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Abstract
Sampling repeated clinical laboratory tests with appro-
priate timing is challenging because the latent physio-
logic function being sampled is in general nonstation-
ary. When ordering repeated tests, clinicians adopt vari-
ous simple strategies that may or may not be well suited
to the behavior of the function. Previous research on this
topic has been primarily focused on cost-driven assess-
ments of oversampling. But for monitoring physiologic
state or for retrospective analysis, undersampling can be
much more problematic than oversampling. In this pa-
per we analyze hundreds of observation sequences of
four different clinical laboratory tests to provide princi-
pled, data-driven estimates of undersampling and over-
sampling, and to assess whether the sampling adapts to
changing volatility of the latent function. To do this,
we developed a new method for fitting a Gaussian pro-
cess to samples of a nonstationary latent function. Our
method includes an explicit estimate of the latent func-
tion’s volatility over time, which is deterministically re-
lated to its nonstationarity. We find on average that the
degree of undersampling is up to an order of magnitude
greater than oversampling, and that only a small minor-
ity are sampled with an adaptive strategy.

Introduction
Appropriately timing repeated observations of a clinical lab-
oratory test is challenging because the physiologic function
being sampled is in general nonstationary. The nonstationar-
ity implies that optimally timing the next sample can depend
on understanding the function’s recent past and guessing at
its near future. Current clinical testing practice is often based
on simple rules of thumb, with details that vary by clinician.
Generally, if a doctor wants to monitor the value of a test
over time, he will repeat the test at a standard interval felt ap-
propriate for that particular test. If the previous observation
was outside the reference range for healthy patients, or if the
doctor has reason to believe that the physiologic parameter
under test is likely to be unstable (because, for example, the
patient has started a particular medication), then the doctor
may schedule the test at a shorter interval.

Historically, research into repeat testing strategies has em-
phasized the cost-driven question of whether we are over-
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sampling the physiologic function (van Walraven and Ray-
mond 2003; Bates et al. 1998). But if the goal of testing
is to monitor a patient’s physiologic state, then undersam-
pling can cause us to miss significant changes in that state,
with subsequent delays in appropriate treatment and adverse
clinical outcomes.

Moreover, understanding implicit sampling strategies is
important in retrospective analysis, where the goal is to in-
vestigate patterns residing in data collected over the course
of routine clinical care. For example, if we want to retro-
spectively model a physiologic parameter as a continuous
function over time, the accuracy of our model will depend
on how we handle any potential dependence between the
samples’ timing and the parameter that they are monitoring.

In this paper we investigate the sampling strategies im-
plicit in sequences of laboratory test measurements, as well
as the effect that those strategies have on the accuracy of our
inferred models. To do this, we introduce a new method for
inferring a nonstationary Gaussian process from a finite set
of observations by explicitly modeling the volatility of the
function over time as a step in the inference. The volatility
function is used to create a warping that transforms the ob-
servations into a space in which the latent physiologic func-
tion is stationary and can be modeled with standard methods.

We define volatility more precisely below, but it can be
thought of as the rate at which a measurement made at a par-
ticular time goes stale. A high volatility implies a high infor-
mation rate provided by the latent physiologic function, and
we will use volatility and information rate interchangably.

We validate our methods against synthetic data and
demonstrate the accuracy and limitations of recovering both
the latent physiologic function and the volatility function un-
der various sampling strategies. We then introduce the use of
volatility functions to retrospectively evaluate the sampling
strategies of hundreds of real sequences from four common
laboratory tests against the actual behavior of the clinical
variables being observed.

Nonstationary Gaussian Process Regression
Gaussian process regression is a Bayesian nonparametric
method that models a set of time-dependent observations
y = {y1, . . . , yn} made at times t = {t1, . . . , tn} by infer-
ring a distribution P(f(t)|y, t) over all functions y = f(t)
that could have produced the observations. The topic is a
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large one for which extensive tutorials are available (Ras-
mussen and Williams 2006).

To construct the model, we place a Gaussian process prior
P(f(t)|θ) = GP(f(t);M(t), C(t, t′; θ)) over all possible
functions f(t), where M(t) is the prior mean function (that
for convenience we will take to be zero) and C(t, t′; θ) is a
covariance function with hyperparameters θ that defines the
dependence between any two values f(t) and f(t′).

The predictive distribution of an unobserved value y∗ =
f(t∗) given observations {y, t} and hyperparameters θ is

P(f(t∗) = y∗|y, t, θ) = N (y∗; f̄(t),V[f(t)]),

where

f̄(t∗) = k>K−1y, (1)

V[f(t∗)] = κ− k>K−1k, (2)

K is a matrix with elementsKij = C(ti, tj ; θ), k is a vector
with elements ki = C(ti, t

∗; θ), and κ = C(t∗, t∗; θ) is a
scalar. Here, f̄(t∗) is the predictive mean, and V[f(t∗)] the
predictive variance.

Applications of Gaussian processes commonly use sta-
tionary covariance functions that depend only on the differ-
ence t− t′. A ubiquitous example is the squared exponential
covariance function

CSE(t, t′;σ◦, τ◦) = σ2
◦ exp

[
− (t− t′)2

τ2
◦

]
. (3)

These kinds of covariance functions are appealing because
they encode the notion that observations made close in time
should be close in value. Most such functions have (at least)
a length-scale hyperparameter τ◦ that encodes the meaning
of close in time, and an overall signal variance hyperparam-
eter σ2

◦ that encodes the meaning of close in value.
However, using a constant value τ◦ does not provide use-

ful results for our data because the volatility of clinical lab-
oratory values can vary over time by as much as an order
of magnitude. We would like to account for this variable
volatility by modeling our data using a time-varying length
scale τ(t), or equivalently a time-varying volatility function
v(t) = 1/τ(t).

Our method infers a posterior distribution over functions
v(t|y, t) simultaneously with the distribution over functions
f(t|y, t). It operates by warping the observation times ti
into a new space xi = w(ti) such that yi are well mod-
eled by g(xi) ∼ GP(0, C(x, x′; θ)) for which the covari-
ance functionC is stationary and therefore amenable to stan-
dard Gaussian process inference with a fixed τ◦. The overall
regression function then becomes f(t) = g(w(t)).

The warp function w(t) =
∫ t

0
v(u) du is the integrated

volatility function, which we model as a log Gaussian pro-
cess, or ln v(t) ∼ GP(0, C(t, t′; θ)). The full generative
model is as follows:

1. θv = {τv, σv, . . . } ∼ P(θv)
θg = {τg = 1, σg = 1, . . . } ∼ P(θg)

2. ln v(t) ∼ GP(0, C(t, t′; θv))

3. w(t) =
∫ t

0
v(u) du

4. g(x) ∼ GP(0, C(x, x′; θg))

5. f(t) = g(w(t))

(We constrain σg = 1, τg = 1 to avoid an identifiability
problem.)

Inference
Given observations y and t, we infer the marginal likelihood
P(y|t), marginalized over all values of the warped locations
x and hyperparameter settings θ = {θv, θg} (Algorithm 1).
As part of this inference we get a posterior distribution over
volatility functions v(t).

The marginal likelihood is

P(y|t) =

∫
θ

∫
x

P(y,x|t, θ)P(θ) dx dθ (4)

where

P(y,x|t, θ) = P(y|x, θg)P(x|t, θv) (5)

because y is independent of t given x. Each of the two con-
ditional probabilities in (5) is a standard marginal likelihood
of a Gaussian process, which has the analytic form

logP(y|x, θ) = −1

2
y>K−1y − 1

2
log|K| − n

2
log 2π.

We compute the double integral in (4) using MCMC draws
for θ and ln v(t) (specifically, we use the method of slice
sampling with surrogate data (Murray and Adams 2010)).

Lastly, we add a regularization term R[v(t)] to produce
the final log likelihood L for our MCMC iterations

L = logP(y|x, θg) + logP(x|t, θv) + bR[v(t)], (6)

where

R[v(t)] =
1

n

∫ tmax

0

v(u) du =
1

n
w(tmax),

and regularization weight b is tuned using human-guided
search.

Algorithm 1 MCMC Update
Input: Observations y and t, current volatility function v,

parameters θ, and log likelihood L
Output: Updated latent functions v and g, updated values

for x, θ, L.
1: Update ln v(t), θv,L, using slice sampling under (6).
2: w(t)←

∫ t
0
v(u) du (computed numerically).

3: xi ← w(ti).
4: Compute ḡ(x∗) with (1) and V[g(x∗)] with (2), using
θg (which may be updated here if needed).

5: Recompute L using (6).

Sampling Strategy Analysis
In addition to using Algorithm 1 to infer the latent func-
tions f(t) and v(t), we also use a modified version of it to
infer the sampling rate function λ(t), which models the de-
cision to sample a clinical variable at time ti. The function
λ(t) is directly analgous to v(t) but is inferred using only
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Figure 1: Results of our inference algorithm applied to our highly nonstationary synthetic dataset sampled under two different
strategies. A regular sampling strategy (194 samples) produces general oversampling with periods of undersampling (bottom
left, intervals around t = 70 and t = 140). An adaptive sampling strategy using approximately the same number of samples
(190 samples) distributes them so as to be approximately 2x oversampled everywhere (bottom right). Adaptive sampling allows
for much more accurate inference of both the nonstationary latent function (top two panels) and its volatility curve (bottom
panel). Thin lines: true curves, thick lines: inferred curves, shaded regions: 95% confidence intervals. Ticks at the bottom of the
lowest panel are observation times.

the sample times t. To estimate λ(t) we change Algorithm 1
Step 4 to fit the warped times with a stationary gamma pro-
cess instead of a stationary Gaussian process, with appropri-
ate modifications to the likelihood function (Lasko 2014).
A gamma process models the observation times t without
regard to the values y. For this inference task we used the
MATLAB code1 accompanying (Lasko 2014); for brevity,
we refer readers to that work for further details.

The sampling rate λi = λ(ti) estimates how often a vari-
able is being measured around time ti, and the information
rate vi = v(ti) estimates how quickly the variable is chang-
ing during the same period (Figure 1). We can visualize them
together in rate space by plotting estimates of the sampling
rate λi vs. the information rate vi for each ti (Figure 2). The
rate space plot allows us to distinguish the various sampling
strategies described below.

We arbitrarily define λi = vi as the ideal sampling rate
for a given volatility, indicated by a diagonal line on the rate
space plot. Sampling below this rate (points below the line)
increases the uncertainty between observations, and sam-
pling above it (points above the line) decreases the uncer-
tainty. The true ideal in practice would be determined by the
cost of making observations vs. the cost of uncertainty be-
tween measurements.

1github.com/ComputationalMedicineLab/egpmrp

For a given set of observations, the degree of oversam-
pling can be reliably estimated, but the degree of undersam-
pling is less precise, because the undersampling itself ham-
pers our ability to estimate the true information rate. For ex-
ample, aliasing effects can degrade the volatility estimate,
with the inferred function appearing to vary slower than it
actually does (Figure 1, top left panel), although the confi-
dence intervals usually do still capture the truth.

Adaptive sampling is the strategy of making observations
at a rate proportional to the volatility of the variable. It
appears in rate space as points distributed along the line
λi = mvi, for some value of m (Figure 2, left two pan-
els). For example, using m = 1 is ideal adaptive sampling
and m > 1 is adaptive oversampling.

Perfectly adaptive sampling chooses samples t such that
their warped counterparts x = w(t) are equally spaced.
If we approximate x and t as discrete and mapped one-to-
one via w, then x is an optimal (maximum entropy) sam-
pling of the stationary g(x) given n points (Shewry and
Wynn 1987). And because the distributions P(f(t∗) =
y∗|y, t, θ) = P(g(x∗) = y∗|y,x, θ) are identical at any
point x∗ = w(t∗), then the observations t are an optimal
sampling of the physiologic function f(t).

Regular sampling is the strategy of making observations
at regular intervals, independent of the volatility of the vari-
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Figure 2: Sampling strategy appearance in rate space. Adaptive sampling at high and ideal rates are displayed in the left two
panels, regular sampling at high and moderate rates in the right two. Points indicate rate values (vi, λi) for each actual sample,
with ellipses indicating 95% confidence intervals. Diagonal line indicates ideal sampling. Rate angle φ is shown for one point
in the third panel. The first and fourth panels are for the same data displayed in Figure 1.

able. It appears in rate space as points distributed along a
horizontal line (Figure 2, right two panels). Regular sam-
pling can be both wasteful (by oversampling during periods
of low volatility) and insufficient (by undersampling during
periods of high volatility).

Random sampling is the strategy of making observations
at times drawn independently from some probability den-
sity that does not depend on the variable being observed.
In its pure form, it is not done deliberately in clinical prac-
tice, but it is a significant unintentional factor in most real-
world sequences. It appears in rate space as jitter over what
would otherwise be a smooth progression of points. While
true random sampling may be impractical for clinical labo-
ratory testing, it has intriguing possibilities for sampling ef-
ficiency (Candès and Wakin 2008), which we do not further
explore here.

Summary Measures
In our experiments we used the following heuristic measures
to quantify oversampling, undersampling, and apdativity in
aggregate.

We define the Sample ExcessE and the analagous Sample
Deficit D as

E =

∫
t

max[λ(t)− v(t), 0] dt, (7)

D =

∫
t

max[v(t)− λ(t), 0] dt. (8)

The Sample ExcessE is the expected number of superfluous
samples made when a variable with information rate v(t) is
observed using a sampling rate λ(t). Using the total obser-
vation time ∆t, we can express normalized measures Excess
Rate ER = E 365

∆t , with units of superfluous samples per
year, and Excess Fraction EF = E/n giving the fraction of
actual samples expected to be superfluous. For deficits, the
analagous Deficit RateDR gives the number of missing sam-
ples per year, and the Deficit Fraction DF gives the number
of missing samples per actual sample. A sequence can have
a nonzero number of both excess samples made during times

of oversampling, and deficit samples missed during times of
undersampling.

The Rate Angle

φ(t) = tan−1(λ(t)/v(t)) (9)

gives the angle of the point at time t in rate space (Figure 2).
The ideal sampling rate λ(t) = v(t) produces φ(t) = π/4;
extreme oversampling produces φ(t) = π/2, and extreme
undersampling produces φ(t) = 0.

The Adaptivity

A(t) =
1

n

∑
i

sin2(2φ(ti)) (10)

is an aggregate measure of how closely the sampling rate
adapts to the apparent information rate. A sequence in which
all points are sampled near the ideal rate has an adaptivity
A ≈ 1, extreme under- or oversampling produces A ≈ 0,
and rates off by a factor of two in either direction will pro-
duce A ≈ 0.5. Regular sampling will produce varying val-
ues for A, but will generally be A < 0.5.

Lastly, the Undersampling Time (Fraction)

UF =
1

∆t

∫
t

I(λ(t) < v(t)) dt, (11)

where I(·) is the indicator function, is the fraction of time
for which the variable is undersampled.

Related Work
There is very little prior work investigating sampling strate-
gies in clinical medicine. Van Walraven and Raymond
(2003) found between 49 and 153 redundant samples per
100 persons per year over a handful of tests types, using a
fixed time interval for each type to determine redundancy
of a repeated sample. Using similar methods, Bates et al.
(1998) found on average 8.6% of repeated samples of 10
different tests to be redundant.

Investigating the use of repeated samples in retrospec-
tive research, Albers (2014) studied the use of sample time,
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Figure 3: Sampling behavior experienced by the four tests. See text for metric semantics. Lines to the right are better for
Adaptivity, lines to the left are better for other metrics. CDF: Cumulative distribution function, UA: Uric Acid, Cr: Creatinine,
TSH: Thyroid Stimulating Hormone, LDL: Low Density Lipoprotein Cholesterol.

which is equivalent to a fixed warping such that the obser-
vations are equally spaced, and Lasko (2013) constructed a
warping based on the inter-sample intervals in the original
space, with a parameter that globally tunes the warping to a
point between no warping and sample time. Our method is a
more principled approach that produces a dynamic warping
and a data-driven assessment of sampling strategies.

There is more prior work on methods to fit a Gaussian pro-
cess to a nonstationary function (Rasmussen and Williams
2006). An early approach (Sampson and Guttorp 1992)
warped two-dimentional space based on known covariances
between repeated measurements of the points in that space,
rather than learning the covariances from a single obser-
vation as we have done. Pfingsten, Kuss, and Rasmussen
(2006) proposed a clever mixture model. Adams and Stegle
(2008) used a product of Gaussian processes to model a non-
stationary function, equivalent to inferring a time-varying
σ(t). Several others have modeled τ(t) in conjunction with
a specific covariance function that averages the length scales
at the two points under consideration (Gibbs 1997; Paciorek
and Schervish 2004). Unfortunately, that covariance func-
tion has counterintuitive properties that render the length
scale model unsuitable for investigating sampling strategies
(although still useful for modeling nonstationary functions
for which the volatility function is irrelevant). Finally, the
deep Gaussian processes method (Damianou and Lawrence
2013) constructs multiple successive warping layers, but it
is not obvious how to constrain them to our requirement of
monotonicity.

Experiments
We ran a number of experiments on sequences of both syn-
thetic and real data. For each sequence {y, t}, we inferred
distributions over f(t), g(x), and v(t) using Algorithm 1
under 1000 burn-in and 1000 sampling iterations. We sepa-
rately inferred a distribution over λ(t) under the same set-

tings. Convergence of both runs was usually within 500 iter-
ations.

For all experiments, the specific covariance function we
used in Algorithm 1 Step 4 was the composite function

C(x, x′; a, σn) = CSE(x, x′;σg = 1, τg = 1)

+CSE(x, x′;σ = a, τ = 10) + σnδ(x, x),

where a and σn are learned hyperparameters. The second
term on the right-hand side models longer time-scale, less
dominant variations in f , and the third term models noise in
the measurements.

Synthetic Data
We evaluated our algorithm using a synthetic dataset that
mimics our clinical data. We created the latent function f(t)
and volatility function v(t) using the generative model de-
scribed above, and sampled f(t) using both adaptive (xi ∼
Poisson(α)) and regular (ti ∼ Poisson(α)) sampling strate-
gies at various levels of overall sampling rate. Setting α = 1
corresponds to ideal adaptive and moderate regular sam-
pling, and increasing α increases the sampling rate.

We computed the mean squared error (MSE) for our al-
gorithm recovering f(t) and v(t) at 200 equally spaced
points along the curves, and computed all summary mea-
sures (Equations 7 - 10) averaged over all MCMC draws.

We found that for a given number of samples, adaptive
sampling allowed for about a 2x more accurate estimate of
f(t) and up to an order of magnitude better estimate of v(t)
(Table 1 and Figure 1). The summary measures behave as
expected for these known strategies, and the rate space plots
clearly differentiate between them (Figure 2).

Real Data
We next applied these methods to analyze sampling strate-
gies for four common clinical laboratory tests that we ex-
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Strategy n MSE v(t) MSE f(t) EF DF ER DR UF A
Adaptive high 190 0.012 0.040 0.61 0.00 213 0.7 0.09 0.49
Adaptive ideal 81 0.024 0.130 0.20 0.12 29.3 17.6 0.47 0.84
Adaptive low 36 0.094 0.287 0.09 1.65 5.7 108 0.79 0.58
Regular high 779 0.070 0.013 0.91 0.00 1294 0.0 0.00 0.08
Regular moderate 194 0.180 0.096 0.70 0.27 248 97.2 0.16 0.20
Regular low 56 0.266 0.854 0.62 0.89 63.3 90.8 0.29 0.24

Table 1: Inference accuracy and summary measures under various sampling strategies. Accuracy is higher for adaptive strategies
given a similar sample size. Summary measures behave as expected. Selected datasets are visualized in detail in Figures 1 and
2.

n̄ EF DF ER DR UF A
UA 21.2 0.18 1.88 1.17 17.0 0.68 0.49
Cr 26.4 0.24 2.37 1.11 18.2 0.56 0.34
TSH 15.2 0.36 1.57 0.56 2.7 0.51 0.39
LDL 15.6 0.30 1.88 0.45 2.9 0.56 0.39

Table 2: Overall sampling behavior for real data. Median
values for the densities in Figure 3 are given. All tests are
undersampled (EF , ER) to a much greater degree than they
are oversampled (DF , DR), spending more than half their
time in an undersampled state (UF ). None experience pre-
dominantly adaptive sampling (A near 1.0), although Uric
Acid does moreso than the others. n̄: Mean number of sam-
ples per sequence. See text for details of other measures.

pected to display a range of strategies: Uric Acid (UA), Thy-
roid Stimulating Hormone (TSH), Creatinine (Cr), and LDL
Cholesterol (LDL). Sequences were typically several (up to
15) years in duration.

For this experiment we used patient records extracted
(with IRB approval) from the deidentified mirror of our in-
stitution’s electronic medical record. For each test we se-
lected 100 patient records uniformly at random from all pa-
tients with at least 10 existing samples for the test, and col-
lected the complete sample sequence from each record. We
preprocessed each sequence by removing a trendline fit by
linear regression and then standardizing to unit standard de-
viation. After inference, we computed the summary mea-
sures for each test, averaged over all MCMC draws and all
100 sequences of that test.

We found adaptive sampling to be an uncommon strat-
egy for all four tests, and on average the relative fraction of
missed samples DF is up to an order of magnitude greater
than the fraction of redundant samples EF (Figure 3 and
Table 2). There was an even greater imbalance for the rate
of missed DR vs. extra ER samples per day of observation.
TSH and LDL had fewer samples on average than Uric Acid
and Creatinine, but they were still up to 50% more redun-
dant. Uric Acid was the most adaptively sampled test, with
about 50% of sequences having adaptivity above 0.5, and it
had the lowest Excess Fraction (0.18).

Discussion
We have introduced a new method for fitting a Gaussian
process to data produced by a nonstationary latent function
f(t). Our method explicitly estimates the information rate or

volatility v(t) of the function in order to represent its non-
stationarity. We used this method in combination with our
related existing method that infers nonstationary sampling
rates λ(t), to compare the actual sampling of clinical lab-
oratory tests against their theoretically optimal sampling as
judged in retrospect by the volatility of the data.

To our knowledge this is the first study to compare in-
formation rates to sampling rates in this way, and to eva-
lute clinical laboratory sampling strategies using principled,
data-driven methods. We found that while clinicans occa-
sionally employ a strategy close to optimal adaptive sam-
pling, in most cases they do not. This may be due to the fact
that actually executing adaptive sampling in practice is diffi-
cult, as well as to other valid considerations such as schedul-
ing convenience or greater clinical concern with abnormal
values than with normal ones.

Under our mathematical criteria, we found a slight pref-
erence for undersampling, but when present it is up to an
order of magnitude greater effect than oversampling; clini-
cians undersampled on average by about 190 percent (DF )
as judged by the variable’s information rate, but oversam-
pled only by about 27 percent (EF ). One limitation of our
study is that some patients occasionally seek care outside
our system, and if their records are included in our study
then our results would be biased toward undersampling.

These numbers rely on our standard that the optimal sam-
pling is to make the observations at exactly the rate at which
they go stale, or λ(t) = v(t). This standard is defensible but
arbitrary. In reality, the optimal balance may take the form
λ(t) = mv(t), where m balances the immediate financial
cost of oversampling against the longer-term costs to clin-
ical decision making, health maintenance, and research of
being less able to accurately estimate the patient’s physio-
logic state between measurements.

This work focused on retrospective analysis of existing
data. It is an exciting direction of future work to be able to
give prospective guidance on when to sample next, given
past observations.
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