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Abstract

Innovative methods have been developed for diagnosis,
activity monitoring, and state estimation that achieve
high accuracy through the use of stochastic models in-
volving hybrid discrete and continuous behaviors. A
key bottleneck is the automated acquisition of these hy-
brid models, and recent methods have focused predom-
inantly on Jump Markov processes and piecewise au-
toregressive models. In this paper, we present a novel al-
gorithm capable of performing unsupervised learning of
guarded Probabilistic Hybrid Automata (PHA) models,
which extends prior work by allowing stochastic dis-
crete mode transitions in a hybrid system to have a func-
tional dependence on its continuous state. Our experi-
ments indicate that guarded PHA models can yield sig-
nificant performance improvements when used by hy-
brid state estimators, particularly when diagnosing the
true discrete mode of the system, without any notice-
able impact on their real-time performance.

1 Introduction
In the field of dynamical systems, we refer to a model as
being hybrid if its behavior combines features of continu-
ous and discrete state dynamics (van der Schaft and Schu-
macher 2000; Goebel, Sanfelice, and Teel 2009). For exam-
ple, modern electronic circuits switch transistors on and off
in order to control the flow of current, an inherently con-
tinuous quantity, across different components. Estimation
and control involving hybrid models have proven valuable
for a range of tasks involving complex behavior, in which
accuracy is often paramount. Such real-world examples in-
clude target tracking (Blom and Bar-Shalom 1988), moni-
toring of aircraft at airports (Seah and Hwang 2009), fault
diagnosis for space explorers (Hofbaur and Williams 2002;
Blackmore et al. 2007), and control in degraded modes (San-
tana, Borges, and Ishihara 2010), among many others.

Probabilistic Hybrid Automata (PHA) (Hofbaur and
Williams 2002; 2004) constitute a hybrid model class that
can represent a large number of engineered systems. In a
PHA, one refers to the discrete state as the mode of the au-
tomaton, which is usually hidden. Depending on its mode,
the dynamics of the continuous portion of the automaton’s
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state can be governed by potentially distinct sets of dif-
ference or differential equations, therefore giving rise to a
multiple-model system. Another feature of PHA is that dis-
crete mode transitions are guarded, i.e., the probability of
their occurrence depends on the continuous states and in-
puts to the system. For example, the switched RC circuit
in Figure 1 can be modeled as a simple PHA with guarded
transitions. The discrete mode represents whether the circuit
is charging or discharging; the continuous state is the out-
put voltage; and the input to system comes from the voltage
source. Our results in Section 5 indicate that being able to
handle stochastic guarded transitions is essential to improve
the accuracy of hybrid inference algorithms, for these guards
shed additional light on hidden mode transitions.

Figure 1: Switched RC circuit.

Effective methods have been developed to perform in-
ference on Jump Markov Linear Systems (JMLS) (Blom
and Bar-Shalom 1988; Mazor et al. 1998; Doucet, Gor-
don, and Krishnamurthy 2001; Hwang, Balakrishnan, and
Tomlin 2006; Seah and Hwang 2009), a particular type of
PHA with unguarded, purely stochastic mode transitions.
There has been significant effort in the scientific commu-
nity to automate the acquisition of JMLS (Logothetis and
Krishnamurthy 1999; Henry 2002; Balakrishnan et al. 2004;
Blackmore et al. 2007) and Piecewise Affine Autoregressive
with Exogenous input (PWARX) models (Nakada, Takaba,
and Katayama 2005; Juloski, Weiland, and Heemels 2005;
Paoletti et al. 2007; Baptista, Ishihara, and Borges 2011),
for the manual specification of such models can be quite a
challenging and time-consuming task for even small-scale
systems. Both types of model follow a similar high-level
procedure when being learned from data. The first step is
to determine which discrete mode was responsible for gen-
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(a) Hidden Markov Model (HMM). (b) JMLS. (c) PHA.

Figure 2: Different hybrid models considered. Discrete and continuous states are represented by variables mi and xi, i ∈
{1, . . . , n}, respectively. The deterministic inputs u1:n and distribution parameters have been omitted for the sake of clarity.

erating each one of the observations. Then, model param-
eters are found by means of a linear or nonlinear regres-
sion step within each class. A commonly used strategy in
the JMLS community is to apply the widely-known Expec-
tation Maximization (EM) algorithm (Dempster, Laird, and
Rubin 1977) to iteratively refine model parameters so as to
maximize the likelihood of the observed data. For PWARX
models, on the other hand, the procedure usually involves an
initial clustering step to determine observations pertaining to
the same model, followed by an in-class parameter optimiza-
tion procedure, and a full partitioning of the state and input
spaces so as to isolate the different models, which is usu-
ally done by Support Vector Machines (SVM) (Cortes and
Vapnik 1995). Generalizing to guarded transitions, the au-
thors in (Seah and Hwang 2009) focused on the special case
of guarded transition probabilities being Gaussian, which
allows for closed-form expressions in filtering equations.
However, learning PHA models with more expressive types
of guard conditions remains a challenge.

We address this need by developing a variant of EM for
PHA with guard conditions of arbitrary shape. Our key in-
sight is that complex guard conditions can be efficiently
represented as classifiers, and we show that these can be
trained iteratively during the parameter optimization pro-
cess in a completely unsupervised manner. Conditioning dis-
crete mode transitions on the activation of guard conditions
can significantly reduce the uncertainty about discrete mode
transitions at any given point in time, therefore allowing hy-
brid diagnostic engines to better explore the space of pos-
sible diagnoses. In order to support this claim, we imple-
mented the well-known Interacting Multiple Models (IMM)
(Blom and Bar-Shalom 1988) filter for hybrid systems and
found significant performance improvements when it oper-
ates with a PHA model, as opposed to a JMLS model for the
same hybrid system.

This paper is organized as follows. Section 2 formally in-
troduces the type of PHA addressed in this work, followed
by our problem formulation in Section 3. Our algorithm is
presented in Section 4, along with numerical results in Sec-
tion 5. We offer our concluding remarks in Section 6.

2 Probabilistic Hybrid Automata
This paper focus on learning PHA models of the form

xi = Ami−1
xi−1 +Bmi−1

ui−1 + wi−1, (1)
yi = Cmi

xi +Dmi
ui + vi,

p(m0:n|x0:n, u1:n) =

p(m0)
n∏
i=1

p(mi|mi−1, gmi−1
(xi−1, ui−1)).

wheremi ∈M = {1, 2, . . . ,M} is the PHA’s discrete mode
at the i-th time step; xi ∈ Rdx, ui ∈ Rdu, yi ∈ Rdy are
the continuous state, input, and output vectors of the PHA,
whose mode-dependent dynamics can switch among M dif-
ferent linear models; wi−1∼N(0, Qmi−1), vi∼N(0, Rmi)
are uncorrelated, white Gaussian noise; and gmi(xi, ui) ∈
M is the guard function for mode mi. In order to be coher-
ent with the PHA definition in (Hofbaur and Williams 2002),
we say that the guard condition for the transition mi → m
is true iff gmi

(·) = m. Figure 2 shows a comparison in the
form of graphical models between PHA and other common
forms of hybrid models with probabilistic mode transitions.

It is important to gain more insight about the im-
portance of folding guard conditions into hybrid mod-
els, specially when these models are being used for real-
time tracking and diagnosis. Intuitively, a guard condi-
tion is a function of the PHA’s state (including the dis-
crete mode mi, continuous state xi, and input ui) that
influences our confidence about what the next discrete
mode of the PHA should be. More formally, guard condi-
tions act as parameters in a family of mode transition pri-
ors p(mi|mi−1, gmi−1

(xi−1, ui−1)), each one reflecting our
confidence about transitionsmi−1→mi for different regions
of the state and input. In JMLS models, on the other hand,
unguarded stochastic mode transitions are represented by
a single Transition Probability Matrix (TPM), which usu-
ally has to be hand-tuned after model learning in order to
achieve acceptable performance in terms of peak estima-
tion errors during mode transitions and steady-state errors,
as described in (Li and Jilkov 2003). This problem is par-
ticularly pronounced for hybrid systems that dwell on dis-
crete states for extended periods of time, for this increases
the self-transition probabilities in the TPM during learning
and adds a lot of “inertia” to the discrete mode transitions.

It is worthwhile to mention that no special form for the
guard conditions is assumed in this paper, except that they
must return an index of one of the models (mi, ...,mk). In
this work, we decided to use multi-class Support Vector Ma-
chines (SVM’s) as our guard functions for reasons that will
later become apparent, but our learning algorithm is in no
way dependent on this choice of a classifier.
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3 Problem Formulation
Let θ be the PHA model parameters in (1). We frame
our problem as an instance of data likelihood optimization,
whose goal is to find the set of parameters θ∗ such that

θ∗ = arg max
θ′

f(θ′) = log p(y1:n|u1:n; θ′), (2)

where y1:n is a series of observations. Direct maximization
of (2) is hard in general due to the presence of hidden states
x0:n and modes m0:n. However, if we somehow had access
to the true values of x̄0:n and m̄0:n, we could write

f(θ′)=
∑
m0:n

∫
x0:n

δ(x0:n−x̄0:n,m0:n−m̄0:n)L(θ′)dx0:n (3)

where δ(·) is the Dirac delta function and

L(θ′) = log p(y1:n, x0:n,m0:n|u1:n; θ′) (4)

= log p(x0,m0) +
n∑
i=1

log p(yi|xi,mi, ui; θ
′)

+ log p(xi|xi−1,mi−1, ui−1; θ′)

+ log p(mi|mi−1, gmi−1
(xi−1, ui−1); θ′)

Evaluating (4) would be possible if one had access to the
Dirac delta function that effectively selects the correct hy-
brid states for (3). In order to circumvent this limitation, the
approach in EM (Dempster, Laird, and Rubin 1977) is to
iteratively maximize a lower bound for (3) given by

h(θ′)=
∑
m0:n

∫
x0:n

p(x0:n,m0:n|y1:n, u1:n)L(θ′)dx0:n (5)

=Ep(x0:n,m0:n|y1:n,u1:n)[L(θ′)]. (6)

In order to have an intuitive understanding of why (6) is a
sensible choice, a quick comparison between (3) and (6) is
sufficient. Instead of using a hard indicator, (6) replaces the
Dirac delta by the posterior probability of the hidden state
given the measurements and inputs, which is how much we
believe that a particular sequence of hidden states is the true
one. The EM algorithm then iteratively maximizes the lower
bound (6) by following a two step procedure:

1. Use parameters θk for (1) from the k-th iteration to com-
pute posterior probabilities pk+1(x0:n,m0:n|y1:n, u1:n).
This is the E-step;

2. Use pk+1(x0:n,m0:n|y1:n, u1:n) to find new parameters
θk+1 that maximize (6). This is the M-step. Repeat until
successive evaluations of (6) converge.
By following this simple procedure, EM is guaranteed to

converge to a local optimum of (3), the true likelihood func-
tion. A short and useful review of EM is given in (Blackmore
et al. 2007), along with more thorough and pedagogical de-
scriptions available at other sources, such as (Bishop and
Nasrabadi 2006).

Computing p(x0:n,m0:n|y1:n, u1:n), however, is still an
intractable problem due to the large number of possi-
ble discrete mode trajectories, which is exponential in
n. The authors in (Blackmore et al. 2007) use the PHA

mode trajectory enumerator developed in (Hofbaur and
Williams 2002) to compute a set of N likely mode
trajectories and, for each one of them, use a forward-
backward Kalman filter recursion to compute smoothed
estimates of p(x0:n|m0:n, y1:n, u1:n). For linear models
corrupted by Gaussian noise, these smoothed estimates
p(x0:n|m0:n, y1:n, u1:n) will also be Gaussian distributions.
Then, integration over x0:n in (6) causes the hidden state xi
in (4) to be replaced by Ep(x0:n|m0:n,y1:n,u1:n)[xi].

Following the practice in PWARX model learning, we de-
velop our algorithm assuming that the continuous state vec-
tor can be directly measured, i.e., only the discrete mode
sequence m0:n is hidden. In this case, our objective function
becomes

Q(θ′)=
∑
m0:n

p(m0:n|x0:n, u1:n)L̃(θ′) (7)

=Ep(m0:n|x0:n,u1:n)[L̃(θ′)]. (8)

where L̃(θ′) = log p(x0:n,m0:n|u1:n; θ′). In Section 4, we
develop the equations for the E and M steps that maximize
(8) iteratively by improving the parameters of the model (1),
which includes the computation of guard conditions. Should
the continuous state not be directly observable, we could
then resort to mode trajectory enumeration (Hofbaur and
Williams 2002) or sampling-based methods (Doucet, Gor-
don, and Krishnamurthy 2001) in order to focus the opti-
mization on a small subset of likely trajectories.

4 Learning PHA Models with EM
In this section, we derive a novel extension of EM to esti-
mate maximum likelihood parameters of guarded PHA mod-
els from data. For the sake of clarity and space, some inter-
mediate manipulations have been omitted.

4.1 E Step
Let θ be the model parameters that we are trying to estimate.
The log-likelihood of the data in (8) is given by

L̃(θ) = log p(x0:n,m0:n|u1:n; θ)

= log p(x0,m0) +

n∑
i=1

log p(xi|xi−1,mi−1, ui−1; θ)

+
n∑
i=1

log p(mi|mi−1, gmi−1(xi−1, ui−1); θ) (9)

Given the posterior joint probability of the discrete modes
p(m0:n|x0:n, u1:n; θ), the lower bound (8) is given by

Q(θ)=Ep(m0:n|x0:n,u1:n)[L̃(θ)]

=

n∑
i=1

 ∑
mi−1

γ(mi−1) log p(xi|xi−1,mi−1, ui−1)

+
∑

mi−1,mi

ξ(mi−1,mi) log p(mi|mi−1, gmi−1(xi−1, ui−1))


+
∑
m0

γ(m0) log p(x0,m0), (10)
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where

γ(mi−1) = p(mi−1|x0:n, u1:n; θ),

ξ(mi−1,mi) = p(mi−1,mi|x0:n, u1:n; θ), (11)

are posterior marginal mode probabilities. Below we derive
a Forward-Backward algorithm capable of computing (11)
for the PHA model in Figure 2c. Let

αg(mi−1) = p(x1, . . . , xi−1,mi−1|u1:n; θ),

βg(mi−1) = p(xn, . . . , xi|mi−1, xi−1, u1:n; θ). (12)

For simplicity, we drop the explicit dependency of (12) on
θ. We can rewrite (11) in terms of (12) as

γ(mi−1)=
αg(mi−1)βg(mi−1)∑

m′i−1
γ(m′i−1)

, (13)

ξ(mi−1,mi)=
αg(mi−1)d(xi,mi−1)t(mi−1,mi)βg(mi)∑

m′i−1,m
′
i
ξ(m′i−1,m

′
i)

,

where

d(xi,mi−1) = p(xi|xi−1,mi−1, ui−1),

t(mi−1,mi) = p(mi|mi−1, gmi−1(xi−1, ui−1)). (14)

The probabilities (14) are computed from the dynamics
(1) and the guarded transitions. The terms in (12) can be
computed recursively as follows:

αg(mi−1) =
∑
mi−2

αg(mi−2)d(xi−1,mi−2)t(mi−2,mi−1),

(15)

βg(mi−1) =
∑
mi

βg(mi)d(xi,mi−1)t(mi−1,mi), (16)

αg(m0) = p(x0,m0), βg(mn) = 1. (given).

4.2 M Step
Our goal now is to maximize (10) given the posterior prob-
abilities (13) computed in the E-step. For each parameter in
the model (1), we present its corresponding M step.

Linear models From (1), we have

p(xi|xi−1,mi−1, ui−1; θ) =

N(xi;A(mi−1)xi−1 +B(mi−1)ui−1, Q) (17)

Assuming that Q = σ2I is fixed, we have

log p(xi|xi−1,mi−1, ui−1; θ) = − 1

2σ2
‖xi − µi−1‖2 + c,

(18)

where µi−1 = A(mi−1)xi−1 + B(mi−1)ui−1 and c is a
constant. Substituting (18) into the first summation in (10),
the parameters that should be optimized are the matrices Ak
andBk for each one of the possibleM assignments tomi−1.
Choosing Ak and Bk so as to maximize (4) requires us to
minimize a quadratic matrix term of the form

(Y − Φb(k))TW (k)(Y − Φb(k)), (19)

which is an instance of Weighted Least Squares (WLS) with
the weights being the posterior probabilities (13). In terms
of the data, the matrices in (19) are given by

Φ=

 xT0 uT0
...

...
xTn−1 uTn−1

 , Y=

x
T
1
...
xTn

 , b(k) =

[
ATk
BTk

]
W (k) = diag(γ(m0)=k, · · · , γ(mn−1)=k), (20)

whose closed form solution is

b̂(k) =

[
ÂTk
B̂Tk

]
= (ΦTW (k)Φ)−1ΦTW (k)Y. (21)

Initial Probability For the initial mode probability, we
use

p̂(m0 = k) =
γ(m0 = k)∑
k′ γ(m0 = k′)

(22)

Guarded Transition Probabilities The guarded transi-
tion probabilities are given by

p̂(mi=k|mi−1=k′, gmi−1=k(xi−1, ui−1)=m)=∑
{xj−1,uj−1}:gmj−1=k(xj−1,uj−1)=m

ξ(mj−1=k′,mj=k)∑
mj=k′′

p̂(mj=k′′|mj−1=k′, gmj−1=k(xj−1, uj−1)=m)

(23)

Guard Functions Different from the other parameters,
whose update equations can be readily obtained via stan-
dard maximization of (10) using Lagrange multipliers, find-
ing the optimal parameters for the guard conditions in (1)
is more challenging. For the guard function with origin at
some particular mi−1, the only affected portion of (10) is
n∑
i=1

∑
mi

ξ(mi−1,mi) log p(mi|mi−1, gmi−1
(xi−1, ui−1)).

(24)

The values of ξ(mi−1,mi) have been previously com-
puted in the E-step and we assume that we are using the
values for p(mi|mi−1, gmi−1(xi−1, ui−1) from the previous
iteration of EM. In the ideal case where we can choose any
value for gmi−1(xi−1, ui−1) for each sample xi−1 and ui−1,
the optimization of (24) is easy. In this case, for sample i−1,
we choose gmi−1

(xi−1, ui−1) = m∗ such that

m∗=arg max
m

∑
mi

ξ(mi−1,mi) log p(mi|mi−1, gmi−1
=m).

(25)

Equation (25) is creating a correspondence between the
input (xi−1, ui−1) and the value m ∈M = 1, 2, . . . ,M that
maximizes (10). Therefore, an obvious approach would be
to create a table, one row per distinct pair (xi−1, ui−1), and
its corresponding label m ∈ M according to (25). However,
that would not generalize well to unseen examples of x and
u, since it is very unlikely that we would observe during
operation the same pairs of inputs that were used to learn
the model. Hence, we need a better approach.
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In this work, we chose to represent the correspondence
between the input space (x, u) and discrete values in the
set M using multi-class SVM’s. A complete discussion of
SVM’s is out of the scope of this paper, but extensive litera-
ture on the subject exists and we refer the reader to (Burges
1998; Bishop and Nasrabadi 2006) as examples of good ref-
erences. Among its many good features, SVM’s usually gen-
eralize well to unseen examples; they can potentially repre-
sent transition boundaries of arbitrary shape; and the opti-
mization problem used to determine its parameters can be
solved quickly for moderately-sized datasets. However, we
stress that our PHA learning algorithm does not rely on
SVM’s in order to represent guard conditions.

The M-step for the guard function then consists of com-
puting the mapping (xi−1, ui−1) → m ∈ M by means of
(25) and using this “labeled” data as the input to a multi-
class SVM aiming at increasing the value of (24).

5 Numerical Results
Our algorithm was implemented in Python and multi-class
SVM’s were trained using wrappers for LIBSVM (Chang
and Lin 2011) in Scikit-learn (Pedregosa et al. 2011). In or-
der to evaluate the potential gains of using guarded PHA
models in hybrid estimation, we implemented the widely-
known IMM filter (Blom and Bar-Shalom 1988) and evalu-
ated its performance with PHA and JMLS models for the
same underlying hybrid systems in two different target-
tracking domains. State estimation was always performed
with the same parameters, the only difference being the type
of hybrid model being used. It is worthwhile to mention that
IMM was originally designed as a state estimator for JMLS.

Figure 3: PHA model fit to the RC circuit data.

We started with the pedagogical switched RC circuit ex-
ample shown in Figure 1, given that its simplicity allowed
us to verify that all portions of the PHA model were being
correctly learned from data. We initialized EM with 40%
misclassified modes and learned a PHA model using 1000
data points. The minimum and maximum output voltages
were set to Vmin=3.0V and Vmax=4.0V , respectively. The
input voltage was Vin=10V . Our SVMs were trained using
linear feature vectors and were allowed slack with very high
penalty for misclassified points. Figure 3 shows the PHA
model fit to the RC circuit data, while Figure 4 shows the
following transitions rules learned as guard conditions by

Figure 4: Learned guard conditions for the switched RC Cir-
cuit model. In the top plot, all voltage samples below 3.94V
are classified as 0 (charging) and shown as white dots. Black
dots are in the active transition to mode 1 (discharging). The
bottom plot shows the 3.0V boundary for the discharging→
charging transition.

our algorithm:

g0(xi−1, ui−1) =

{
1 (discharging) if xi−1 > 3.94

0 otherwise.

g1(xi−1, ui−1) =

{
0 (charging) if xi−1 < 3.00

1 otherwise.
(26)

Once we determined that our algorithm was capable of
learning correct parameters for PHA models, we evaluated
the impact of a guarded PHA model on two instances of tar-
get tracking, the domain for which IMM was originally de-
veloped and a classical benchmark for hybrid filtering. Our
models were based on (Seah and Hwang 2009) and describe
an airplane that can travel straight or turn in either direc-
tion with constant speed. In the first target tracking domain,
the airplane follows a “lawnmower” pattern, which involves
traveling back and forth over a bounding box in a systematic
fashion (Figure 5a). This type of flight pattern is widely used
in a number of applications ranging from search and rescue
(Goodrich et al. 2008), agriculture (Bryson et al. 2010), and
underwater exploration (Ferri, Jakuba, and Yoerger 2008).
In the second target-tracking domain, the airplane performs
a random Markovian transition to one of the modes (straight,
turn left, or turn right) with equal probability, dwells in it for
50 time steps, and repeats the process (Figure 5d). For each
one of these domains, we ran IMM 32 times, discarding the
best and worst results, and scaled the RMSE so that it is
always 1 for PHA. The average results are summarized in
Tables 1 and 2. Selected IMM performance plots using PHA
and JMLS models are shown for both domains in Figure 5.

The plots in Figures 5a-5c and the results in Table 1
show a significant performance improvement for IMM when
performing target tracking with a PHA model. The exces-
sive “inertia” associated with self-transition probabilities in
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(a) Lawnmower: filtered position (PHA). (b) Lawnmower: filtered velocity (JMLS). (c) Lawnmower: filtered velocity (PHA).

(d) Random: filtered position (PHA). (e) Random: filtered velocity (JMLS). (f) Random: filtered velocity (PHA).

Figure 5: Typical IMM filtering performance on target-tracking domains for different types of hybrid models.

Pos. RMSE Vel. RMSE % Misclas. modes
JMLS 2.284 14.44 53.93
PHA 1 1 3.33

Table 1: Average IMM performance in lawnmower domain.

Pos. RMSE Vel. RMSE % Misclas. modes
JMLS 0.985 1.002 58.91
PHA 1 1 63.2

Table 2: Average IMM performance in random trajectory
domain.

the JMLS model prevented IMM to correctly detect mode
changes in the lawnmower pattern, causing it to poorly
track the evolution of the airplane’s velocity. Tracking with
the PHA model, on the other hand, did not have this is-
sue, since the PHA model automatically adjusts discrete
mode transition probabilities according to the airplane’s
two-dimensional positional and velocity vector. Another ev-
idence of the inability of the JMLS model to adapt to this
fast-changing domain can be seen in the significant fraction
of misclassified discrete modes across the trajectory.

Our second testing domain, target tracking with a Marko-
vian trajectory, was used in order to provide a fair compari-
son of the two models in a situation where JMLS is expected
to perform well. Also, PHA is a strict superset of JMLS,
so we would expect the performance of IMM with a PHA
model to be basically the same as with a JMLS one. The av-
erage results in Table 2 confirm our expectations and show

that, when there is no structure relating the discrete mode
transitions to the system’s discrete state, PHA and JMLS
perform equally well. In fact, one can also notice that they
perform equally poorly in terms of diagnosing the true dis-
crete state of the system due to the probability “inertia” is-
sue previously mentioned for the lawnmower domain. This
is confirmed by the fact that, if we replace all discrete mode
transition probabilities by uniform distributions (probabil-
ity 1/3 of transitioning from any mode to any other mode),
IMM is capable of reconstructing the correct mode sequence
for both models.

6 Conclusions
This work presented a novel method of learning PHA mod-
els that takes determination of guard conditions explicitly
into account. We frame the parameter estimation problem
as an instance of maximum likelihood optimization and de-
velop the equations for a novel variant of EM that is capable
of learning PHA models from experimental data with hid-
den mode transitions. Our numerical results show that not
only our algorithms is capable of correctly extracting PHA
model parameters from unlabeled data, but also that PHA
models can boost the performance of hybrid state estimators
by incorporating continuous state information into stochas-
tic discrete mode transition models.
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