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Abstract

Compositional semantic aims at constructing the mean-
ing of phrases or sentences according to the composi-
tionality of word meanings. In this paper, we propose
to synchronously learn the representations of individ-
ual words and extracted high-frequency phrases. Repre-
sentations of extracted phrases are considered as gold
standard for constructing more general operations to
compose the representation of unseen phrases. We pro-
pose a grammatical type specific model that improves
the composition flexibility by adopting vector-tensor-
vector operations. Our model embodies the composi-
tional characteristics of traditional additive and multi-
plicative model. Empirical result shows that our model
outperforms state-of-the-art composition methods in the
task of computing phrase similarities.

Introduction

Compositional semantic aims at constructing the meaning
of phrases or sentences according to the compositionality
of word meanings. Most recently, continuous word repre-
sentations are frequently used for representing the seman-
tic meaning of words (Turney and Pantel 2010), which have
achieved great success in various NLP tasks such as se-
mantic role labeling (Collobert and Weston 2008), para-
phrase detection (Socher et al. 2011a), sentiment analy-
sis (Maas et al. 2011) and syntactic parsing (Socher et al.
2013a). Beyond word representation, it is also essential to
find appropriate representations for phrases or longer utter-
ances. Hence, compositional distributional semantic models
(Marelli et al. 2014; Baroni and Zamparelli 2010; Grefen-
stette and Sadrzadeh 2011) have been proposed to construct
the representations of phrases or sentences based on the rep-
resentations of the words they contain.

Most existing compositional distributional semantic mod-
els can be divided into the following two typical types:

Vector-Vector Composition. These models use element-
wise composition operations to compose word vectors into
phrase vectors, as shown in Figure 1(A). For example,
Mitchell and Lapata (2010) propose to use additive model
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Figure 1: Comparison of different semantic composition
models, including (a) vector-vector composition, (b) tensor-
vector composition and (c) vector-tensor-vector composi-
tion.

(z = x + y) and multiplicative model (z = x � y). How-
ever, both of the operations are commutative, which may
be unreasonable for semantic composition since the order
of word sequences in a phrase may influence its meaning.
For instance, machine learning and learning machine have
different meanings, while the commutative functions will re-
turn the same representation for them.

Tensor-Vector Composition. To improve composition
capability, complicated schemes for word representation are
proposed to replace simple vector-space models, includ-
ing matrices, tensors, or a combination of vectors and ma-
trices (Erk and Padó 2008; Baroni and Zamparelli 2010;
Yessenalina and Cardie 2011; Coecke, Sadrzadeh, and Clark
2010; Grefenstette et al. 2013). In this way, semantic com-
position is conducted via operations like tensor-vector prod-
uct, as demonstrated in Figure 1(B) 1. Despite of powerful
capability, these methods have several disadvantages that re-
duce their scalability: (1) They have to learn matrices or
tensors for each word, which is time-consuming. Moreover,

1In accordant with grammatical structure, words with k argu-
ments are represented by rank k+1 tensors. Hence, the word neu-
ral is represented by a 2-order tensor, i.e., a matrix. An example for
words represented by 3-order tensors is the verb loves in the clause
John loves Mary.
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v(neural) v(network) v(neural) + v(network) v(neural network)
neural KAKEland network backpropagation

cortical datacast gene-regulatory connectionist
synapses cable cellular PCNN
sensory IPTV feedforward self-organizing
axonal broadcast switched-circuit probabilistic

Table 1: A comparison of the nearest neighbors of phrase neural network and its component words, measured by cosine simi-
larity using compositional vector and learned phrase vector respectively.

there are insufficient data for low-frequency words. (2) They
require rich linguistic knowledge such as word arguments,
which are usually not available for all words in a large-scale
corpus. (3) They are incapable of new words that have not
appeared in training corpus, while this is a common phe-
nomenon in real world.

An intuitive approach to construct phrase representation
is to treat each phrase as a pseudo word to learn its rep-
resentation by word representation models. The main idea
is that representation of a phrase can also be learned in the
same way as that of an individual word, inspired by the phi-
losophy that the meaning of an expression is determined by
how it is used (Clarke 2012). Take a two-word phrase neu-
ral network for example. Table 1 shows that the neighbor
words of directly learned phrase vector are more revelent
to neural network than those of compositional vector. How-
ever, it also suffers from data sparsity problem. Compared
with words, there are more infrequent and out-of-vocabulary
phrases, which are unavailable for representation learning.

Considering the above issues, we prefer to synchronously
learn the representations of individual words and a collec-
tion of high-frequency phrases. The learned phrases repre-
sentations are considered as gold standard so that the output
representation of an ideal compositional function should be
approximate to them. Such compositional function should
be both non-commutative and non-lexicalized to avoid dis-
advantages of vector-vector and tensor-vector composition
functions.

In this paper, we propose a vector-tensor-vector composi-
tional function, named as Tensor Index Model (TIM). This
composition function is composed of two matrices and a 3-
order tensor, which projects two input word vectors to one
phrase vector in the same semantic space, as shown in Figure
1(C). To enhance compositional capability, we distinguish
various types of phrase structures, such as Adj-N, N-N and
V-Obj 2. A unique tensor-based composition function is
trained for each phrase type. Our model can be easily ex-
tended to multi-word phrases or sentences via recursive bi-
nary operations.

In order to collect high-quality phrases and collocations
to train composition functions, we use anchor texts from
Wikipedia, which provide naturally annotated phrase bound-
aries. With the aid of state-of-the-art word representation
models, we synchronously learn semantic representations of
individual words and collected phrases. Parameters in com-

2Short for adjective-noun, noun-noun and verb-object phrases,
respectively.

position function are estimated by minimizing the error be-
tween gold-standard phrase vectors and constructed compo-
sitional vectors. We evaluate our model on the phrase simi-
larity computation task for Adj-N, N-N and V-Obj phrases
respectively. Experimental results show that our model out-
performs all the baselines reported in Blacoe and Lapata
(2012).

Overview of Tensor Indexing Model

In this section, we present the framework of tensor index-
ing model (TIM), which generally captures compositional
information for specific grammatical types. TIM integrates
supervised parameter learning and unsupervised word repre-
sentation together. Our framework for semantic composition
can be divided into the following three steps.

Extracting Phrases. We use anchor texts in knowledge
bases (i.e., Wikipedia in this paper) to collect high-quality
phrases with various grammatical types. Occurrences of
each phrase in the corpus are regarded as a pseudo word
token, which will be used as the corpus for learning word
and phrase representations. For example, the phrase neural
network has appeared in the anchor texts of some Wikipedia
links, hence we replace its occurrence in the corpus with a
specific token neural network in order to treat it as an indi-
vidual word.

Constructing Representation. We synchronously learn
word and phrase embeddings using the prepared corpus,
projecting both words and phrases into the same semantic
space. That is, vectors for the words like neural and net-
work are learned together with vectors of phrases like neu-
ral network.

Learning Composition Function. We build triples of
phrase vectors and component word vectors as training
samples for composition function, e.g. (vneural, vnetwork,
vneural network). We propose an effective supervised learn-
ing procedure to estimate parameters in the function.

Learning Tensor Composition

Tensor product, as a binary semantic composition, takes two
d-dimensional word vectors x and y as input, and generates
a d-dimensional phrase vector z as output. We denote fr as
the composition function corresponding to specific phrase
type r such as Adj-N, consisting of both tensor product and
linear transformation, which is formalized as:

z = fr(x,y) = Wxy +Mx+Ny, (1)
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where W ∈ R
d×d×d is a 3-order tensor, and M,N ∈ R

d×d

are the linear transformation matrices. Each slice of the ten-
sor acts as a coefficient matrix for one entry zi in z:

zi =
∑
j,k

Wijk · xj · yk +
∑
j

(Mij · xj +Nij · yj), (2)

which can also rewritten as:

zi = xTWiy + (Mx)i + (Ny)i. (3)

It embodies the simple form of additive and multiplicative
operations.

In practice, such tensor composition is infeasible due to
high computational and memory complexity. To address this
issue, we adopt low-rank tensor decomposition (Bai et al.
2009; Chen and Saad 2009). In this way, we approximate
each slice of original tensor as the product of two low-rank
matrices. For example, the ith slice of tensor Wi can be ap-
proximated as follows:

Wi ≈ UT
i Vi + I, (4)

where Ui and Vi are k × d matrices and I is an identity
matrix. In this paper, we restrict k ≤ 50 considering the
dimensionality of vector representation d = 200.

Based on the decomposition, the composition function for
the ith component of z can approximated as:

zi ≈ (Uix)
T (Viy)

T + xTy + (Mx)i + (Ny)i. (5)

Due to the decomposition, the computation complexity
drops from Θ(d2) to Θ(kd) for each slice of tensor W .
Moreover, the k-dimensional product of matrix-vector mul-
tiplication Ux, V y, Mx and Ny can be pre-computed and
stored in memory so that the complexity drops to a mini-
mum of Θ(k + d) during the testing stage.

Suppose we are given a training set Tr of vector triples for
each phrase type r. Each triple (x,y, z) contains semantic
vectors of the words x and y and the phrase z = xy, in
the same vector space. The training objective of TIM is to
minimize the objective function on the training set:

J(θ) =

|Tr|∑
t=1

(
z(t) − fr(x

(t),y(t), θ)
)2

+
λ

2
‖θ‖2 , (6)

where θ is the set of all parameters W , M and N in TIM.
The global error consists of both loss function and regular-
ization term over all parameters, with λ as the regularization
factor.

We train TIM using standard stochastic gradient descent
(SGD). At each step, we randomly select a triple of (x, y, z)
from Tr and make the following updates:

�θ = η · [λθ − 2 · (z− fr(x,y)) · ∂fr(x,y)
∂θ

], (7)

where η is the learning rate. In our experiments, η is initial-
ized to 10−4 and decreases 1% at the end of each iteration
to avoid overfitting.

We compute derivatives for different parameters in θ re-
spectively. Since we apply low-rank approximation on each
slice of tensor W , the derivative should be adjusted to:

∂fi(x,y)

∂Ui
= (Viy) · xT ,

∂fi(x,y)

∂Vi
= (Uix) · yT (8)

In addition, beyond two-word phrases, it is easy to extend
our composition function to represent vectors of multi-word
expressions according to their grammatical structures. Given
a text fragment as input, a phrase structure tree representa-
tion can be constructed using a standard constituency parser.
Assuming a group of binary composition functions for all
phrase categories are obtained, vectors of all non-terminal
nodes can be recursively calculated with vectors of its chil-
dren and the tensor corresponding to its grammar type.

Representation Construction

In this section we describe two strategies to collect naturally
annotated phrases from Wikipedia. Different strategies will
extract different numbers of phrases and generate dissimilar
representations for the same phrase. Their performance will
be compared in the experiments.

Phrase Extraction from Wikipedia

In the content of Wikipedia articles, there are hand-crafted
anchor texts that connect to other related pages. We denote
anchor phrases as the multi-word expressions labeled in
anchor texts, which are regarded as naturally annotated col-
locations.

In this paper, we focus on extracting two-word an-
chor phrases for learning tensor composition functions.
We employ the English Wikipedia corpus, which consists
of 4,313,023 articles and 65,567,712 hyperlinks. In order
to learn specific tensor composition functions for distinct
phrase types, we employ part-of-speech (POS) tagging on
Wikipedia articles with Stanford POS Tagger (Toutanova et
al. 2003) to extract Adj-N, N-N, and V-Obj phrases from
all candidates 3.

It is not surprising that most anchor phrases are nominal
entities. Hence, we collect V-Obj phrases from the entire
content of Wikipedia articles. Moreover, infrequent candi-
date phrases are insufficient for learning phrase represen-
tations, hence we only reserve the phrases occurring more
than 20 times in the corpus for learning. Finally we ob-
tain 93, 183 Adj-N phrases and 133, 427 N-N phrases and
14, 506 V-Obj phrases.

Corpus Construction

For each anchor phrase, we replace its occurrences in the
corpus by a corresponding pseudo word. After the substitu-
tion operation, we obtain a text corpus for simultaneously
learning word and phrase representations.

For Adj-N and N-N phrases, there are two combination
strategies:

• Combining only those phrases inside anchor texts, de-
noted by AT (short for anchor texts).

• Combining all occurrences of anchor phrases in the cor-
pus, denoted by FT (short for full texts).

We implement both strategies on the corpus to get two dif-
ferent representations for anchor phrases. According to the

3We select these three representative phrase types following the
experimental setting in Mitchell and Lapata (2010)

2197



w.r c.m Adj-N N-N V-Obj

SDS (BNC)
ADD 0.37 0.38 0.28
MUL 0.48 0.50 0.35
RAE 0.31 0.30 0.28

SDS (Wiki)

ADD 0.34 0.44 0.13
MUL 0.42 0.63 0.28

AT 0.42 0.45 -
FT 0.49 0.57 -

SGM (Wiki)

ADD 0.73 0.73 0.62
MUL 0.39 0.34 0.41

AT 0.36 0.51 -
FT 0.57 0.66 -

TIM 0.77 0.75 0.66

Table 2: Spearman ρ correlation coefficients of composition
models with human ratings, where w.r stands for word rep-
resentation models, c.m stands for composition methods, AT
and FT stands for learned phrase representations with differ-
ent phrase extraction strategies.

statistics, the average frequency in FT of all obtained anchor
phrases is 5, 071, only half of their occurrences are in an-
chor texts. In addition, 78% of anchor phrases occur more
than 500 times in the corpus. The sufficiency of statistical
data will ensure the rationality and reliability of phrase rep-
resentation.

Representation Learning

There are various types of models to learn vector space rep-
resentation of words. We mainly focus on the efficiency
when it is used to train word vectors on large corpus like
the whole English Wikipedia. For this task we employ
Skip-gram Model (SGM), a log-linear architecture that can
be efficiently trained on big data (Mikolov et al. 2013;
Mikolov, Yih, and Zweig 2013).

SGM provides an approximate additive operation for
measuring meaningful syntactic and semantic regularities.
For example, vector(“King”) − vector(“Man”) + vec-
tor(“Woman”) results in a vector similar to vector(“Queen”).
Such interesting property suggests that SGM may contribute
to capture additive compositionailty.

Experimental Results

In this paper, we evaluate our methodology by judging sim-
ilarities between phrases. We first introduce the dataset used
in the experiment and the state-of-the-art methods reported
as the baselines. We compare additive and multiplicative
composition functions with TIM model for different phrase
types. We also analyze the influence of different parameters
in detail to gain more insights.

Dataset and Evaluation Scheme

We use the phrasal similarity dataset described in Mitchell
and Lapata (2010). This dataset contains 324 phrase pairs to-
gether with human judgements of pairwise similarity. Each
sample in the dataset is a pair of phrases (p1, p2) and a

Figure 2: Results of combining learned phrase representa-
tions with basic composition model, using SGM for word
representations.

human rating from 1 to 7, where a high number indicates
higher similarity. We aggregate all the ratings for the same
sample to obtain an overall judgment as the ground truth.

Given a composition model C and a fixed vector represen-
tation for words, the phrase representation VC(p1), VC(p2)
can be calculated for each sample, and the phrasal similar-
ity between p1 and p2 can be computed via cosine similarity
function:

SimC(p1, p2) =
VC(p1) · VC(p2)

|VC(p1)| · |VC(p2)| (9)

In our experiment, we evaluate traditional additive and
multiplicative model using different word representations
against the human similarity ratings using Spearman’s ρ cor-
relation coefficient.

Blacoe and Lapata (2012) made a comparison among
three types of distributional representation for semantic
composition. According to their report, a simple distribu-
tional semantic space (SDS) turned out to be the best word
embedding for modeling phrase composition than the neu-
ral language model (Collobert and Weston 2008) and distri-
butional memory tensor (Baroni and Lenci 2010). Thus, we
choose SDS model as the baseline of modeling phrasal com-
positionality. Note that in the original paper, SDS model is
trained on the British National Corpus (BNC), from where
the sample phrases in dataset are selected. To maintain data
consistency, we implement SDS model on the Wikipedia
corpus, the performance of which is also considered as a
baseline.

Result of Similarity Judgements

In this paper, we report results for all three phrase types in
the dataset: adjective-noun (Adj-N), noun-noun (N-N) and
verb-object (V-Obj). We consider both additive (ADD) and
multiplicative (MUL) models. Result of recursive autoen-
coder (RAE) is also considered as baseline.

Table 2 demonstrates the performances of different com-
position methods. We find that Tensor Indexing Model per-
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(a) influence of k for Adj-N phrases (b) influence of k for N-N phrases (c) influence of k for V-Obj phrases

Figure 3: Influences of dimension k for tensor decomposition in TIM for predicting phrase similarity.

forms the best across all phrase categories. TIM achieves
an average of 0.73 on Spearman ρ correlation coefficient
with human ratings, which is at least 0.03 higher than any
other baseline. This result shows that our model successfully
captures the compositionality between component words in
phrases. We also notice that traditional additive function un-
der SGM achieves a fairly good performance. Compared
with the baseline SDS model, it achieves an average of 0.25
improvement on Spearman ρ correlation coefficient.

In addition, additive model is obviously more effective
than multiplicative model using SGM for word representa-
tions, which is contrary to SDS model. It can be inferred
that SGM captures the additive compositionality between
individual words. In the experiment settings, we initialize
tensors for all phrase categories to be empty with minor ran-
dom noises, but they turn out to be extremely dense in each
slice after the training stage. Since the traditional multiplica-
tive function is a simple special case of TIM with a diago-
nal identity tensor, it can hardly obtain comparable perfor-
mance.

As described in the previous section, we employ two
strategies to learn representations for anchor phrases. In Ta-
ble 2 we find that FT strategy is significantly better than
AT strategy, which indicates that the sufficiency of statis-
tical data has a great impact on the quality of phrase embed-
ding. Despite of the limited number of phrases discovered,
FT strategy outperforms SDS model, which suggests that it
is effective to learn phrase representations directly.

The reason why FT strategy cannot be directly used to
model semantic composition is that anchor phrases only
cover a minority of all possible phrases. There are only
28 adjective-noun phrases, 43 noun-noun phrases and none
verb-noun phrases appearing in both Wikipedia and test
dataset. To avoid the sparsity problem, we compare differ-
ent combinations of phrase embedding strategies and com-
position functions. Figure 2 shows that the FT strategy with
additive model (FT + ADD) works well under SGM word
representations. It achieves 0.69, 0.71 and 0.63 on Spearman
ρ correlation coefficient for three phrase types respectively,
which is comparable to the performance of TIM. We notice
that the result for Adj-N phrases of TIM is better than the
result for N-N phrases. It indicates that multiplicative func-

tion also contribute to TIM, since multiplicative model per-
form better for N-N phrases (0.39) than for Adj-N phrases
(0.34) using SGM for word representations.

Influence of Tensor Decomposition

We analyze the influence of dimension k for tensor decom-
position. As we can see from Figure 3(a) to 3(c), the choice
of k affects the general performance more significantly than
other hyper-parameters. We make two observations: (1) The
performance improves when k increases. (2) The benefit of
choosing larger k drops off when it gets to higher than 30.

The explanation is that larger size of k introduce more
variables in the approximated tensor which introduces the
problem of data sparsity. Although it leads to more pow-
erful capability, the model cannot be fully trained with in-
sufficient training phrases 4. Moreover, time complexity is
proportional to the tensor size. It is inappropriate to greedily
raise the value of k.

Visualization and Case Study

To demonstrate the effectiveness of semantic composition,
we present a visualization of high-dimensional phrase rep-
resentations 5, as shown in Figure 4. We select three pairs
of semantically related phrases, and for each of them collect
a cluster of 30 most similar phrases. The visualization indi-
cates that semantically related phrases are closer together,
such as machine learning and neural network, telephone
number and phone call, or black hair and blue eye. Further-
more, there are overlaps between those clusters of similar
phrases, which means that similar phrases share some of the
same neighbors.

In order to gain more information on the strength and
limitation of our framework, we provide examples of se-
vere conflictions between TIM and human ratings, as can
be seen in Table 3. We find that TIM considers both syn-
onym and antonym relations as relevant and assigns high

4We obtain more training phrases for N-N than for V-Obj, so
that the best fitting k for N-N type is higher.

5We use the t-SNE toolkit for visualization. https://github.com/
turian/textSNE
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Figure 4: Examples of 2-d visualization of high-dimensional
phrase representations.

similarity scores (e.g, cold air and hot weather), while hu-
man judgments tend to assign higher scores only to synonym
relations. The reason is that both synonyms and antonyms
tend to share similar context environment, as TIM constructs
representations for training phrases based on contextual in-
formation.

We also present several examples in which TIM performs
badly. TIM is not capable of identifying implicit relations
which is usually straight forward to humans. For instance,
the correlation between meet requirement and win battle
originates in human’s feeling and spiritual experience. They
are considered very related by humans, while it is hard to
recognize from concurrences of specific vocabulary in tex-
tual corpus.

Another limitation of TIM is the lack of prior world
knowledge. For example, health minister and town hall re-
late to a common topic so that humans tend to find them
similar. It is hard to infer such relation by a general com-
position function for all N-N phrases, since the contextual
topic distribution of component words and that of the entire
phrase are not the same.

Related Work

Besides simple operations such as vector addition and
element-wise multiplication (Mitchell and Lapata 2010),
more complicated functions (Clark and Pulman 2007; Clark,
Coecke, and Sadrzadeh 2008; Coecke, Sadrzadeh, and Clark
2010) have been proposed for semantic composition, which
usually represent words in semantic spaces of different or-
ders according to their grammatical types. For example, the
words indicating relational types are represented by matri-
ces and argument words are represented by vectors (Grefen-
stette and Sadrzadeh 2011). Grefenstette (2013) further ex-
tend the representation of verbs using high order tensors,
with multi-step regression for parameter learning. In accor-
dant with grammatical structure, words with k arguments are

Phrase 1 Phrase 2 TIM Rank Human Rank
high price low cost 2 60
cold air hot weather 7 56

health minister office worker 40 81
increase number reduce amount 4 67

receive letter send message 9 71
cause injury suffer loss 7 68

early age new life 79 17
good place high point 61 16

county council town hall 59 14
defence minister security policy 48 4
meet requirement win battle 94 33

express view share interest 60 7

Table 3: Most severe conflictions between human judgments
and TIM decisions in rating phrase similarity, ranging from
rank 1 to rank 108.

represented by rank k + 1 tensors.
Moreover, Yessenalina and Cardie (2011) represented

each word as a separate matrix, and modeled the seman-
tic composition between neighboring word pairs as iterated
matrix multiplication. Socher et al. (2012) associated each
word with a vector-matrix pair, and introduced a recursive
matrix-vector neural network for semantic composition op-
eration, which can be regarded as being generalized from
linear models (Zanzotto et al. 2010) and matrix operations
(Socher et al. 2011b). Baroni and Zamparelli (2010) con-
structed the vectors of adjective-noun pairs by multiplying
matrices of adjectives with vectors of argument nouns.

The above mentioned methods, to some extent, aim at
improving representation capability of composition func-
tions by increasing representation complexity of individual
words. However, as we have stated in the introduction, they
will suffer from the sparsity problem and is time-consuming
for learning on large-scale corpora.

The work most similar to us is Socher et al. (2013b),
which adopted tensors to capture relations between entities
in knowledge bases aiming at relation prediction. They also
proposed a recursive neural tensor network towards under-
standing compositionality for sentiment analysis (Socher et
al. 2013c). The main difference is that they did not con-
struct the representation of interior nodes beforehand and
their training objective depends on specific task, while we
adopt tensor as a general operation for semantic composi-
tion.

Conclusions

In this paper, we introduce a tensor based composition
function for different phrase types. We synchronously learn
word and phrase representations in the same semantic vec-
tor space. We propose to extract phrases from anchor texts
in Wikipedia, which can be regarded as naturally annotated
phrase boundaries. Experiment result shows that our model
achieves an excellent performance in the task of phrase sim-
ilarity judgment, in comparisons of traditional vector com-
position models.
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