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Abstract

Topic modeling of textual corpora is an important and chal-
lenging problem. In most previous work, the “bag-of-words”
assumption is usually made which ignores the ordering of
words. This assumption simplifies the computation, but it un-
realistically loses the ordering information and the semantic
of words in the context. In this paper, we present a Gaus-
sian Mixture Neural Topic Model (GMNTM) which incorpo-
rates both the ordering of words and the semantic meaning
of sentences into topic modeling. Specifically, we represent
each topic as a cluster of multi-dimensional vectors and em-
bed the corpus into a collection of vectors generated by the
Gaussian mixture model. Each word is affected not only by
its topic, but also by the embedding vector of its surround-
ing words and the context. The Gaussian mixture compo-
nents and the topic of documents, sentences and words can
be learnt jointly. Extensive experiments show that our model
can learn better topics and more accurate word distributions
for each topic. Quantitatively, comparing to state-of-the-art
topic modeling approaches, GMNTM obtains significantly
better performance in terms of perplexity, retrieval accuracy
and classification accuracy.

Introduction
With the growing of large collection of electronic texts,
much attention has been given to topic modeling of tex-
tual corpora, designed to identify representations of the data
and learn thematic structure from large document collections
without human supervision. Topic models have been applied
to a variety of applications, including information retrieval
(Wei and Croft 2006), collaborative filtering (Marlin 2003),
authorship identification (Rosen-Zvi et al. 2004) and opin-
ion extraction (Lin et al. 2012), etc. Existing topic models
(Griffiths and Tenenbaum 2004; Mcauliffe and Blei 2008;
Blei 2012) are built based on the assumption that each doc-
ument is represented by a mixture of topics, where each
topic defines a probability distribution over words. These
models, including the probabilistic latent semantic analysis
(PLSA) (Hofmann 1999) model and latent Dirichlet allo-
cation (LDA) (Blei, Ng, and Jordan 2003) model, can be
viewed as graphical models with latent variables. Some non-
parametric extensions to these models have also been quite

Copyright c� 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

successful (Teh et al. 2006; Steyvers and Griffiths 2007).
Nevertheless, exact inference for these model is computa-
tionally hard, so one has to resort to slow or inaccurate ap-
proximations to compute the posterior distribution over top-
ics. New undirected graphical model approaches, including
the Replicated softmax model (Hinton and Salakhutdinov
2009), are also successfully applied to exploring the top-
ics of the text, and in particular cases they outperform LDA
(Srivastava, Salakhutdinov, and Hinton 2013).

A major limitation of these topic models and many of
their extensions is the bag-of-word assumption, which as-
sumes that document can be fully characterized by bag-of-
word features. This assumption is favorable in the computa-
tional point of view, but loses the ordering of the words and
cannot properly capture the semantics of the context. For
example, the phrases “the department chair couches offers”
and “the chair department offers couches” have the same un-
igram statistics, but are about quite different topics. When
deciding which topic generated the word “chair” in the first
sentence, knowing that it was immediately preceded by the
word “department” makes it much more likely to have been
generated by a topic that assigns high probability to words
related to university administration (Wallach 2006).

There has been little work on developing topic models
where the order of words is taken into consideration. To
remove the assumption that the order of words is negligible,
Gruber, Weiss, and Rosen-Zvi (2007) propose modeling the
topics of words in the document via a Markov chain. Wal-
lach (2006) explores a hierarchical generative probabilis-
tic model that incorporates both n-gram statistics and la-
tent topic variables. Even though they consider the order of
words to some extent, their model is still not capable of char-
acterizing the semantics of words. For example, the integer
representation of the words “teacher” and “teach” are com-
pletely unrelated, even if we know they have strong semantic
connections and are very likely belonging to the same topic.
To seek a distributed way of representing words that capture
semantic similarities, several Neural Probabilistic Language
Models (NPLMs) have been proposed (Mnih and Hinton
2009; Mnih and Teh 2012; Mnih and Kavukcuoglu 2013;
Mikolov et al. 2013; Le and Mikolov 2014). Nevertheless,
the dense word embeddings learned by previous NPLMs
cannot be directly interpreted as topics. This is because
that word embeddings are usually considered opaque, in the
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sense that it is difficult to assign meanings to the the vector
representation.

In this paper, we proposed a novel topic model called
the Gaussian Mixture Neural Topic Model (GMNTM). The
work is inspired by the recent neural probabilistic lan-
guage models (Mnih and Hinton 2009; Mnih and Teh 2012;
Mnih and Kavukcuoglu 2013; Mikolov et al. 2013; Le and
Mikolov 2014). We represent the topic model as a Gaussian
mixture model of vectors which encode words, sentences
and documents. Each mixture component is associated with
a specific topic. We present a method that jointly learns the
topic model and the vector representation. As in NPLM
methods, the word embeddings are learnt to optimize the
predictability of a word using its surrounding words, with
an important constraint that the vector representations are
sampled from the Gaussian mixture which represents topics.
Because the semantic meaning of sentences and documents
are incorporated to infer the topic of a specific word, in our
model, words with similar semantics are more likely to be
clustered into the same topic, and topics of sentences and
documents are more accurately learned. It potentially over-
comes the weaknesses of the bag-of-word method and the
bag-of-n-grams method, both of which don’t use the order
of words or the semantic of the context. We conduct ex-
periments to verify the effectiveness of the proposed model
on two widely used publicly available datasets. The experi-
ment results show that our model substantially outperforms
the state-of-the-art models in terms of perplexity, document
retrieval quality and document classification accuracy.

Related works
In the past decade, a great variety of topic models have
been proposed, which can extract interesting topics in the
form of multinomial distributions automatically from texts
(Blei, Ng, and Jordan 2003; Griffiths and Tenenbaum 2004;
Blei 2012; Gruber, Weiss, and Rosen-Zvi 2007; Hinton and
Salakhutdinov 2009). Among these approaches, LDA (Blei,
Ng, and Jordan 2003) and its variants are the most popu-
lar models for topic modeling. The mixture of topics per
document in the LDA model is generated from a Dirichlet
prior mutual to all documents in the corpus. Different exten-
sions of the LDA model have been proposed. For example,
Teh et al. (2006) assumes that the number of mixture com-
ponents is unknown a prior and is to be inferred from the
data. Mcauliffe and Blei (2008) develops a supervised latent
Dirichlet allocation model (sLDA) for document-response
pairs. Recent work incorporates context information into
the topic modeling, such as time (Wang and McCallum
2006), geographic location (Mei et al. 2006), authorship
(Steyvers et al. 2004), and sentiment (Yang et al. 2014b;
2014a), to make topic models fit expectations better.

Recently, there are several undirected graphical models
being proposed, which typically outperform LDA. Mcauliffe
and Blei (2008) present a two-layer undirected graphical
model, called “Replicated Softmax”, that can be used to
model and automatically extract low-dimensional latent se-
mantic representations from a large unstructured collection
of document. Hinton and Salakhutdinov (2009) extend
“Replicated Softmax” by adding another layer of hidden

units on top of the first with bipartite undirected connec-
tions. Neural network based approaches, such as Neural
Autoregressive Density Estimators (DocNADE) (Larochelle
and Lauly 2012) and Hybrid Neural Network-Latent Topic
Model (Wan, Zhu, and Fergus 2012), are also shown outper-
forming the LDA model.

However, all of these these topic models employ the bag-
of-words assumption, which is rarely true in practice. The
bag-of-word assumption loses the ordering of the words and
ignore the semantics of the context. There are several previ-
ous literature taking the order of words into account. Wal-
lach (2006) explores a hierarchical generative probabilis-
tic model that incorporates both n-gram statistics and latent
topic variables. They extend a unigram topic model so that
it can reflect properties of a hierarchical Dirichlet bigram
model. Gruber, Weiss, and Rosen-Zvi (2007) propose mod-
eling the topic of words a Markov chain. Florez and Nach-
man (2014) exploits the semantics regularities captured by
a Recurrent Neural Network (RNN) in text documents to
build a recommender system. Although these methods cap-
tures the ordering of words, none of them them consider the
semantics, thus they cannot capture the semantic similarities
between words such as “teach” and “teacher”. In contrast,
our model is inspired by the recent work in learning vec-
tor representations of words which are proved to capture the
semantics of texts (Mnih and Hinton 2009; Mnih and Teh
2012; Mnih and Kavukcuoglu 2013; Mikolov et al. 2013;
Le and Mikolov 2014). Our topic model captures both the
ordering of words and the semantics of the context. As
a consequence, semantically similar words are more likely
having similar topic distribution (e.g., “Jesus” and “Christ”
).

The GMNTM Model
In this section, we first describe the GMNTM model as a
probabilistic generative model. Then we illustrate the infer-
ence algorithm for estimating the model parameters.

Generative model
We assume there are W different words in the vocabu-
lary and there are D documents in corpus. For each word
w 2 {1, . . . ,W} in vocabulary, there is an associated V -
dimensional vector representation vec(w) 2 RV for the
word. Each document in corpus with index d 2 {1, . . . , D}
also has a vector representation vec(d) 2 RV . If all the
documents contain S sentences, then these sentences are in-
dexed by s 2 {1, . . . , S}. The sentence with index s is as-
sociated with a vector representation vec(s) 2 RV .

There are T topics in the GMNTM model, where T is
designated by the user. Each topic corresponds to a Gaus-
sian mixture component. The k-th topic is represented by a
V -dimensional Gaussian distribution N (µk,⌃k) with mix-
ture weight ⇡k 2 R, where µk 2 RV , ⌃k 2 RV⇥V , andPT

k=1

⇡k = 1. The parameters of the Gaussian mixture
model are collectively represented by

� = {⇡k, µk,⌃k} k = 1, . . . , T (1)

Given the collection of parameters, we use
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p(x|�) =
TX

i=1

⇡iN (x|µi,⌃i) (2)

to represent the probability distribution for sampling a vector
x from the Gaussian mixture model.

We describe the procedure that the corpus is generated.
Given the Gaussian mixture model �, the generative process
is described as follow: for each word w in the vocabulary,
we sample its topic z(w) from the multinomial distribution
⇡ := (⇡

1

,⇡
2

, . . . ,⇡T ) and sample its vector representation
vec(w) from distribution N (µz(w)

,⌃z(w)

). Equivalently,
the vector vec(w) is sampled from the Gaussian mixture
model parameterized by �. For each document d and each
sentence s in the document, we sample their topics z(d),
z(s) from distribution ⇡ and sample their vector represen-
tations, namely vec(d) and vec(s), also from the Gaussian
mixture model. Let  be the collection of latent vectors as-
sociated with all the words, sentences and documents in the
corpus,

 := {vec(w)} [ {vec(d)} [ {vec(s)} (3)

For each word slot in the sentence, its word realization
is generated according to the document’s vector vec(d), the
current sentence’s vector vec(s) as well as at most m previ-
ous words in the same sentence. Formally, for the i-th loca-
tion in the sentence, we represent its word realization by wi.
The probability distribution of wi is defined by:

p (wi = w|d, s, wi�m, . . . , wi�1

)

/ exp(aw
doc

+ aw
sen

+

mX

t=1

awt + b) (4)

where a
doc

, a
sen

and at are influences from the document,
the sentence and the previous word, respectively. They are
defined by

aw
doc

= huw
doc

, vec(d)i (5)
aw
sen

= huw
sen

, vec(s)i (6)
awt = huw

t , vec(wi�t)i (7)

Here, uw
doc

, uw
sen

, uw
t 2 RV are parameters of the model, and

they are shared across all slots in the corpus. We use U to
represent this collection of vectors,

U := {u
doc

, u
sen

} [ {ut|t 2 1, 2, . . . ,m}} (8)

Combining the equations above, the probability distribu-
tion of wi is defined by a multi-class logistic model, where
the features come from the vectors associated with the doc-
ument, the sentence and the m previous words. By estimat-
ing the model parameters, we learn the word representations
that make one word predictable from its previous words and
the context. Jointly, we learn the distribution of topics that
words, sentences and documents belong to.

Given the model parameters and the vectors for docu-
ments, sentences and words, we can infer the posterior prob-
ability distribution of topics. In particular, for a document d
with vector representation vec(d), the posterior distribution

of its topic, namely q(z(d)), is easy to calculate. For any
z 2 1, 2, . . . , T , we have

q(z(d) = z) =
⇡zN (vec(d)|µz,⌃z)PT

k=1

⇡kN (vec(d)|µk,⌃k)
. (9)

Similarly, for each sentence s in the document d, the poste-
rior distribution of its topic is

q(z(s) = z) =
⇡zN (vec(s)|µz,⌃z)PT

k=1

⇡kN (vec(s)|µk,⌃k)
. (10)

For each word w in the vocabulary, the posterior distribution
of its topic is similarly calculated as

q(z(w) = z) =
⇡zN (vec(w)|µz,⌃z)PT

k=1

⇡kN (vec(w)|µk,⌃k)
(11)

Finally, for each word slot in the document, we also want
to explore its topic. Since the topic of a particular loca-
tion in the document is affected by its word realization and
the sentence/document it belongs to, we define the probabil-
ity of it belonging to topic z proportional to the product of
q(z(w) = z), q(z(s) = z) and q(z(d) = z), where w, s,
and d are the word, the sentence and the document that this
word slot associates with.

Estimating model parameters
We estimate the model parameters �, U and  by maximiz-
ing the likelihood of the generative model. The parameter
estimation consists of two stages. In Stage I, we maximize
the likelihood of the model with respect to �. Since � char-
acterizes a Gaussian mixture model, this procedure can be
implemented by the Expectation Maximization (EM) algo-
rithm. In Stage II, we maximize the model likelihood with
respect to U and  , this procedure can be implemented by
stochastic gradient descent. We alternatively execute Stage
I and Stage II until the parameters converge. The algorithm
in this section is summarized in Algorithm 1.

Stage I: Estimating � In this stage, the latent vector
of words, sentences and documents are fixed. We esti-
mate the parameters of the Gaussian mixture model � =

{⇡k, µk,⌃k}. This is a classical statistical estimation prob-
lem which can be solved by running the EM algorithm. The
reader can refer to the book (Bishop 2006) for the imple-
mentation details.

Stage II: estimating U and  When � is known and fixed,
we estimate the model parameters U and the latent vectors
 by maximizing the log-likelihood of the generative model.
In particular, we iteratively sample a location in the corpus,
and consider the log-likelihood of the observed word at this
location. Let the word realization at location i be repre-
sented by wi. The log-likelihood of this location is equal
to

Ji(U, ) = log(p( |�)) + awi
doc

+ awi
sen

+

mX

t=1

awi
t + b

� log

�X

w

exp(aw
doc

+ aw
sen

+

mX

t=1

awt + b)
�

(12)
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Algorithm 1 Inference Algorithm
• Inputs: A corpus containing D documents, S sentences,

and a vocabulary containing W distinct words
• Initialize parameters

– Randomly initialize the vectors  .
– Initialize parameters U with all-zero vectors.
– Initialize Gaussian mixture model parameters with the

standard normal distribution N (0, diag(1)).

• Repeat until converge

– Fixing parameters U and  , run the EM algorithm to
estimate the Gaussian mixture model parameters �.

– Fixing the Gaussian mixture model �, run stochastic
gradient descent to maximize the log-likelihood of the
model with respect to parameters U and  .

where p( |�) is the prior distribution of parameter  in the
Gaussian mixture model, defined by equation (2). The quan-
tities aw

doc

, aw
sen

and awt are defined in equations (5), (6), and
(7). The objective function Ji(U, ) involves all parameters
in the collections (U, ). Taking the computation efficiency
into consideration, we only update the parameters associated
with the word wi. Concretely, we update

vec(wi) vec(wi) + ↵
@Ji(U, )

@vec(wi)
(13)

uwi
t  uwi

t + ↵
@Ji(U, )

@uwi
t

(14)

with ↵ as the learning rate. Similarly, we update vec(s),
vec(d) and uw

doc

, uw
sen

using the same gradient step, as
they are parameters associated with the current sentence and
the current document. Once the gradient update is accom-
plished, we sample another location to continue the update.
The procedure terminates when there are sufficient number
of updates performed, so that both U and  converge to fixed
values.

Experiments
In this section, we evaluate our model on the 20 Newsgroups
and the Reuters Corpus Volume 1 (RCV1-v2) data sets. Fol-
lowed the evaluation in (Srivastava, Salakhutdinov, and Hin-
ton 2013), we compare our GMNTM model with the state-
of-the-art topic models in perplexity, retrieval quality and
classification accuracy.

Datasets description
We adopt two widely used datasets, the 20 Newsgroups data
and the RCV1-v2 data, in our evaluations. Data preprocess-
ing is performed on both datasets. We first remove non-
alphabet characters, numbers, pronoun, punctuation and
stop words from the text. Then, stemming is applied so as to
reduce the vocabulary size and settle the issue of data spare-
ness. The detailed properties of the datasets are described as
follow.

20 Newsgroups dataset: This dataset is a collection of
18,845 newsgroup documents1. The corpus is partitioned
into 20 different newsgroups, each corresponding to a sep-
arate topic. Following the preprocessing in (Hinton and
Salakhutdinov 2009) and (Larochelle and Lauly 2012), the
dataset is partitioned chronologically into 11,314 training
documents and 7,531 testing documents.
Reuters Corpus Volume 1 (RCV1-v2): This dataset is an
archive of 804,414 newswire stories produced by Reuters
journalists between August 20, 1996, and August 19, 1997
(Lewis et al. 2004)2. RCV1-v2 has been manually cate-
gorized into 103 topics, and the topic classes form a tree
which is typically of depth 3. As in (Hinton and Salakhut-
dinov 2009) and (Larochelle and Lauly 2012), the data was
randomly split into 794,414 training documents and 10,000
testing documents.

Baseline methods
In the experiments, the proposed topic modeling approach is
compared with several baseline methods, which we describe
below:
Latent Dirichlet Allocation (LDA): In the LDA model
(Blei, Ng, and Jordan 2003), we used the online variational
inference implementation of the gensim toolkit 3. We used
the recommended parameter setting ↵ = 1/T .
Hidden Topic Markov Models (HMM): This model is pro-
posed by (Gruber, Weiss, and Rosen-Zvi 2007), which mod-
els the topics of words in the document as a Markov chain.
The HMM model is run using the publicly available code4.
We use default settings for all hyper parameters.
Over-Replicated Softmax (ORS): This model is proposed
by (Srivastava, Salakhutdinov, and Hinton 2013). It is a
two hidden layer DBM model, which has been shown to
obtain a state-of-the-art performance in terms of classifi-
cation and retrieval tasks compared with Replicated Soft-
max model (Hinton and Salakhutdinov 2009) and Cannon-
ade model (Larochelle and Lauly 2012).

Implementation details
In our GMNTM model, the learning rate ↵ is set to 0.025
and gradually reduced to 0.0001. For each word, at most
m = 6 previous words in the same sentence is used as the
context. For easy comparison with other models, the word
vector size is set to the same as the number of topics V =

T = 128. Increasing the word vector size further could
improve the quality of the topics that are generated by the
GMNTM model.

Documents are split into sentences and words using the
NLTK toolkit (Bird 2006)5. The Gaussian mixture model is
inferred using the variational inference algorithm in scikit-
learn toolkit (Pedregosa et al. 2011)6. To perform compa-
rable experiments with restricted vocabulary, words outside

1Available at http://qwone.com/~jason/20Newsgroups
2Available at http://trec.nist.gov/data/reuters/reuters.html
3http://radimrehurek.com/gensim/models/remodel.html
4http://code.google.com/p/Oppenheimer/downloads/list
5http://www.nltk.org/
6http://scikit-learn.org/
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Data Set LDA HTMM ORS GMNTM

20 Newsgroups 1068 1013 949 933
RCV1-v2 1246 1039 982 826

Table 1: Comparison of test perplexity per word with 128
topics

of the vocabulary is replaced as a special token and doesn’t
count into the word perplexity calculation.

Generative model evaluation
We first evaluate our model’s performance as a generative
model for documents. We perform our evaluation on the 20
Newsgroups dataset and the RCV1-v2 dataset. For each of
the datasets, we extract the words from raw data and pre-
serve the ordering of words. We follow the same evaluation
as in (Srivastava, Salakhutdinov, and Hinton 2013), compar-
ing our model with the other models in terms of perplexity.

We estimate the log-probability for 1000 held-out docu-
ments that are randomly sampled from the test sets. Af-
ter running the algorithm to infer the vector representations
of words, sentences, and documents in held-out test docu-
ments, the average test perplexity per word is then estimated
as exp

�
� 1

N

P
w log p(w)

�
, where N are the total number

of words in the held-out test documents, and p(w) is calcu-
lated according to equation (4).

Table 1 shows the perplexity for each dataset. The per-
plexity for Over-Replicated Softmax is taken from (Sri-
vastava, Salakhutdinov, and Hinton 2013). As shown by
Table 1, our model performs significantly better than the
other models on both datasets in terms of perplexity. More
specifically, for 20 Newsgroups data set, the perplexity de-
creases from 949 to 933, and for RCV1-v2 data set, it de-
creases from 982 to 826. This verifies the effectiveness of
the proposed topic modeling approach in fitting the dataset.
The GMNTM model works particularly well on large-scale
datasets such as RCV1-v2.

Document retrieval evaluation
To evaluate the quality of the documents representations that
are learnt by our model, we perform an information retrieval
task. Following the setting in (Srivastava, Salakhutdinov,
and Hinton 2013), documents in the training set are used as
a database, while the test set is used as queries. For each
query, documents in the database are ranked using cosine
distance as the similarity metric. The retrieval task is per-
formed separately for each label and the results are aver-
aged. Figure 1 compares the precision-recall curves with
128 topics. The curves for LDA and Over-Replicated are
taken from (Srivastava, Salakhutdinov, and Hinton 2013).
We see that for the 20 Newsgroups dataset, our model per-
forms on par or slightly better than the other models. While
for the RCV1-v2 dataset, our model achieves a significant
improvement. Since RCV1-v2 contains a greater amount of
texts, the GMNTM model considering the ordering of words
is more powerful in mining the semantics of the text.

Data Set LDA HTMM ORS GMNTM

20 Newsgroups 65.7% 66.5% 66.8% 73.1%

RCV1-v2 0.304 0.395 0.401 0.445

Table 2: Comparison of classification accuracy on 20 News-
groups and Mean Precision on Reuters RCV1-v2 with 128
topics

Document classification evaluation

Following the evaluation of (Srivastava, Salakhutdinov, and
Hinton 2013), we also perform document classification with
the learnt topic representation from our model. The same
as in (Srivastava, Salakhutdinov, and Hinton 2013), multi-
nomial logistic regression with a cross entropy loss function
is used for the 20 Newsgroups data set, and the evaluation
metric is the classification accuracy. For the RCV1-v2 data
set, we use independent logistic regression for each label.
The evaluation metric is Mean Average Precision.

We summarize the experiment results with 128 topics in
Table 3. The results of document classification for LDA
and Over-Replicated Softmax are taken from (Srivastava,
Salakhutdinov, and Hinton 2013). According to Table 3, the
proposed model substantially outperforms other models on
both datasets for document classification. For the 20 News-
groups dataset, the overall accuracy of the Over-Replicated
Softmax model is 66.8%, which is slightly higher than LDA
and HTMM. Our model further improves the classification
result to 73.1%. On RCV1-v2 dataset, we observe the simi-
lar results. The mean average precision increases from 0.401
(Over-Replicated Softmax) to 0.445 (our model).

Qualitative inspection of topic specialization

Since topic models are often used for the exploratory anal-
ysis of unlabeled text, we also evaluate whether meaning-
ful semantics are captured by our model. Due to the space
limit, we only illustrate four topics extracted by our model
and LDA which are topics about religion, space, sports and
security. These topics are also captured as (sub)categories
in the 20 Newsgroups dataset. Table 3 shows the 4 topics
learnt by the GMNTM model and the corresponding top-
ics learnt by LDA. In each topic, we visualize it using 10
words with the largest weights. The 4 topics shown in Ta-
ble 3 for both models are easy for interpretation according
to the top words. However, we see that the topics found
by the two models are different in nature. GMNTM finds
topics that consist of the words that are consecutive in the
document or the words having similar semantics. For exam-
ple, in the GMNTM model, “Christ” and “christian” share
the same topics, mainly because they have strong seman-
tic connections, even though they don’t co-occur that often,
which makes LDA unable to put them in the same topic. On
the other hand, LDA often find some general words such as
“would” and “accept” for the religion topic, which are un-
helpful for interpreting the topics.
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Figure 1: Document Retrieval Evaluation

GMNTM Topic words LDA Topic Words
god space game key god space year key
jesus orbit play public believe nasa hockey encryption
christ earth season encryption jesus research team use

believe solar team security sin center division des
christian spacecraft win escrow one shuttle league system

bible surface hockey secure mary launch nhl rsa
lord planet hand data lord station last public
truth mission series privacy would orbit think security
sin satellite chance government christian april maria nsa

faith shuttle nhl nsa accept satellite see secure

Table 3: Topic words

Conclusion and Future Work
Rather than ignoring the semantics of the words and as-
suming that the topic distribution within a document is
conditionally independent, in this paper, we introduce an
ordering-sensitive and semantic-aware topic modeling ap-
proach. The GMNTM model jointly learns the topic of
documents and the vectorized representation of words, sen-
tences and documents. The model learns better topics and
disambiguates words that belong to different topics. Com-
paring to state-of-the-art topic modeling approaches, the
GMNTM outperforms in terms of perplexity, retrieval ac-
curacy and classification accuracy.

In future works, we will explore using non-parametric

models to cluster word vectors. For example, we look for-
ward to incoporating infinite Dirichelet process to automati-
cally detect the number of topics. We can also use hierarchi-
cal model to further capture the subtle semantics of the text.
As another promising direction, we consider building topic
models on popular neural probabilistic methods, such as the
Recurrent Neural Network Language Model (RNNLM). The
GMNTM model has appplications to several tasks in natural
language processing, including entity recognition, informa-
tion extraction and sentiment analysis. These applications
also deserve further study,
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