maximal
Complexity policy (MComp), so neglecting the predictions
of the weaker classifiers. It is different in the batch setting
where the Maximal Confidence policy (Mconf setting) and
Average Confidence policy (Aver) achieve better results: the
SVM algorithm performs a global optimization and provides
a robust solution even exploiting the simple LINbow.

Beside the efficiency of linear algorithms with respect to
complex kernel-based machines, one has to consider that the
complexity of kernel functions can deeply vary. For exam-
ple the RBFadd kernel requires a single operation on vector
pairs, while the same operation is needed to be executed in
the SPTKgrct a number of times that tends to be quadratic
w.r.t. the number of lexical nodes in a tree, as in (Croce,
Moschitti, and Basili 2011). The overall cost of stratifying
several complex kernels would be thus reduced by apply-
ing first the less expensive operations. We thus evaluated a
3-level stratified approach, in which *LINbow, RBFadd and
SPTKgrct are consecutively exploited. The first two levels
operate as a double filtering for minimizing the number of
times the most complex classifier is invoked. Table 2 reports
the accuracy results obtained with this 3-level approach with
ambiguity margins m1 = m2 = 1. The results achieved by
this stratified schema are very promising in both Online and
Batch settings. The 3-level PA is able to overcome the mono-
lithic SPTKgrct, avoiding 89,4% of the tree kernel computa-
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Figure 2: SA results w.r.t. the Saving at a given margin (reported
next to each point) with the MCompl policy

tions, and the 2-level SPTKgrct, preventing 59.3% of the tree
kernel computations. The three-level SVM achieves results
very close to the monolithic and the 2-level counterparts,
with a computational saving of 91.8% and 65.2%.

Sentiment Analysis in Twitter
Twitter represents an intriguing source of information as it is
used to share opinions about brands, products, or situations
(Jansen et al. 2009). The growing interest in the automatic
interpretation of opinion statements makes Sentiment Anal-
ysis on Twitter a hot topic, which is challenging as tweets
are short, informal and characterized by their own particular
language. This task is also interesting as an online learn-
ing schema is supposed to better adapt to a very dynamic
scenario like micro-blogging. The evaluation of the strati-
fied approach is carried out on the SemEval-2013 Task 2
corpus, (Wilson et al. 2013). In particular, we focus on the
Message Polarity Classification: the entire tweet is classified
w.r.t. three classes positive, negative and neutral. The train-
ing dataset is composed of 10, 205 annotated tweets, while
the test dataset is made of 3, 813 tweets. The same classifier
parametrization of QC has been carried out. Again, different
kernels are evaluated: a linear kernel operating on a BoW
representation (*LINbow) and the radial basis function ker-
nel over an additive linear combination of terms from a Se-
mantic Word Space (RBFadd). The SPTK is not used here,
as the low quality of parse tree obtained from tweets, a prob-
lem discussed in (Foster et al. 2011), would compromise
the overall kernel contribution. The Word Space is acquired
through the analysis of a generic corpus made of 3 million
of tweets; the same setting of the previous section has been
adopted. A pre-processing stage is applied: fully capitalized
words are converted in lowercase; reply marks, hyperlinks,
hashtags and emoticons are replaced by special tokens.

In Table 3 we evaluated a 2-level stratified approach with
ambiguity margin m1 = 1. Results have the same setting of
Table 1, but they are numerically reported in terms of aver-
age F1-Measure between the positive and negative classes,
i.e. the metric adopted in the SemEval challenge. Again, a
linear (i.e. non kernelized) algorithm operating on a BoW
representation (*LINbow) is less expressive and achieves
lower results. Word generalization is confirmed to be ben-
eficial, as demonstrated by the RBFadd kernel adoption.

Figure 2 shows the trade-off between F1 mean and the
Computational Saving. The empirical findings of the previ-
ous section are still valid: the robustness of the stratified ap-

proach is confirmed with performances close to the upper-
bounds, even with low ambiguity margins. The computa-
tional saving is still relevant: in the PA with an ambigu-
ity margin of 0.7, no significant F1 drop is observed, but
the computational saving is approximately 70%. The task is
more complex than the previous one (i.e. QC) and this im-
pacts on the Computational Saving, that is generally lower
with respect to the previous section, due to the fact that many
lower confidence predictions occur so that complex kernels
are triggered several times. Regarding the ensemble com-
bination rules, experimental results suggest again that the
MConf is the most effective in the online schema, while the
MConf or Aver are the most suitable in batch learning. The
2-stratified PA would have ranked 8th (with a F1 = 0.616)
over 36 systems, w.r.t. systems trained without using ex-
ternal annotated tweets. The 2-stratified SVM would have
ranked 5th (with a F1 = 0.642). It is straightforward, con-
sidering that top systems in the challenge used hand-made
lexicons (Wilson et al. 2013).

Conclusion and Future work
In this paper we proposed a Stratified Learning framework
where multiple classifiers are combined and dynamically in-
voked according to the incremental complexity of the cor-
responding representation space. We applied the strategy to
SVM and PA learning algorithms by studying its applicabil-
ity to state-of-the-art learning algorithms as well as to on-
line learning contexts. In the experimental evaluations, no
significant performance drop is experimented, while a dra-
matic reduction of the processing cost is achieved. Overall,
the proposed strategy represents an easily applicable yet ef-
fective strategy for any classification tasks, in batch as well
as in online settings. It facilitates the adoption of expressive
kernels, mitigating their inherent computational complexity.
The design of the kernel cascades evaluated here is heuris-
tically biased by the expressiveness of the involved kernel
functions and their corresponding computational cost. Fu-
ture work will focus on how the proper cascade and the
corresponding ambiguity margins can be analytically deter-
mined, in order to achieve a mathematical proof of its opti-
mal trade-off between the inductive inference accuracy and
overall computational cost.
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