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Abstract

In human-robot dialogue, although a robot and its human
partner are co-present in a shared environment, they have
significantly mismatched perceptual capabilities (e.g., rec-
ognizing objects in the surroundings). When a shared per-
ceptual basis is missing, it becomes difficult for the robot
to identify referents in the physical world that are referred
to by the human (i.e., a problem of referential grounding).
To overcome this problem, we have developed an optimiza-
tion based approach that allows the robot to detect and
adapt to perceptual differences. Through online interaction
with the human, the robot can learn a set of weights indi-
cating how reliably/unreliably each dimension (e.g., object
type, object color, etc.) of its perception of the environment
maps to the human’s linguistic descriptors and thus adjust
its word models accordingly. Our empirical evaluation has
shown that this weight-learning approach can successfully
adjust the weights to reflect the robot’s perceptual limitations.
The learned weights, together with updated word models, can
lead to a significant improvement for referential grounding in
future dialogues.

Introduction

A new generation of robots have emerged in recent years to
serve as humans’ assistants and companions (Christensen,
Kruijff, and Wyatt 2010). To allow humans to better inter-
act with these robots, techniques to support situated human-
robot dialogue become crucial. Unlike traditional spoken
dialogue systems (McTear 2002) and conversational inter-
faces (Johnston et al. 2002; Chai et al. 2004), one signifi-
cant challenge in situated human-robot dialogue is that the
robot needs to perceive and make sense of the shared en-
vironment simultaneously during conversation. The robot’s
representation of the shared world is often limited by its
preceptual (e.g., computer vision algorithms) and reason-
ing (i.e., inference algorithms) capabilities. Therefore, al-
though co-present, humans and robots do not share a joint
perceptual experience. The lack of a shared pereptual basis
will jeopadize referential communication between the hu-
man and the robot. It will become more difficult for the robot
to identify referents in the physical world that are referred to
by the human, i.e., a problem of referential grounding.
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Computational approaches to referential grounding often
consist of two key components (Gorniak and Roy 2004;
Siebert and Schlangen 2008; Liu, Fang, and Chai 2012). The
first component addresses formalisms and methods that con-
nect linguistic terms (e.g., red, left) to the lower level nu-
merical features (e.g., 7gb vectors) captured in the robot’s
representation of the perceived environment. We call this
component the word grounding models. The second com-
ponent extracts all the linguistic terms from a referring ex-
pression and combines their grounding models together to
identify referents. For example, given a referring expression
“the big blue bottle to the left of the red box”, it will rec-
ognize that the intended referent has several attributes (e.g.,
color is blue, size is big, type is bottle) and it is to the left
of another object. Then it will combine all relevant sensors’
inputs and apply the corresponding word grounding models
to identify the referent that most likely satisfies the referring
expression.

Many previous works on referential grounding have fo-
cused on the first component, i.e., exploring how to learn and
ground individual linguistic terms to low level physical at-
tributes (e.g., Roy 2002; Barnard et al. 2003; Roy 2005). Al-
though different algorithms have been applied for the second
component (Liu, Fang, and Chai 2012; Liu et al. 2014), little
attention has been paid to the question how to intelligently
combine different attributes to ground references. However,
this is an important question for human-robot dialogue since
the human and the robot have mismatched representations of
the shared environment. For example, the robot may not rec-
ognize any bottle, or may see something blue but not a bot-
tle. Furthermore, the robot’s perception of blue may be very
different from the human’s perception of blue. How should
the robot utilize these different attributes? What part of its
own perception should the robot trust the most when there is
potential mismatch with the human’s perception?

To address these questions, we have been investigating
computational approaches that will allow the robot to learn
and mediate perceptual differences during human-robot dia-
logue. The idea is that, by interacting with its human partner
(e.g., through dialogue), the robot should be able to assess
its perceptual differences from its human partner. In particu-
lar, the robot should be able to learn what dimension(s) of
its own perception (e.g., recognition of objects or colors)
are more reliable, namely more aligned with the human’s



perception reflected by the linguistic descriptions. To medi-
ate the perceptual differences, the robot should use this self-
assessment to update its internal models and further improve
referential grounding in follow-up communication. Specifi-
cally, we have developed an optimization-based approach to
efficiently learn a set of weights, which indicate how reli-
ably/unreliably each dimension of the robot’s perception of
the environment maps to the human’s linguistic descriptions.
By simulating different types of mismatched perception, our
empirical results have shown the weight-learning approach
can successfully adjust the weights to reflect the robot’s per-
ceptual capabilities. In addition, the learned weights for spe-
cific linguistic terms (e.g., “red”, “left”) can further trigger
automatic model updating for these words, which in turn
leads to an improvement of referential grounding perfor-
mance for future dialogues.

Related Work

Recent years have seen an increasing amount of work that
grounds language to shared environment (Mooney 2008;
Qu and Chai 2010; Chen and Mooney 2011; Tellex et al.
2011; Matuszek et al. 2012). Specifically, for grounding re-
ferring expressions to objects in the environment, different
approaches have been developed (Gorniak and Roy 2004;
2007; Siebert and Schlangen 2008; DeVault and Stone 2009;
Krishnamurthy and Kollar 2013). For example, Gorniak and
Roy (2004) present an approach that grounds referring ex-
pressions to visual objects through semantic decomposition,
using context free grammar that connects linguistic struc-
tures with underlying visual properties. To incorporate situ-
ational awareness, incremental approaches have been devel-
oped to prune interpretations which do not have correspond-
ing visual referents in the environment (Scheutz et al. 2007;
Kruijjff et al. 2007). A recent work has developed an on-
tology to mediate different mental states between humans
and robots (Lemaignan et al. 2012). In our previous work,
we have incorporated collaborative discourse into referen-
tial grounding to mediate perceptual differences between hu-
mans and agents (Liu et al. 2013).

Most of these previous works have focused on how to con-
nect the linguistic descriptions with the lower level physi-
cal attributes in referential grounding. In this paper, we ad-
dress language grounding from a different angle. We focus
on automatic assessing and adapting existing word ground-
ing models by learning a set of informative weights from
dialogues between humans and robots.

Method

Referential Grounding through Graph-Matching
We use Attributed Relational Graph (ARG) (Tsai and Fu
1979) to model the discourse of situated dialogue and the
perceived environment. An ARG is a directed graph
G=(X,E) ey

in which

X ={xm|m=1,...,M}isasetof M nodes;

E ={e; = (x4,xp); |i=1,.... L;zs € Xyap € X} is
a set of I edges, i.e., each edge is a pair of two nodes.
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To store useful information, we further attach a set of
attributes {v, | a = 1,..., A} to each node and each edge.
The attributes of a node are used to represent object-specific
properties, such as object-class (or type), color, and size.
And the attributes of an edge are used to represent binary
relations (e.g., spatial relations) between objects. For exam-
ple, a node can be assigned a set of attributes as

{v1 = ‘Apple’, v = ‘Big’, v3 = ‘Red’}

which specifies its type, size, and color.

Using the ARG representation, we can create a dialogue
graph to represent the linguistic information gathered from
the dialogue, and a vision graph to represent the perceived
environment. The nodes in the dialogue graph correspond
to the linguistic entities described in the dialogue, and the
nodes in the vision graph correspond to the physical objects
perceived from the environment. We use G = (X, E) and
G’ = (X', E') to denote the dialogue graph and the vision
graph, respectively. A matching (denoted as ©) between G
and G’ is to map each node in G to a corresponding node in
G', formally defined as:

O ={(zm,z),) | zm € X;2,, € X'} (2)

We further define the compatibility function of a matching
O as

F©)= > fx@m ay) + > fulee)) @

Tm€X e, €k

where x’n/e;. is the corresponding node/edge of x,,/e; ac-

cording to ©. Then the optimal matching between G and G’
is the one with the highest compatibility score:

©* = argmax f (©) 4)
e
Unfortunately, finding the optimal matching between two
graphs is a NP-hard problem. Thus we use a beam search
algorithm (e.g., in (Cesar Jr et al. 2005)) to keep tractability.

Word Grounding Models

To compute f (©), we need to further define fx (T, 2},)
and fg (e;, €}), i.e., the compatibility of a matched pair of
nodes/edges. This is based on the attributes assigned to the
pair of nodes/edges:

1
fX <$m> {,C/n) = Z Zaa fa (Ua, U;) (5)

fe (e, €f) = %Zﬂb Jo (vp, vy) (6)
b

in which f, (v,, v},) and fj (vp, v}) are what we call the

“word grounding models” for the a-th node attribute and the
b-th edge attribute, respectively. The input (v, v’) is a pair of
values on the same attribute, of which v is a linguistic value
(i.e., a word) from the dialogue graph and v’ is the corre-
sponding visual feature from the vision graph. For example,
some commonly used attributes and their typical values are
shown in Table 1. The output of a word grounding model is



[ | Dialogue graph | Vision graph ]

« » recognized type,
Type apple e.g., “ball”
Color “red” (r:210,g:12,b:90)
Spatial relation “left” (z : 300,y : 600)

Table 1: Examples of commonly used attributes

a real number in the range of [0, 1], which can be interpreted
as a measurement of the compatibility between word v and
visual feature v’.

As mentioned earlier, rather than learning word ground-
ing models, the focus of this paper is to learn a set of weights
to reflect the reliability of existing word grounding models
(such as the learned models in (Roy 2002)). Thus, we de-
fine a, € [0,1] and B, € [0, 1] as the weights for the a-th
node attribute and the b-th edge attribute, respectively. The
weight of an attribute represents the reliability of the word
grounding models associated with this attribute. For exam-
ple, if object recognition is deemed not reliable, then a lower
weight should be assigned to the type attribute.

Learning Weights through Optimization

The graph-matching algorithm relies on all these attributes
to find out proper matchings and filter improper ones. Im-
portantly, because the robot can have different capabilities
in perceiving these different attributes, and linguistic re-
ferring expressions associated with different attributes can
also have different levels of ambiguities, different attributes
then should not always be treated equally. Thus we develop
an optimization based approach to automatically acquire a
set of weights based on the matching hypotheses and the
ground-truth matching, which can be provided through con-
firmation sub-dialogue during real-time interaction.

The weights (i.e., a, and () are the “variables” that
we aim to adjust, and our general objective is to maximize
the reference grounding performance. We represent all the
weights using a vector w:

W:[ala"'vo‘Avﬂlv"'aﬂB]T:[w17"'7wK]T (7)
ie,w; = a1,...,Wa = @a, WA = P1,-.., W = BB
and K = A+ B.

For a given matching ©, its compatibility score f (©) then
becomes a linear function of w as:

f(©) = fo(w) =Pew (®)

where

Po=[P,...,Px]"
is a vector of “coefficients” that are computed from the given
O and predefined word grounding models.

Given two graphs G and G’, suppose O is the ground-
truth matching, and ©1,0,, ..., Oy are the top-H match-
ing hypotheses (i.e., ©1 is the top-1 hypothesis and so forth)
generated using an initial weights vector wq. If ©1 # e,
we can try to find a new w that may lead to a better match-
ing outcome. This can be formulated into an optimization
problem as:
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Figure 1: An example of the experiment setup

H
max PIw—CY ¢,
Wi © h=1
s. t.

Pglw — Pgw < €1, €1 > 0

€))

PgHW—PgW S EH, EH Z 0
and
0<w, <1, forall k

where {¢} is a set of “slack” variables to accommodate in-
feasible constraints and C' is a penalizing factor to prevent
large values of €. The essence of this optimization scheme is
to find a proper w, based on which the ground-truth match-
ing can be ranked as high as possible among the matching
hypotheses generated by the graph-matching algorithm. This
now becomes a typical linear programming problem and can
be solved efficiently using algorithms such as the Interior
Point methods (Roos, Terlaky, and Vial 2006).

Empirical Evaluation
Data

To evaluate our weight-learning approach, we used the data
collected from an earlier study that investigated collabora-
tive efforts in human-robot dialogue (Chai et al. 2014). In
that study, a human subject was instructed to play a set of
object-naming games with a NAO robot, as shown in Fig-
ure 1. The human subject was given some secret names
for several objects in the shared environment, and the task
for the human was to communicate these secret names to
the robot through dialogue. The NAO robot was equipped
with fully automated components of computer vision, lan-
guage understanding and dialogue management. We chose
this object-naming task because it naturally led to dialogues
focusing on referential communication (i.e., referring and
grounding on the intended objects), as in the following ex-
ample:

H1: The green cup is called Bill.

R1: OK, the green cup is Bill. (point to the inferred object)

H2: Do you see a car?

R2: Yes, I see a car.

H3: Do you see a blue can behind it?

R3:Idon’t see a blue can. But I see a blue unknown object there.
Is that the can you are talking about? (point to the inferred ob-
ject)



Color
747

Spatial relation
443

Type
686

Expressions

Table 2: Number of expressions of the most commonly used
attributes in the data

H4: Yes, it’s called Mary.
R4: Got it. The blue can is Mary.

One controlled condition in the experiments was to simu-
late different perceptual capabilities of the robot, which re-
sulted in two levels of variations:

e High-Mismatch simulated the situation where the hu-
man and the robot had a high mismatch in their per-
ceptions of the shared environment. The robot’s object-
recognition error rate was manipulated to be very high,
namely, a large portion (60% or 90%) of the objects were
mis-recognized.!

e Low-Mismatch simulated the situation where the human
and the robot had a low mismatch in their perceptions of
the shared environment. The robot correctly recognized
most of the objects, with only a small portion (10% or
30%) being mis-recognized.

Although the experiment was originally designed for a
different purpose, it actually provides an ideal data set for
evaluating our weight-learning approach. Since we currently
do not address dialogue management, evaluating our algo-
rithm only needs language inputs from the dialogue dis-
course and the corresponding visual environment. Further-
more, the systematic simulation of mismatched perceptions
allows us to evaluate whether the weight-learning outcome
is consistent with our expectation. For example, we would
expect the learned weight for the attribute #ype to be smaller
under the high-mismatch condition than under the low-
mismatch condition. Before we present the results, we first
briefly summarize the data.

There were a total of 147 dialogues collected from 24 hu-
man subjects. Among these dialogues, 73 were collected un-
der the low-mismatch condition and 74 were under the high-
mismatch condition. For each dialogue, the robot’s percep-
tion of the environment, such as the object-recognition re-
sults, the color of each object (represented as a rgb vector)
and the position of each object (represented as x and y co-
ordinates), were also logged. Table 2 shows the number of
referring expressions for three most frequently described at-
tributes in the data. The type (e.g. “the bottle”) and color
(e.g. “the red object”) attributes were the most commonly
used to describe the referents. Besides, spatial relation (e.g.
“the object in the front”, “the bottle is to the right of the
box”) is also commonly used.

Weight-learning Results on Object-specific
Attributes
We first applied the weight-learning approach on the two

subsets of data (i.e., low-mismatch and high-mismatch) to
see whether the expected weights can be learned. To make

!These mis-recognized objects were randomly selected, and
their object-recognition results were randomly assigned.
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[ [ Type [ Color | Spatial relation ]

0.87 | 0.97 0.97
0.45 0.9 0.71

Low-mismatch
High-mismatch

Table 3: The final weights learned after 20 training dialogues
(averaged over 100 runs of simulation)

the evaluation more realistic, we further simulated an “on-
line” learning scenario as the following: In each round
of simulation, we randomly selected 20 dialogues as the
training sequence. The weight-learning approach then went
through these 20 dialogues one-by-one to learn and update
the weights. More specifically, we first used the same lan-
guage and vision processing system as in the data-collecting
experiment (see (Chai et al. 2014) for more details) to build
two graph representations, i.e., a language graph represent-
ing all the human subject’s referring expressions and a vision
graph representing the perceived environment. We then used
the graph-matching algorithm to generate matching (i.e.,
referential grounding) hypotheses, and applied our weight-
learning approach to learn a set of new weights?. With the
learned new weights, we updated the current weights as:

wy = wi—1 + Y(Wnew — We—1)

(7 is a step-size parameter set to be 0.5).

We started with uniform weights (i.e., all being 1), and
repeated the weight learning process throughout the se-
quence of the selected 20 training dialogues. Table 3 sum-
marizes the final learned weights on the low-mismatch and
high-mismatch data after going through the 20 training
dialogues®. As we can see in Table 3, the most signifi-
cant change from the low-mismatch condition to the high-
mismatch condition is the drop of the learned weight for
the “type” attribute (0.87 vs. 0.45). This is consistent with
the situation (i.e., low-mismatch vs. high-mismatch) from
which the data was collected. To further demonstrate the
weight-learning efficiency, we plotted the updated weight of
the “type” attribute after each training dialogue, as shown
in Figure 2(a). It shows that when the robot’s object-
recognition was significantly mismatched with the human’s
perception (i.e, the high-mismatch condition), the weight for
the “type” attribute quickly descended in the first 5 training
dialogues, and after that it started to become stable and grad-
ually converged to the final value.

Besides the type attribute, the learned weights of the other
attributes also indicate how reliable they are for referential
grounding. The color attribute appears to be a reliable infor-
mation source here, i.e., the color perception and grounding
models are compatible with human descriptions. The spatial
relation attribute is less reliable. This is possibly due to the
vagueness of spatial expressions themselves, since a spatial
expression such as “object in the front” can often result in
several objects that all conform with the description and thus
difficult to resolve based on the spatial information alone.

To apply weight-learning, we assumed that the ground-truth
matching of the current training dialogue is given.

3We have run the simulation 100 times, and the weights shown
in Table 3 are the average over the 100 runs.
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Figure 2: weight-learning and referential grounding results
after each training dialogue (averaged over 100 runs)

These learned weights not only indicate the robot’s per-
ceptual capabilities, but can also improve the referential
grounding accuracy when applied to subsequent dialogues.
To demonstrate this, we used all the remaining dialogues
(i.e., those not selected as training dialogues) as the test-
ing set*. After each training dialogue, we applied the current
learned weights to generate referential grounding results on
all the testing dialogues. The results (averaged referential
grounding accuracies on the testing dialogues) are shown in
Figure 2(b). Under the low-mismatch situation, applying the
learned weights does not change the grounding accuracy.
This is because the learned weights are close to the initial
value (i.e., 1.0) as all the attributes were reasonably reli-
able. Under the high-mismatch situation, using the learned
weights can improve grounding accuracy by 9.4% (from
44.4% to 53.8%) within the first 5 training dialogues. After
that the grounding accuracy stays stable since the learned
weights also become stable as shown in Figure 2(a).

Weight-learning Results at Word Level
Besides at the attribute level, it will be even more useful if
the weights can be learned at a lower level, i.e., to learn a

“There are 53 and 54 testing dialogues for the low-mismatch
and high-mismatch conditions, respectively.
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Color orange | pink | green | blue

Without simulated errors 0.92 0.95 0.9 0.95
‘With simulated errors 0.47 0.59 | 0.88 0.97
Spatial relation left right | front | back
Without simulated errors 0.95 0.81 0.97 0.95
With simulated errors 0.19 0.73 0.77 0.73

Table 4: Final learned weights for some common words of
the two attributes after 20 training dialogues (averaged over
100 runs of simulation)

weight for each of the words that are used to describe an at-
tribute. The learned weight then indicates the reliability of
the robot’s perception and/or grounding model on that spe-
cific word. For example, if the robot can learn that its percep-
tion of “red” is unreliable, it can then adjust the grounding
model for this specific word accordingly.

To enable learning weights at the “word level”, instead of
assigning only one weight for an attribute (i.e., all the words
that describe one attribute always share the same weight),
we need to assign each word grounding model a unique
weight. The same weight learning approach can then be ap-
plied to learn how well the robot’s perception is aligned with
the human’s description for each specific word. To evalu-
ate word level weight-learning, we again used systematic
simulation of perceptual errors which allowed us to easily
assess whether expected weights can be learned given the
simulated situation. Specifically, we used the low-mismatch
data® and modified the robot’s perception to simulate some
common errors that might happen in a real situation. The
modifications we made were:

e For each object’s perceived color (i.e., an rgb vector), we
increased the intensity of the 7 and g channels (by 100)°
and decreased the intensity of the b channel (by 100). This
was to simulate color-sensing error, e.g., due to environ-
mental lighting noise or deficient color sensor.

e For each object’s perceived position (i.e., x and y coordi-
nates), we decreased the = coordinate (by 300 pixels)7.
This was to simulate spatial-sensing error, e.g., due to
misaligned perspectives between the robot and the human
or deficient spatial sensor.

With these simulated perceptual errors, we then used the
same online learning scenario to evaluate the effectiveness
and efficiency of weight-learning at the word level. Ta-
ble 4 summarizes the final learned weights of some common
words of two attributes after going through 20 randomly
selected training dialogues. In the table we also show the
learned weights from the situation that no errors were simu-
lated, so that the weights learned with simulated errors can
be compared. As we can see from Table 4, there are clear
correspondences between the learned weights and the simu-
lated errors in the robot’s perception:

3Since the low-mismatch data contained few original errors, it
would be easier to see the effect of simulated errors here.

%The range of the intensity of each channel is from 0 to 255.

"The size of the image produced by the robot’s camera is
1280 x 960 pixels.
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Figure 3: word level weight-learning evaluation results after each training dialogue (averaged over 100 runs of simulation)

e For the “color” attribute, the learned weights indicate that
the robot’s grounding of “orange” and “pink” is affected
by the simulated error of the inflated r and g channel in-
tensities and the deflated b channel intensity.

e For the “spatial relation” attribute, the very low weight
learned for “left” indicates the robot’s problematic inter-
pretation of this concept, which corresponds to the simu-
lated error of shifting all the perceived objects to the left
side.

These correspondences between the learned weights and
the underlying perceptual errors again demonstrate that our
weight-learning approach is capable of learning informative
weights, which indicate how reliably the robot’s perception
maps onto the human’s linguistic descriptions. For the effi-
ciency of weight-learning at word level, Figure 3(a) shows
the plots of updated weights for the words “orange”, “pink”,
and “left”, after each training dialogue during the online
weight-learning process. It took only 5 training dialogues for
the weight of “orange” to land on its final value. The weight
of “pink” and “left” took some more training dialogues to
reach the final value because they did not appear as often as
the word “orange” in the data.

In a realistic setting, a more dynamic interaction and
learning process would be expected. For example, the robot
could adjust and improve its perceptual capabilities dynam-
ically, based on the interaction with the human. Thus we
further simulated one such dynamic process to see how our
weight-learning responded to it. We still used the same data
(i.e., low-mismatch data with simulated perceptual errors)
and the online weight-learning process, but added a model-
updating process after the first 5 training dialogues. This was
to simulate the scenario that the robot automatically started
to adjust its language grounding models for the unreliable
words with low weights.

Initially, the grounding models for color and spatial re-
lation terms were all defined as Gaussian distributions over
the corresponding visual features (Roy 2002). To update the
grounding models for the two color words (i.e., “orange”
and “pink”), we followed the online word model acquisition
approach as described in (Fang, Liu, and Chai 2012), which
essentially kept updating the mean of the Gaussian distribu-
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tion by averaging out the old mean and the new observed
values. In addition to updating model parameters, the under-
lying models can be adjusted as well. For instance, for the
word ’left”, the robot can switch from the Gaussian model
to the exponential decay function model as in (Regier and
Carlson 2001).

Figure 3(b) shows the plots of learned weights for these
three words with the model updating process. After adap-
tation, the weights for “orange”, “pink”, and “left” all be-
come high values, indicating their grounding models be-
came more consistent with the human’s descriptions. We
also evaluated referential grounding accuracy on the testing
dialogues as we did earlier, but using both the updated mod-
els and weights after each training dialogue. As shown in
Figure 3(c), referential grounding accuracy was improve by
10% (from 48.7% to 58.7%) with the updated models and
weights, compared to the initial state of using the original
models and uniform weights.

Conclusion

As a step towards enabling robust and adaptive human-robot
dialogue, this paper presents a weight-learning approach
for mediating the visual perceptual differences between a
robot and its human partner in referential communication.
As demonstrated by the empirical evaluation results, our
weight-learning approach is capable of learning informative
weights that reflect the alignment or misalignment between
the robot’s visual perception and the human’s linguistic de-
scription of the shared environment. The learned weights
can be applied to referential grounding and/or word model
learning algorithms to improve the referential grounding
performance. They can also be utilized by referring expres-
sion generation algorithms (e.g., Fang et al. 2013; Fang, Do-
ering, and Chai 2014) to facilitate referential communica-
tion between robots and humans. Our current evaluation is
based on several simplifications, including the simulation of
perceptual errors and the strong assumption that the correct
grounding information can be provided to the robot through
dialogue with a human. In our future work, we will conduct
experiments on a robot engaged in real-time dialogue with
a human. Additionally, we will evaluate our algorithm with



actual perceptual errors from real environments.
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