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Abstract

In the real-world applications, heterogeneous interde-
pendent attributes that consist of both discrete and nu-
merical variables can be observed ubiquitously. The
usual representation of these data sets is an information
table, assuming the independence of attributes. How-
ever, very often, they are actually interdependent on one
another, either explicitly or implicitly. Limited research
has been conducted in analyzing such attribute interac-
tions, which causes the analysis results to be more local
than global. This paper proposes the coupled heteroge-
neous attribute analysis to capture the interdependence
among mixed data by addressing coupling context and
coupling weights in unsupervised learning. Such global
couplings integrate the interactions within discrete at-
tributes, within numerical attributes and across them
to form the coupled representation for mixed-type ob-
jects based on dimension conversion and feature selec-
tion. This work makes one step forward towards ex-
plicitly modeling the interdependence of heterogeneous
attributes among mixed data, verified by the applica-
tions in data structure analysis, data clustering evalua-
tion, and density comparison. Substantial experiments
on 12 UCI data sets show that our approach can ef-
fectively capture the global couplings of heterogeneous
attributes and outperforms the state-of-the-art methods,
supported by statistical analysis.

Introduction
In the era of big data, real-life mixed data sets are usu-
ally described by a mixture of heterogeneous interdepen-
dent attributes in diverse domains, including demography
and finance. Here, mixed data is defined as a data set whose
columns consist of both discrete and numerical attributes
(i.e. with multiple heterogeneous attributes). The classical
data representation is an information table, in which rows
stand for objects and columns denote attributes. Each en-
try is designated a value of a particular attribute for a given
object. This traditional way quantifies objects by associated
multiple variables and assumes the independence of them.

The two key properties of mixed data focused in our study
are its heterogeneity (Hunt and Jorgensen 2011) and interde-
pendence (Cao, Ou, and Yu 2011). Tackling both properties
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simultaneously in data mining (Jia and Zhang 2008) pro-
cesses is not an easy task because data scales/types are to-
tally different, which challenges the calculation of similarity
between mixed-type objects. There have been research ef-
forts on mixed data, but most of them are partial and mainly
address either heterogeneity or interdependence. For exam-
ple, k-prototype (Huang 1998) tries to quantify similarity
between mixed-typed objects, but without analyzing inter-
dependence; mADD (Ahmad and Dey 2007) models only
the interdependence of discrete attributes; and mixture (Hunt
and Jorgensen 2011) only captures the interdependence of
numerical attributes. Due to the complexity and variety of
mixed data, addressing interdependence among heteroge-
neous mixed data in data mining is still a big open research
question. This is the motivation of our paper.

Taking a fragment of synthetic data1 as an example (i.e.
Table 1), six objects are characterized by two categorical at-
tributes and two continuous attributes; and they are divided
into three classes. Each value only exhibits relevant informa-
tion of its belonged attributes, but does not reflect any inter-
action with other variables. Based on such a table, many data
mining techniques and machine learning tasks (Plant 2012)
including clustering and classification have been performed.
One of the critical parts in these applications is to study the
pairwise distance between objects, which challenges the cur-
rent work since the distance calculations for discrete and
continuous variables are totally different. It is a significant
research issue on how to integrate distinct mechanisms of
distance computation in a proper manner.

A few metrics have been developed for mixed data, such
as the weighted mixed metrics (wmm for short) proposed in
(Huang 1998). Since objects u4 and u6 have identical values
of ad1 and ad2, the wmm between them is only 0.535, which
is much smaller than that between u4, u3 (i.e. 1.311) and
nearly third of that between u6, u5 (i.e. 1.411). It indicates
that u4 and u6 stand a good chance to be clustered into the
same group. However, in fact, u4 and u3 belong to G2, u6
and u5 are labeled as G3. The same phenomenon also ap-
plies for the partition of u3 and u5 with the wmm to be 0.861.

This instance shows it is too limited to analyze mixed data
by assuming all heterogeneous attributes to be independent.

1It is produced from a mixture of three Gaussian distributions
with the first two variables categorized and predefined classes.
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Table 1: A Synthetic Mixed Data Set (FS)
data ad1 ad2 ar1 ar2 class
u1 X β -1.133 -4.743 G1

u2 Z β -3.418 -3.575 G1

u3 Y α -2.153 -0.690 G2

u4 Z α -1.952 0.274 G2

u5 Y α 1.822 2.102 G3

u6 Z α 0.779 1.112 G3

In real-life applications, their data often consist of hetero-
geneous attributes interdependent on one another (Cao, Ou,
and Yu 2011). From both practical and theoretical aspects,
it is important to develop an effective representation scheme
for mixed data sets by considering the interdependence re-
lationships among their heterogeneous attributes, which in-
clude semantic couplings from domain knowledge and func-
tional couplings from data dynamics itself. In this paper, we
focus on discovering/learning the functional couplings that
only rely on the given data without any domain knowledge.

There are indeed some simple solutions for mixed data
when modeling the interdependence. This includes directly
either converting discrete values into numerical values or
discretizing numerical attributes into discrete attributes. One
common practice is to assign numerical values to discrete at-
tributes. For discrete variables such as color (e.g. red, blue,
green), it is normal to assign 1, 2, 3 to them respectively. To
quantify the distance between lengths (e.g. 1.60m, 1.75m),
one way is to calculate the difference: 1.75m-1.60m=0.15m.
However, it might be questionable to treat the distance be-
tween red and green as 3-1=2 and that of red and blue as 1.
Alternatively, though it might not be a bad idea to discretize
numerical attributes, such discretization usually leads to a
mass of information loss. If we choose to discretize lengths,
1.75m and 1.60m might be put in the same bin or two adja-
cent bins, depending on the granularity of intervals used. It
will inevitably end up in different clustering results. More-
over, how to select an appropriate discretization algorithm is
equally complicated. Therefore, the similarity/distance cal-
culation for mixed data is not as intuitive as it appears and
different data types have to be appropriately integrated.

Several attempts have been made to model the interdepen-
dence within categorical attributes (Wang et al. 2011) and
within numerical attributes (Wang, She, and Cao 2013) indi-
vidually. For instance, in Table 1, the partially coupled dis-
tance (pcd for short) between u3, u5 is 0.772, which is larger
than that between u3, u4 (i.e. 0.454) and that between u5, u6
(i.e. 0.644) by using couplings via frequency, co-occurrence
and correlation. It shows that the individual couplings have
effectively captured certain hidden information out of data.
However, the pcd of u4, u6 (i.e. 0.596) lies between that of
u3, u4 and that of u5, u6, which makes the allocation of u4
and u6 still unclear. The reason is that the pcd only caters for
the relationships among discrete and continuous variables
separately, leading to limited improvement as the interde-
pendent relationships are only partially revealed. More of-
ten, heterogeneous variables are associated with one another
via diverse interactions, which must not be limited within

certain types of data. In addition, it is usually neither accu-
rate nor efficient to ignore the coupling context and coupling
weights in modeling interactive relationships in mixed data.

So based on the traditional information table, how to de-
scribe the global interdependence across heterogeneous at-
tributes? How to quantify the coupling context and coupling
weights? How to explicitly represent the original data by
teasing out the implicit relationships? No work that system-
atically addresses these issues has been reported in the liter-
ature due to the complexity and variety of data sets in their
heterogeneous types. Thus, this paper proposes the context-
based coupled interdependent attributes analysis on mixed
data. The key contributions are as follows:

– We model the interdependence within discrete attributes
(intra-coupling and inter-coupling), within numerical at-
tributes (intra-coupling and inter-coupling), and across
them by addressing the coupling context and weights.

– A coupled representation scheme is introduced for mixed-
type objects, which integrates the intra-coupled and inter-
coupled interactions of heterogeneous attributes with the
original information table based on feature conversion.

– The proposed coupled representation for mixed data is
compared with the traditional representation by applying
data structure analysis, data clustering and density com-
parison, revealing that the interdependence of heteroge-
neous attributes is essential to the learning process.

Related Work
Many papers address the issue of mixed data clustering.
Huang (Huang 1998) firstly introduced the k-prototype al-
gorithm, which is an extension to the k-means algorithm for
clustering data with categorical values. More recently, Spec-
tralCAT (David and Averbuch 2012) was proposed for data
in any type via automatic categorization and spectral cluster-
ing. However, it performs discretization on numerical data,
resulting in a mass of information loss. In addition, neither
of them considers any relationship hidden in the mixed data.
More and more researchers now focus on analyzing the im-
plicit interdependence relationships for the mixed data. Mix-
ture model was summarized in (Hunt and Jorgensen 2011),
in which discrete and numerical variables follow multino-
mial distribution and multivariate Gaussian distribution, re-
spectively. The coupling of numerical attributes is reflected
by covariance matrix. Ahmad and Dey present mADD to in-
corporate the interactions of categorical values in clustering
(Ahmad and Dey 2007). The coupling of discrete attributes
is quantified by co-occurrence matrix. Despite the current
research progress, no work has been reported that systemati-
cally takes into account the global relationships among their
discrete and numerical attributes.

Interdependence of Heterogeneous Attributes
The usual way to represent data is to use an information ta-
ble S = (U,A). Universe U = {u1, · · · , um} consists of
finite data objects in rows. Dimension A = Ad ∪ Ar is a fi-
nite set of attributes in columns, whereAd = {ad1, · · · , adn1

}
and Ar = {ar1, · · · , arn2

} are sets of discrete attributes and
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numerical attributes, respectively. Table 1 is an information
table composed of six objects {u1, · · · , u6}, two discrete at-
tributes {ad1, ad2} and two numerical attributes {ar1, ar2}.

We adopt space conversion techniques for discrete and nu-
merical attributes, in which the coupling relationships are
teased out by also addressing the interactions across them.

Attributes Coupling for Discrete Data
Discrete data is characterized by the first n1 columns of S
(i.e. nominal attribute set Ad with values). The domain of
discrete attribute adj isAdj = {adj .v1, adj .v2, · · · , adj .vtj}, in-
dicating that adj has tj distinct attribute values. In Table 1,
for example, Ad1 = {X,Y, Z}, Ad2 = {α, β}, and n1 = 2.

Coupling in Discrete Attributes Firstly, we represent the
discrete data by converting the original space spanned by n1
discrete attributes into a new space whose dimensionality is
T = t1+ · · ·+ tn1

. In other words, each original discrete at-
tribute adj is expanded by its tj attribute values. The discrete
data can be reconstructed as an m × T matrix Sd, where
each new object ud is a T -dimension row vector and the
(j − 1 + p)-th column corresponds to attribute value adj .vp.

A common way is to assign the matrix entry Sd[u, v] to be
1 if object u contains attribute value v, and otherwise 0. Each
object has one value for each attribute, so every object in
Sd contains exactly n1 1s. However, such granularity is too
coarse-grain since only 1 and 0 are considered. The relation-
ships neither within nor between discrete attributes (i.e. adj
and adk) is explicated. Therefore, we propose the method to
explicitly reveal the interdependence relationships, and re-
fine the boolean matrix Sd ∈ {0, 1}m×T by a soft matrix
FSd ∈ [0, 1]m×T .

Accordingly, we define the entry of soft matrixFSd based
on the pairwise similarity between values of each discrete
attribute. Specifically, for each row vector (i.e. object) ud in
FSd and each attribute value adj .v ∈ Adj , we have:

ud[adj .v] = sim(fdj (u), a
d
j .v), (1)

where ud[adj .v] refers to the component related to adj .v of
vector ud; fdj (u) returns the value of discrete attribute adj for
object u; sim(fdj (u), a

d
j .v) denotes the similarity between

two values fdj (u) and adj .v of aj , which is expected to reveal
the interactions of discrete attributes. In Table 1, ud3[Z] =
sim(Y,Z), where Z is a value of ad1 and Y = fd1 (u3).

As pointed out by (Wang et al. 2011), the coupled nom-
inal similarity not only considers the intra-coupled similar-
ity within an attribute by discrepancy on value frequency,
but also concerns the inter-coupled similarity between at-
tributes via value co-occurrence aggregation. Their proposed
similarity has been verified to outperform the state-of-the-
art similarity measures for discrete data in extensive experi-
ments. Therefore, we adapt this coupled nominal similarity
to fit in the function sim(·) in Equation (1).

Coupling Context and Coupling Weights Despite the ef-
fectiveness of coupled nominal similarity, it simply treats ev-
ery pair of attributes to have an equal coupling weight, which

is not always fair. The reason is that in most cases, some at-
tributes are strongly related to each other, while some might
only weak related. Thus, we develop a way below to measure
to what extent and in what context two attributes are cou-
pled, and how corresponding weights are assigned to such
coupling relationships.

Inspired by (Ienco, Pensa, and Meo 2012), we define the
coupling context for a pair of discrete attributes based on the
relevance and redundancy. Our goal is that for each discrete
attribute (e.g. adj ), selecting a subset of relevant but not re-
dundant attributes. The relevance of attributes (i.e. adj , adk) is
measured by symmetrical uncertainty (SU ), defined as:

SUadj (a
d
k) = 2 ∗

H(adj )−H(adj |adk)
H(adj ) +H(adk)

, (2)

where H(adj ) and H(adj |adk) are entropy and condition en-
tropy of variables adj and adk. It ranges from 0 to 1, in which
0 indicates the independence of variables and 1 represents
that the value of adj can be completely predicted by adk.

On the other hand, attribute adl is regarded as redundant
with respect to adj if both conditions I and II are satisfied.

I : SUadj (a
d
l ) ≤ SUadj (a

d
k), II : SUadk(a

d
l ) ≥ SUadj (a

d
l ).

Condition I specifies that adj is more relevant to adk than to
adl . Condition II quantifies that the relevancy of adl and adk
is larger than that of adl and adj . When representing discrete
attribute adj , adl is redundant since its close neighbor adk is far
more than enough to perform this task well. Thus, adl must
be kept away from the coupling context of adj .

To calculate the coupling context of adj , we firstly rank
a set of candidate attributes {adk} according to a descend-
ing order of {SUadj (a

d
k)}. Each redundant attribute adl is de-

termined by conditions I and II and then removed from the
candidate set. While the coupling context Cdj is obtained for
adj , we also record the corresponding SU value as the cou-
pling degree of attributes. For a target discrete attribute adj ,
the coupling weight γjk for every attribute in the coupling
context (adk ∈ Cdj ) is defined as the normalized SU value.

γjk =

SUadj (a
d
k)− min

adk∈C
d
j

SUadj (a
d
k)

max
adk∈C

d
j

SUadj (a
d
k)− min

adk∈C
d
j

SUadj (a
d
k)
. (3)

For those redundant attributes {adl }, we take γjl = 0. Thus,
the coupling weight γjk ∈ [0, 1] for all 1 ≤ j, k ≤ n1.

Coupling across Discrete and Numerical Attributes Till
now, we have paid full attention to the interdependence rela-
tionships within discrete data. Those hidden between dis-
crete and numerical attributes should also be addressed.
Since the frequency and co-occurrence of values are used
for discrete attributes, the coupling of mixed attributes is ex-
tracted based on an appropriate categorization of each nu-
merical attribute.

1863



Table 2: Coupled Representation (FSd) for Discrete Data

data X Y Z α β
u1 0.333 0 0.143 0.099 0.500
u2 0.143 0.364 0.600 0.099 0.500
u3 0 0.500 0.364 0.667 0.099
u4 0.143 0.364 0.600 0.667 0.099
u5 0 0.500 0.365 0.667 0.099
u6 0.143 0.364 0.600 0.667 0.099

We propose to perform the categorization in an automatic
manner, in which k-means is applied to each numerical at-
tribute while calculating the validity index (David and Aver-
buch 2012). This process is repeated using increasing num-
bers of categories and terminated when the first local max-
ima is found. The number of categories, which reaches the
best validity index as a local maxima, is selected. As a re-
sult, the set of numerical attributes Ar is transformed into
a collection of categorical scales Ar→d. We then merge this
converted categorical data with the original discrete data to
form a new discrete attribute set AD = {Ad, Ar→d}.

The soft object-value matrix FSd is updated, each entry
is calculated as the coupled nominal similarity with the cou-
pling weight γ based on the new attribute setAD. Regarding
Equation (1), we then obtain the new entry of FSd.

FSd(u, v) = ud[adj .v] = sim(fd
j (u), a

d
j .v) (4)

= δIaj (fd
j (u), a

d
j .v) ·

∑
ak∈AD,k 6=j

γjk · δj|k(fd
j (u), a

d
j .v,Ak),

where δIaj is the intra-coupled similarity between attribute
values, and δj|k is the inter-coupled relative similarity be-
tween them, all the detailed formulae are specified in (Wang
et al. 2011). We use ak ∈ AD to integrate the couplings
across discrete and numerical attributes in the process of se-
lecting the coupling context from the newly expanded at-
tribute value set Ak and the corresponding weights γjk.

Finally, we obtain an m × T matrix FSd, which is new
representation for discrete data involving interdependence
relationships. Each object-value entry is quantified by the
similarity between discrete values by taking into account the
context from both selected discrete and numerical attributes.
For Table 1, we have the coupled representation for discrete
data, as displayed in Table 2. The entry of (u3, Z) is 0.364,
which means the coupled similarity between attribute val-
ues Y = fd1 (u3) and Z is 0.364. In the coupled similarity
calculation, the context of attribute ad1 is only ad2, while the
context of attribute ad2 consists of ad1 and categorized ar→d2
with the coupling weights of 0.655 and 0.345, respectively.

Attributes Coupling for Numerical Data
Numerical data Sr is described by the last n2 columns of
S, i.e. continuous attribute set Ar. Most current research as-
sumes the independence of attributes when performing data
mining or machine learning tasks. In real-world data, at-
tributes are more or less interacted and coupled via explicit
or implicit relationships. Wang et al. (Wang, She, and Cao
2013) propose a framework of the coupled attribute analysis

to capture the global dependency of continuous attributes,
which integrates the intra-coupled interaction within an at-
tribute (i.e. the correlations between attributes and their own
powers) and inter-coupled interaction among different at-
tributes (i.e. the correlations between attributes and the pow-
ers of others) to form coupled representation for numerical
objects by the Taylor-like expansion.

For numerical data, we apply the coupling model pre-
sented in (Wang, She, and Cao 2013) by extracting the cou-
pling context and weights as well as integrating the interde-
pendence across numerical attributes and discrete attributes.

Coupling Context and Weights The coupling context
of numerical data is specified as intra-coupling and inter-
coupling context. For a given numerical attribute arj , the
intra-coupling context is selected from the powers 〈arj〉x,
whose value is the x-th power of the corresponding value
of attribute arj . The powers of other attributes 〈ark〉x(k 6= j)
compose the candidates for the inter-coupling context.

An alternative criterion to choose context for arj depends
on the p-value of Pearson’s correlated coefficient cor(·):

cor(a
r
j , a

r
k) =

∑
u∈U (fr

j (u)− µ
r
j )(f

r
k (u)− µ

r
k)√∑

u∈U (fr
j (u)− µr

j )
2
√∑

u∈U (fr
k (u)− µ

r
k)

2
,

where µrj , µ
r
k are the respective mean values of arj , a

r
k. If the

p-value of cor(〈arj〉x, 〈arj〉y) is smaller than 0.05, 〈ark〉y is a
significant component of context for 〈arj〉x, vice versa. Oth-
erwise, 〈ark〉y must be excluded from the context of 〈arj〉x.

For each attribute power 〈arj〉x, the intra-coupling weight
is w1 ·RIa, and the inter-coupling weight is w2 ·RIe. Here,
RIa is the intra-coupling correlation matrix, whose entry is
the significant correlation cor(·) between attributes and their
own powers. RIe is the inter-coupling correlation matrix,
whose entry is the significant correlation cor(·) between at-
tributes and others’ powers. w1 and w2 are the predefined
parameters to make the coupling interactions resemble Tay-
lor expansion (Jia and Zhang 2008).

Coupling across Numerical and Discrete Attributes
Likewise, we address the interdependence relationships
across numerical and discrete attributes. Based on them×T
matrix FSd obtained for discrete data, each column of FSd
can be treated as a numerical attribute since each entry is
a continuous value rather than the original category in Sd.
Next, we merge FSd with the numerical data Sr to get
FS, which has T + n2 columns (i.e., the first T columns
come from FSd and the following n2 columns are from
Sr). These columns correspond to T + n2 new numerical
attributes {adrj }.

On the basis of this m × (T + n2) matrix FS, the inter-
dependent attribute analysis on numerical data is conducted
to explore the coupling context and coupling weights for
each new continuous attribute adrj by analyzing the pow-
ers of adrj and their correlations. The output is an updated
m×L · (T + n2) matrix F̂S, where L is the maximal pow-
ers. The entry for object u and attribute power 〈adrj 〉x is:

F̂S(u, 〈adrj 〉x) = uT ·(w1R
Ia(〈adrj 〉x)+w2R

Ie(〈adrj 〉x)), (5)
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Table 3: Normalized Coupled Representation (F̂S) for Categorical and Numerical Data
data 〈X〉1 〈X〉2 〈Y 〉1 〈Y 〉2 〈Z〉1 〈Z〉2 〈α〉1 〈α〉1 〈β〉1 〈β〉2 〈ar1〉1 〈ar1〉2 〈ar2〉1 〈ar2〉2
u1 1.81 1.77 -1.77 -1.81 -1.55 -1.54 -1.64 -1.64 1.64 1.64 -0.06 -0.74 -1.63 1.67
u2 0.02 0.61 -0.61 -0.02 0.84 0.84 -0.85 -0.85 0.85 0.85 -1.23 1.88 -0.86 0.82
u3 -0.93 -0.74 0.75 0.93 -0.49 -0.49 0.51 0.51 -0.51 -0.51 -0.58 0.10 0.49 -0.54
u4 0.02 -0.71 0.70 -0.02 0.84 0.84 0.66 0.66 -0.66 -0.66 -0.48 -0.10 0.65 -0.66
u5 -0.93 -0.34 0.34 0.93 -0.49 -0.49 0.62 0.62 -0.62 -0.62 1.44 -0.23 0.65 -0.60
u6 0.02 -0.59 0.58 -0.02 0.84 0.84 0.70 0.70 -0.70 -0.70 0.91 -0.91 0.70 -0.68

Table 4: Coupled Representation (R̂FS) for Objects
data â1 â2 â3 â4 â5 class
u1 5.685 -1.383 -0.231 -0.216 0.010 G1

u2 1.878 2.773 0.311 0.485 -0.021 G1

u3 -1.689 -0.111 1.309 -0.813 -0.105 G2

u4 -1.921 0.637 -0.884 -0.618 0.173 G2

u5 -1.867 -1.378 0.882 0.850 0.097 G3

u6 -2.086 -0.537 -1.386 0.312 -0.154 G3

where uT is a row vector for object u with L · (T + n2)
attribute values in FS, RIa(〈adrj 〉x) and RIe(〈adrj 〉x) are
columns vectors to specify the correlations of 〈adrj 〉x with
its own powers and other attributes’ powers, respectively.

For instance, we obtain the normalized coupled represen-
tation for categorical and numerical data based on Table 1
and Table 2 when maximal power L = 2, as shown in Ta-
ble 3. There are in total 14 columns, corresponding to newly
produced 14 attributes by considering all the interactions.

Coupled Representation for Mixed Objects
After exploring the value expansions for discrete data and
attribute powers for numerical data, we obtain the coupled
representation:m×L · (T +n2) matrix F̂S. It explicitly ex-
hibits the coupling interactions within discrete data, within
numerical data, and across them. However, the dimension of
F̂S is as large as L · (T +n2). If discrete attributes Ad have
many categories, namely T = t1 + · · ·+ tn1

is large, F̂S is
expected to have quite a lot of columns due to the multipli-
cation of T and L, even if L = 2, shown in Table 3.

To improve the efficiency of subsequent data mining and
machine learning tasks, it is preferable to reproduce/select
a smaller number of attribute representatives to capture the
characteristics and structure of the original data as much as
possible. Many attribute reduction methods, including PCA
(Grbovic, Dance, and Vucetic 2012), spectral and diffusion
map (David and Averbuch 2012), and MDS (Lancewicki and
Aladjem 2014), may serve this purpose. We choose PCA to
do the attribute selection on F̂S matrix in this paper since
it is non-parametric when compared to other strategies. Fi-
nally, a reduced matrix R̂FS with attributes projected along
the directions of relatively greater variance is obtained.

For Table 1, we get the final coupled representation as
shown in Table 4. The dimensionality has been reduced to
5 from 14, but most of the information is reserved. Accord-
ingly, we obtain the normalized Euclidean distance between

Table 5: Description of Data Sets
Data Set Object Attribute Discrete Class Short Form

zoo 101 16 15 7 zo
echo 131 10 2 2 ec
teach 151 5 4 3 te

hepatitis 155 19 13 2 hp
heart 270 13 8 2 ha
mpg 392 7 2 3 mp
credit 663 15 9 2 cr

australian 690 14 8 2 au
statlog 1000 20 13 2 st
contra 1473 9 7 3 co
thyroid 3428 20 14 3 th
abalone 4168 8 1 21 ab

u4 and u6 is 1.189 based on R̂FS, larger than both distances
between u4, u3 (i.e. 1.147) and between u6, u5 (i.e. 1.162).
Similarly, the normalized distance between u3 and u5 (i.e.
1.220) is also greater than them. It means that u4, u6 and
u3, u5 are unlikely to be clustered together, which is con-
sistent with the real situation and verifies that our proposed
coupled representation is effective in capturing the implicit
interdependent relationships.

Empirical Study
Experiments are performed on 12 UCI data sets, shown in
Table 52. Two data representation schemes are compared:
the original representation S and the coupled representation
R̂FS. As suggested in (Wang, She, and Cao 2013), maxi-
mal power L is assigned to be 3 or 4 , whichever performs
better. The number of runs is set to be 100 to obtain average
results with their sample standard deviations. The number of
clusters is fixed to be the number of real classes in each data.

Cluster Structure Analysis
Experiments are designed to specify the internal data struc-
ture. The data representation is evaluated with the given la-
bels and clustering internal descriptors: Relative Distance
(RD), Davies-Bouldin Index (DBI) (Davies and Bouldin
1979), Dunn Index (DI) (Dunn 1974), and Sum-Distance
(SD). RD is the ratio of average inter-cluster distance upon
average intra-cluster distance; SD is the sum of object dis-
tances within all the clusters. As the internal criteria seek
the clusters with a high intra-cluster similarity and a low
inter-cluster similarity, larger RD, larger DI, smaller DBI,

2The “Discrete” column lists the number of discrete attributes.
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Figure 1: Data structure index comparisons on 12 data sets:
average values with ± sample standard deviation error bars.

and smaller SD indicate the stronger cluster differentiation
capability, which leads to a superior representation scheme.

The cluster structures produced by different representa-
tion schemes are analyzed on 12 data sets. The normalized
results are shown in Figure 1. With the exception of only a
few items (i.e. mp and th on RD, te on DI, hp on DBI), the
corresponding RD and DI indexes for the coupled represen-
tation are larger than those for the original representation;
and the associated DBI and SD indexes for the former are
always smaller than those for the latter. It shows our pro-
posed coupled representation, which effectively captures the
global interactions within and between mixed attributes, is
superior to the original in terms of differentiating objects in
distinct clusters. All the results are supported by a statistical
significant test at 95% significance level.

Data Clustering Evaluation
Several clustering algorithms are in particular designed for
mixed-type data, such as k-prototype (Huang 1998), mADD
(Ahmad and Dey 2007), mixture model (Hunt and Jorgensen
2011), and spectralCAT (David and Averbuch 2012), which
have been briefly introduced before. We also consider the
random clustering as a baseline method. For our proposed
strategy, we use k-means to perform the clustering task
based on the coupled representation scheme, named cou-
pledMC.

Table 6 reports the results in terms of an external mea-
sure: Accuracy. As described in (Cai, He, and Han 2005), the
larger the accuracy, the better the clustering. The two high-
est measure scores of each experimental setting are high-
lighted in boldface. The row “Avg” displays the average val-
ues across all the 12 data sets. This table shows that cou-
pledMC is always in the first two positions; in most cases, it
outperforms all the other methods in all data sets. The maxi-
mal average improvement rate across all the data and all the
methods is 69.76%, while the minimal is 12.80%. Statistical

Figure 2: Clustering result on data set “heart”.

Figure 3: Clustering result on data set “mpg”.

testing also supports that coupledMC performs better than
others, at 95% significance level.

Density Comparison
In this part, we use the newly published work (Rodriguez
and Laio 2014) on clustering via distance and density to
verify the superiority of our proposed coupled representa-
tion scheme. The original method is based on the idea that
cluster centers are featured by a higher density than their
neighbors and by a relatively large distance from points with
higher densities. The authors have evidenced the power of
algorithm in discovering clusters with any shape and dimen-
sionality.

We adopt the mixed distance used by (Huang 1998) with
this approach as the baseline method. The coupled represen-
tation scheme is also incorporated to make comparisons on
the clustering quality. Figure 2 and Figure 3 show the deci-
sion graph to choose cluster centers and the 2D nonclassi-
cal multidimensional scaling of objects for data sets: heart
and mpg, respectively. The solid circles in red, green, yel-
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Table 6: Clustering Comparisons on Accuracy with ± Sample Standard Deviation
Method random k-prototype mADD mixture spectralCAT coupledMC

Accuracy

zoo 0.260 ± 0.023 0.740 ± 0.095 0.764 ± 0.072 0.789 ± 0.074 0.765 ± 0.054 0.842 ± 0.008
echo 0.537 ± 0.026 0.857 ± 0.016 0.763 ± 0.001 0.763 ± 0.002 0.682 ± 0.019 0.855 ± 0.051

teach 0.388 ± 0.023 0.406 ± 0.028 0.423 ± 0.018 0.421 ± 0.027 0.439 ± 0.020 0.483 ± 0.030
hepatitis 0.532 ± 0.021 0.698 ± 0.013 0.712 ± 0.034 0.735 ± 0.000 0.769 ± 0.024 0.806 ± 0.075

heart 0.526 ± 0.017 0.781 ± 0.037 0.834 ± 0.004 0.804 ± 0.007 0.607 ± 0.068 0.870 ± 0.089
mpg 0.366 ± 0.013 0.455 ± 0.006 0.479 ± 0.032 0.451 ± 0.001 0.622 ± 0.005 0.651 ± 0.044
credit 0.515 ± 0.011 0.801 ± 0.001 0.543 ± 0.021 0.745 ± 0.006 0.556 ± 0.002 0.777 ± 0.106

australian 0.513 ± 0.011 0.804 ± 0.016 0.641 ± 0.128 0.758 ± 0.032 0.556 ± 0.003 0.817 ± 0.035
statlog 0.512 ± 0.008 0.522 ± 0.016 0.681 ± 0.000 0.603 ± 0.001 0.674 ± 0.007 0.707 ± 0.067
contra 0.350 ± 0.006 0.406 ± 0.010 0.422 ± 0.010 0.435 ± 0.001 0.429 ± 0.005 0.443 ± 0.019
thyroid 0.343 ± 0.005 0.364 ± 0.023 0.500 ± 0.059 0.739 ± 0.075 0.663 ± 0.070 0.904 ± 0.123
abalone 0.072 ± 0.002 0.186 ± 0.003 0.177 ± 0.006 0.166 ± 0.005 0.187 ± 0.015 0.196 ± 0.007

Avg 0.410 0.585 0.578 0.617 0.579 0.696

low and blue are the objects selected as cluster centers in the
upper graphs (i.e. decision graph), and the points in differ-
ent colors and shapes reflect the distinct clusters in the lower
graphs. The density and distance scores for baseline method
are not easily distinguishable, since many points have either
the same density value or the same distance value. From the
multi-dimensional scaling charts, we can see the number of
projected points is rather limited in baseline method and they
are mixed across different groups. In contrast, the distance-
density-based clustering with coupling performs better in
selecting cluster centers and thus partitioning objects better
than the baseline method. So the coupled representation in-
trinsically exposes the data structure, in particular the hidden
interdependence of heterogenous attributes.

Conclusion
We have proposed the context-based coupled representation
for mixed data via teasing out the relationships of interde-
pendent attributes. The interdependence of heterogeneous
attributes is exhibited as the couplings within discrete at-
tributes, within continuous attributes, and across them. Sev-
eral concepts, such as frequency, co-occurrence, categoriza-
tion, correlation and powers, are used to build the cou-
pling context and coupling weights for heterogeneous at-
tributes. As a result, a coupled representation scheme is
presented as a numerical matrix based on feature selection
and conversion. Substantial experiments have verified that
the coupled representation outperforms the original method
on data structure, data clustering and density comparison,
supported by statistical analysis. We are currently enriching
the context-based coupled interdependent attribute analysis
on mixed data by also addressing the couplings of objects
and couplings of clusters. In the future, we will analyze the
relationship between data characteristics and coupling in-
teractions. In addition, semantic coupling based on domain
knowledge or expert is expected to further improve the cou-
pled representation of mixed data.
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