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Abstract

Sales pipeline win-propensity prediction is fundamen-
tal to effective sales management. In contrast to us-
ing subjective human rating, we propose a mod-
ern machine learning paradigm to estimate the win-
propensity of sales leads over time. A profile-specific
two-dimensional Hawkes processes model is developed
to capture the influence from seller’s activities on their
leads to the win outcome, coupled with lead’s person-
alized profiles. It is motivated by two observations: i)
sellers tend to frequently focus their selling activities
and efforts on a few leads during a relatively short time.
This is evidenced and reflected by their concentrated in-
teractions with the pipeline, including login, browsing
and updating the sales leads which are logged by the
system; ii) the pending opportunity is prone to reach its
win outcome shortly after such temporally concentrated
interactions. Our model is deployed and in continual use
to a large, global, B2B multinational technology enter-
prize (Fortune 500) with a case study. Due to the gen-
erality and flexibility of the model, it also enjoys the
potential applicability to other real-world problems.

Introduction
Business-to-business (B2B) selling has evolved consider-
ably over the last five decades from the in-person pitches
depicted in the television series, to email and user profile-
based deals, to customer relationship management (CRM)
systems (Linoff and Berry 2011), and to the emerging trend
of automatic sales analytics that allows the optimization of
sales processes (Kawas et al. 2013).

Therefore, companies are adopting more systematic and
digitalized sales management systems to support the sales
process. The common pipeline operation model (Kawas et
al. 2013) can be described as follows: As new sales leads
are identified, the seller enters these leads into the sales op-
portunity pipeline management system. These leads are fur-
ther evaluated and some are qualified into opportunities. A
sales opportunity consists of a set of one or more products
or services that the salesperson is attempting to convert into
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an actual client purchase. All open opportunities are tracked,
ideally culminating in a “won” deal that generates revenue.

By collecting the up-to-date information about the
pipeline, analytics approaches can be used to streamline the
sales pipeline management. From the management perspec-
tive, the resource owner can reallocate their resources based
on the pipeline quality assessment in comparison with their
sales target or quota, which in turn, can also be dynamically
adjusted based on the updated assessment result. From the
individual salesperson perspective, assessment can further
provide actionable advise to field sellers. By predictively
scoring the quality of each lead at hand, it allows field sell-
ers to better prioritize their personal resources and actions,
in face of a relatively large number of ongoing leads within a
tight period. These two situations are especially pronounced
for companies having large and global client-facing sales
teams dealing with increasingly complex portfolios of ever-
changing products and services.

The fundamental building block to pipeline quality as-
sessment is the lead-level win-propensity scorer. In fact,
machine learning currently has not been widely applied to
the B2B sales pipeline environment, or little technical work
have been released from the business side. In practice, many
internal pipeline systems, including the company that will
be studied in our case study, typically ask the field seller to
enter his subjective rating towards each of the leads that he
owns. Then these fine-grained evaluations would be aggre-
gated by accompanying with other factors to facilitate the
decision making at different management levels.

However, such a subjective approach would unavoidably
introduce noise. From our observation to the referred com-
pany, on one hand, many sellers intentionally manipulate the
ratings in two ways: i) some leads are underrated by the
seller in order to avoid the attention and competition from
other sellers who may also have the channel to touch the
clients behind the leads; ii) in contrast, some leads are over-
rated because the sellers suffer pressure from their leaders,
who set different subtle performance metrics in a process
oriented management fashion, not only for the final won rev-
enue. Another drawback is different sellers may have biased
personal expectations to similar leads. This fact is also com-
mon for human rating in many information retrieval applica-
tions, and is typically solved by asking pairwise comparison
instead of entering a global score. However, such interfaces
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Figure 1: Business scenario illustration for the proposed
scoring model. Win propensity for the next two weeks is
issued on a weekly basis within one quarter, until week 11.
Then new weekly scoring procedure starts as new quarter
begins, by a pipeline cleaning step.

are not available to current pipeline systems.
From the domain application perspective, there is an ex-

tensive literature (Linoff and Berry 2011) in the field of mar-
keting science in which various selling strategies are char-
acterized and optimized, but the focus is on the business-
to-consumer (B2C) domain rather than business-to-business
(B2B). In fact, quantitative sales analytics in the B2B sell-
ing has recently been an emerging and active topic in both
industry and research community (Lawrence et al. 2010;
Varshney and Singh 2013). However, the above analysis is
mostly performed in a retrospective data mining and knowl-
edge discovery fashion. Specifically, (Lawrence et al. 2010)
describes two practical solutions deployed in IBM tailored
for identifying whitespace clients, i.e. OnTARGET and Mar-
ket Alignment Program, by analyzing the data from external
market. (Kawas et al. 2013) addresses the problem of effi-
cient sales resource optimization in two steps. The first step
involves using training samples of historically won sales op-
portunities, to estimate the sales response function between
the salesforce’s full-time equivalent (FTE) effort and the ex-
pected revenue or profit (Varshney and Singh 2013); The
second step involves finding the optimal salesforce alloca-
tion subject to business constraints. To our surprise, few
work has been done or released for involving predictive
modeling in sales pipeline analytics, especially estimating
the lead-wise win propensity.

This paper attempts to score the lead-level win-propensity
for a given forward time window, by using the static pro-
files and dynamic clues from the sales pipeline. To this end,
we propose a profile-specific two-dimensional Hawkes pro-
cesses model tailored to the problem of estimating the lead-
level win-propensity within a forward time window. Our
model is able to incorporate the static profile features such
as lead revenue size, product offering, client industry etc.,
as well as to capture the the dynamic influence from seller
to lead, which is observed from their interactions activi-
ties including browsing, updating the client-visiting log. The
model is implemented and deployed to a real sales pipeline
business environment in a multinational Fortune 500 tech-
nology company across different products lines, and gener-
ated direct revenue impact which is estimated up to $43.2
million via internal evaluation in year 2013. The research
team received the Research Accomplishment Award in year
2013 due to the recognition from the business side.

Figure 2: A seller-lead interaction event sequence ending by
a win event. The interaction exhibits temporal clustering pat-
terns and is won after a short period.

Learning the Proposed Model
We specify our problem and practice under the referred com-
pany, whereby the goal is to weekly issue and update the win
likelihood of each lead, within the time window of the next
two weeks since current week. In particular, the life-cycle
of a sales lead is regarded as confined in a business cycle,
which is one quarter in this paper. During one quarter (13
weeks), the lead is monitored and scored by the model until
week 11. Those “non-won” leads in the end of current quar-
ter would be treated in two ways: some of them are identified
as garbage leads that would be removed in the beginning of
next quarter; the rest would be refreshed as new leads to-
gether with those newly created ones in the next quarter.

Motivation and Problem Formulation
For this weekly updated scoring model, the input features
on one hand consist of the static profile information such
as deal size, geography, sector, product and other attributes
as exemplified in Table 1. On the other hand, there is an
additional dynamic clue which is in the form of a seller-lead
interaction event sequence associated with each lead within
a censored time window. This time window is usually set to
the end of a recent previous quarter when building a training
dataset, and up to now when performing model scoring on
testing data. We would elaborate in more details for how to
build the training and testing datasets in the rest of the paper.

There are several ways to transform the referred business
problem into a machine learning problem. One straightfor-
ward way is using supervised binary classification. Given
one quarter historical weekly snapshot data, one can de-
fine the labeled training dataset by lead profile features
f1, f2, . . . , f11 including its past interaction by sellers,
where the subscript denotes week number, and the cor-
responding “win” or “no-win” outcome within the corre-
sponding two weeks ahead: o34, o45, . . . , o1213. Then Logis-
tic classification model or other models can be applied.

This approach suffers several limitations: i) it truncates
the observation window to an ad-hoc period which induces
the label; ii) the binary classifier is not a dynamic model, and
unable to capture the dynamics of the lead life-cycle flexi-
bly. To improve this baseline approach, one way is to use
a censored classification model e.g. (Shivaswamy, Chu, and
Jansche 2007), or survival analysis model like Cox model
(Cox and Oakes 1984) under the point process framework.

In this paper, we are motivated by the specific observa-
tion that a more indicative pattern comes from the interac-
tions between sales and pipeline, where the interactions re-
fer to different activities logged by the pipeline system when
the seller visits the pipeline web portal, i.e. which lead he
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Table 1: Exemplary features and data types of sales leads.

Profile type remark or examples
geography categorical Greater China, Southeast Asia
deal size categorical expected deal size in USD
sector categorical general business, industry clients
industry categorical health-care, energy and utility
product categorical Sub-brands of the main brand

is browsing/updating. More concretely, we find sellers usu-
ally focus on one or few certain leads thus (s)he may ac-
tively interact with them frequently within a short time pe-
riod. Furthermore, as shown in Fig.2, such temporal clus-
tering activities would also trigger “win” shortly. Thus it is
appealing to suppose the interactions are prone to occur re-
peatedly shortly after a recent interaction event, so for the
“win” event. Based on the above observations, it is desir-
able to capture the dynamic pattern of sales leads over time,
preferably by a parsimonious parametric model to make the
modeling interpretable and efficient. Note the conventional
Cox model or its time-varying variants does not incorporate
such recurrence pattern in the model, thus lacks of the flexi-
bility in coping with such interaction event sequences.

Seller-pipeline Interaction Modeling
In the following, we will show how to model the win out-
come’s dependency on the interaction sequences using a
two-dimensional point process model, see (Daley and Vere-
Jones 1988) and the references therein. Specifically, we
adopt the Hawkes process model (Hawkes 1971) to cap-
ture the temporal clustering dynamics. We will start with
a brief description of one-dimensional Hawkes processes,
and then extend it to the multi-dimensional case. In partic-
ular, our main work lies in proposing a profile-specific two-
dimensional Hawkes processes model and a tailored alter-
nating optimization algorithm to learn the model parameters.
For mathematical tractability, the exponential kernel is used
to model our seller-lead interaction modeling problem.

For the general Hawkes processes model, in its basic form
as a one-dimensional point process, its conditional intensity
can be expressed as (Hawkes 1971): λ = µ+a

∑
i:ti<t

g(t−
ti), where µ is the base intensity and ti the time of events in
the process before time t. g(t) is the kernel to mimic the
influence from the previous events. Given an event sequence
{ti}ni=1 observed in [0,T ], its log-likelihood estimator is

L = log

∏n
i=1 λ(ti)

exp
(
−
∫ T
0
λ(s)ds

) =

n∑
i=1

log λ(ti)−
∫ T

0

λ(t)dt

Extending the above equation to the U -dimension case,
a multi-dimensional Hawkes process is defined by a U -
dimensional point process, and its conditional intensity for
the u-th dimension is (Zhou, Zha, and Song 2013b)

λu(t) = µu +
∑
i:ti<t

auuiguui(t− ti)

where λ consists of a base intensity term µu and an accu-
mulative exciting term

∑
i:ti<t

auuiguui(t−ti). It can be in-
terpreted as the instant probabilities of point occurrence, de-
pending on the previous events across different dimensions.

Now we show how to formulate the problem into a spe-
cific machine learning paradigm. Suppose we have m sam-
ples, i.e. m independent event sequences {c1, ..., cm} from
the multi-dimensional Hawkes process, where each sample,
in the form of cs={(tsi ,usi )}(i=1,...,ns), is an event sequence
of length ns, occurring during the observation time win-
dow [0, Ts]. Each pair corresponds to an event occurring
by dimension usi at time tsi . We use the following formula
for the log-likelihood of general multi-dimensional Hawkes
processes whose parameters can be estimated via maximum
likelihood estimation (Rubin 1972; Ozaki 1979)

L =

m∑
s=1

(
ns∑
i=1

log λusi (t
s
i )−

U∑
u=1

∫ Ts

0

λu(t)dt

)

By specifying the multi-dimensional Hawkes model for
the intensity function, we obtain the following objective
function (Liniger 2009) where Guusj (t) =

∫ t
0
guusj (t)dt.

L(µ, a) =
m∑
s=1

(
ns∑
i=1

log(µusi (t
s
i ) +

∑
tsj<t

s
i

ausiusj gusiusj (t
s
i − tsj))

−Ts
U∑
u=1

µu −
U∑
u=1

ns∑
j=1

auusjGuusj (Ts − t
s
j)

)
Here we collect the parameters into vector-matrix formats,
µ = (µu) for base intensity, and a = (auu′) for the mutually
exciting coefficients for dimension u affected by u′.

Learning Profile-specific Hawkes Processes
In this paper, we have U=2 processes to model: u = 1: in-
teraction sequences and u = 2: the outcome event. Under
this context, the base term incorporates the inherent interac-
tion intention of salespeople to the leads - promising leads
typically receive more attention from sales, and also better
chance to win even no sellers’ interaction is observed. The
exciting term is used to properly account for the contribu-
tions from much earlier interaction event which may trig-
ger subsequent interaction events that eventually lead to win.
Specifically, the exciting effects are modeled to be decaying
over time as gij(t− t0) = wije

−wij(t−t0).
Furthermore, our problem at hand bears several more spe-

cific characters to explore: i) the mutual influence is only
one-way from the interaction dimension to outcome dimen-
sion rather than two-way, thus a12 = 0 and w12 = 0; ii)
the self exciting phenomenon only exits for the interaction
events since the outcome event is one-off, thus a22 = 0
and w22 = 0; iii) for the given lead s, the base inten-
sity is assumed to be associated with its intrinsic attributes
xs = [xs1, x

s
2, . . . , x

s
K ]T including deal size, channel, age,

sales stage and other related profiles, which can be encoded
by a parameter vector θu = [θu0, θu1, . . . , θuK ]T where θu0
is a constant term. Therefore, the training set of leads with
different profiles shall be heterogenous regarding with the
base intensity. We chose the widely used Logistic function
by a scaled coefficient µ0

u i.e. µsu =
µ0
u

1+exp(−θTu xs) for both
the interaction process (u=1) and the final outcome process
(u=2). For two dimensions, the parameters of base inten-
sity can be different as modeled by {µ0

1,θ1} and {µ0
2,θ2} re-

spectively. Note this parametrization only assumes different
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Figure 3: Pipeline quality and gap analysis web portal.

leads may have different base intensity, but it still assumes
the base intensity is constant over time for a given lead.

The two above facts decouple the mutual influence to a re-
duced parameter space, while the third character addresses
the heterogenous property of sales leads. Now we formulate
the profile-specific decoupled two-dimensional exciting pro-
cess as follows (by letting hsθu , hθu(x

s) = 1
1+exp(−θTu xs) )

L =L1(µ
0
1, θ1, a11, w11) + L2(µ

0
2, θ2, a21, w21)

L1 =

m∑
s=1

(
ns−1∑
i=1

log

(
µ0
1h
s
θ1 +

∑
tsj<t

s
i

a11g11(t
s
i − tsj)

)

− Tsµ0
1h
s
θ1 −

ns−1∑
j=1

a11G11(Ts − tsj)

)

L2 =

m∑
s=1

(
log

(
µ0
2h
s
θ2 +

∑
tsj<tns

a21g21(tns − t
s
j)

)

− Tsµ0
2h
s
θ2 − a21G21(0)

)
(1)

Here the event associated with a lead consists of ns−1 inter-
actions and the ns-th event i.e. final outcome. Note that the
above formulation decouples the first four terms from the
remaining four terms regarding parameter µ0

1, θ1, a11, w11

(for self-exciting interaction sequence) from µ0
2, θ2, a21, w21

(for interaction’s effect to outcome and its base intensity),
thus we are seeking for estimating all the parameters rather
than like the previous work (Zhou, Zha, and Song 2013a)
that assumes the triggering kernel w is known and impos-
ing additional regularization for the matrix of aij to be
low rank and sparse. Below we show how to maximize
the above L(µ0,θ, a,w) using an alternating optimization
algorithm. Since the two terms L1(µ

0
1, θ1, a11, w11) and

L2(µ
0
2, θ2, a21, w21) can be decoupled during optimization,

in the following we give a strict derivation for the first term
and a similar procedure is done to the second term.

Solving for a, w and µ0 by fixing θ L can be surro-
gated by its tight lower bound based on Jensen’s inequal-
ity, which allows for the Majorize-Minimization (MM) al-

gorithm (Hunter and Lange 2004) on the surrogate function:

L1(µ
0
, a) ≥

m∑
s=1

ns−1∑
i=1

(
p
s
ii log

µ0
1h
s
θ1

psii
+

i−1∑
j=1

p
s
ij log

a11g11(t
s
i − tj)

psij

)

−
(
Tsµ

0
1h
s
θ1

+

ns−1∑
j=1

a11G11(Ts − tsj)
)

In the k+1-th iteration, we have psii
(l+1), psij

(l+1)

psii
(l+1) =

µ0
1
(l)
hsθ1

µ0
1
(l)hsθ1 +

∑i−1
j=1 a

(l)
11 g

(l)
11 (t

s
i − tsj)

(2)

psij
(l+1) =

∑i−1
j=1 a

(l)
11 g11(t

s
i − tsj)

µ0
1
(l)hsθ1 +

∑i−1
j=1 a

(l)
11 g

(l)
11 (t

s
i − tsj)

(3)

Given the lead s, psij can be interpreted as the likelihood that
the i-th event (ui, ti) is affected by the previous j-th event
(uj , tj) for interaction sequence associated with s and psii
is the likelihood that i-th event is sampled from the back-
ground intensity. Moreover, its advantage is the parameter
µ1 and a11 can be solved in closed forms, and the non-
negativity constraint of µ0

1 is automatically satisfied.
Zeroing the partial derivative ∂L

∂µ0
1

and ∂L
∂a11

leads to:

µ0
1
(l+1)

=
1∑

s h
s
θ1
Ts

(
m∑
s=1

ns−1∑
i=1

psii
(l+1)

hsθ1

)
(4)

a
(l+1)
11 =

∑m
s=1

∑ns−1
i=1

∑
j<i p

s
ij

(l+1)∑
s

∑ns−1
j=1 G

(l)
11 (Ts − tsj)

(5)

Meanwhile, we solve the estimation of the exciting ker-
nel scale parameter w11 in g(t − tj) = we−w(t−tj): note
e−w(T−ti) ≈ 0 when wT � 1 as suggested in (Lewis and
Mohler 2011) which shows w can be approximated by:

w
(l+1)
11 =

∑m
s=1

∑
i>j p

s
ij

(l)∑m
s=1

∑
i>j(ti − tj)psij(l)

(6)

Solving for θ by fixing a, w and µ0 Given the fixed ex-
citing term parameters and the base intensity scaling factor,
we adopt gradient descent to solve the sub-problem with re-
spect to variable θ1. More specifically, by dropping off the
constant term

∑ns−1
j=1 a11G11(Ts − tsj) in L1, we obtain the

following objective which is a function w.r.t. θ1:
m∑
s=1

ns−1∑
i=1

log
(
µ0
1h
s
θ1 + Csi

)
− Tsµ0

1h
s
θ1 (7)

where Csi =
∑
tsj<t

s
i

a11g11(t
s
i − tsj)

For the constant encoded by θ10, the partial derivative is:

∂L1

∂θ10
=

m∑
s=1

(

ns−1∑
i=1

µ0
1

µ0
1hθ1 + Csi

− Tsµ0
1)

exp(−θT1 xs)
1 + exp(−θT1 xs)

(8)

For the other coefficients in θ1, the partial derivative is:

∂L1

∂θ1k
=

m∑
s=1

(

ns−1∑
i=1

µ0
1

µ0
1hθ1 + Csi

− Tsµ0
1)
xsk exp(−θT1 xs)
1 + exp(−θT1 xs)

(9)
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Algorithm 1 Learning profile-specific decoupled two-
dimensional Hawkes processes for lead win-propensity estimation
1: Input:
2: observed training samples i.e. leads {cs},

∑m
s=1 where

each lead is associated with an interaction event sequence
{ti},

∑ns−1
i=1 which is tailed with the “won” time stamp tns

if lead cs is won within a certain period e.g. a full quarter;
3: Profile attributes xs = [xs1, x

s
2, ..., x

s
K ]T that is associated with

lead cs, as exemplified in Table 1;
4: Initial value for µ0

1, θ1, a11, w11, µ0
2, θ2, a21, w21, l=0;

5: Iteration stopping threshold L, gradient descent step-size α;
6: Output: Learned parameters µ0

1, θ1, a11, w11 for the self-
exciting model, and µ0

2, θ2, a21, w21 for the affecting model.
7: Procedure:
8: for l = 1 : Lmax do
9: // Solving for a11, w11, µ

0
1 by fixing θ1

10: Update psii
(l+1), psij

(l+1) by Eq. (2) and (3);

11: Update µ0
1
(l+1), a(l+1)

11 , w(l+1)
11 by Eq. (4), (5), (6);

12: // Solving for θ1 by fixing a11, w11 and µ0
1

13: Update θ(l+1)
1k by Eq. (10) by the gradients in Eq. (8), (9);

14: end for
15: Apply the same method for solving µ0

2, θ2, a21, w21.

Apply gradient descent to update θ1k:

θ
(l+1)
1k = θ

(l)
1k − α

∂L1

∂θ1k
, k = 0, 1, . . . ,K (10)

Similar iterative scheme can be performed for the
the term L2. Thus we finally obtain the estimations of
µ1, θ1, a11, w11 and µ2, θ2, a21, w21 separately. The overall
optimization algorithm is summarized in Algorithm 1.

Related Work and Contribution
The Hawkes process dates back to (Hawkes 1971; Ogata
1988). The model partitions the rate of events occurring to
background and self-excited components. The background
events are statistically independent of one another, while the
offspring events are triggered by prior events. Its applicabil-
ity for time-series or event sequence data has stimulated at-
tentions of diverse disciplines, e.g. seismology (Ogata 1988;
1998), finance (Weber and Chehrazi 2012), criminology
(Lewis et al. 2010; Mohler et al. 2011) and asset man-
agement(Yan et al. 2013b; Ertekin, Rudin, and McCormick
2013) and the references therein. In contrast to the above
work focusing on one-dimensional Hawkes process, this pa-
per aims to seeking a comprehensive formulation and effec-
tive algorithm for profile-specific multi-dimensional Hawkes
processes, which is a relatively new topic with several very
recent literature (Liniger 2009; Zhou, Zha, and Song 2013a;
2013b; Li and Zha 2014; 2013; Li et al. 2014).

Technical-innovation Compared with the above men-
tioned work related to Hawkes process, all parameters in
our model are assumed unknown and estimated by our pro-
posed algorithm. However, (Zhou, Zha, and Song 2013a)
assumes the bandwidth of the self(mutual)-exciting ker-
nel wij is known, and the background intensity µu be-
ing a constant parameter for all samples, which ignores

the heterogeneity of µu in real-world problems. This sim-
plification is also used in (Zhou, Zha, and Song 2013b;
Li and Zha 2014) and the latter work instead parameterizes
the mutual influence aij via latent variables to reduce the
model space induced by a large number of dimensions for
their social infectivity analysis. In contrast, we address the
inherent heterogeneity by parameterizing lead attributes in
a tractable optimization scheme. Note that for a given lead
with known profile attributes, our model assumes the back-
ground is a stationary point process equaling to Poisson pro-
cess. This is because our practical problem is confined in
a relatively short business period, e.g. one quarter, thus the
secular trend rarely exists. Thus we do not need perform the
background model fitting using different non-stationary as-
sumptions as used in (Lewis et al. 2010).

Impact to real-world problems As far as we know,
this is the first work to establish a modern machine learn-
ing paradigm, i.e. profile-specific two-dimensional Hawkes
Processes and learning algorithm for applications to the
sales pipeline prediction. Though there is a few precedent
statistical methods (Zliobaite, Bakker, and Pechenizkiy ;
Chen et al. 2010) for sales analytics, while these methods
and applications differ significantly from ours in that the his-
torical event sequences (sales interaction) are not captured.
For instance, one straightforward way is collecting the ba-
sic statistics of events over a certain time window such as
sum, variance etc. However, this aggregation would cause
information loss which hurts the potential towards more ad-
vanced predictive modeling. Furthermore, our method can
also be easily generalized to other practical problems. For
instance, in asset management, given a sequence of different
types of failure events associated with the asset, {aij , wij}
can model the mutual impact between different failure types,
and µu(x) can model the background failure rate related to
the asset profile x and failure type u. We have seen the early
success of recent work on predictive maintenance to urban
pipe network (Yan et al. 2013b) and grid (Ertekin, Rudin,
and McCormick 2013), whereby only a one-dimensional
Hawkes process is adopted with a constant background rate
which ignores the type of failures and the diversity of each
sample. The proposed model in this paper is more promising
as it is more flexible to incorporate the rich types of failures
(e.g. leak, burst for pipe failure), as well as to handle the het-
erogeneity of background rate with a parameterized profile
model (e.g. consider the diversity of material type, diameter,
age for each pipe). Other potential applications can also be
found such as client purchase life-cycle analysis where each
type of items can take one dimension and the background
rate is personalized by the customer profile features.

Deployment and Evaluation
We perform our study on a Fortune 500 multinational tech-
nology company in the B2B market environment. Through-
out this section, due to the sensitivity of the proprietary
company-owned selling data, we de-identified the brand
name and other profile information, only leave relative met-
rics such as AUC score. Our model was finished in the end
of 2013Q2. To make an unbiased performance evaluation,
the model was evaluated in 2013Q3 with blind testing data
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Figure 4: Web portal for ‘next-two-week’ win probability
scoring. Sellers are able to view the latest scoring report.

in that quarter. In 2013Q4 it was released to sales team to
impact sellers’ decision, with the aim of transforming the
selling ecosystem and methodology. For evaluation reported
in this paper, due to business sensitivity, we randomly chose
a subset lead set (100K-200K) for each quarter. The exact
overall win rate is less than 20% and the win rate on the
sampled set are disclosed in Table 2 and Table 3.

Application tools Before jumping into the detailed per-
formance evaluation, we first present two downstream appli-
cation tools derived by the proposed model. Fig.3 shows the
pipeline quality and gap analysis given the quarterly quota
target. This heating map, which covers various areas and
product lines, by calculating the overall expected won rev-
enue, is mainly used by sales leaders. Fig.4 illustrates an-
other tool tailored for individual seller, especially for fresh-
men, who need some guidance to prioritize their workload.

Blind test As mentioned earlier, we use 2013Q2 data as
the training set, and 2013Q3 as the testing set. In particular,
in this case study, we chose two product lines across both
mature market and emerging market. Apart from the base-
line of sales subjective ratings, there are several machine
learning methods being taken consideration in our evalua-
tion: i) Logistic model, which extracts the sum and variance
of past interaction events (whole time line so far and last
five weeks) as additional input features besides profiles; ii)
Cox point process model, where only profile information is
used to model the hazard rate; iii) Constant background rate
model similar to recent work Triggering Kernel Learning
(TKL) (Zhou, Zha, and Song 2013a) that models the back-
ground rate using a constant parameter, and iv) our proposed
background rate profile-specific Hawkes model.

Table 2 evaluates the AUC performances of ROC curve
for these peer methods1. One can observe machine learn-
ing methods all outperform the subjective ratings, especially
in emerging market due to the relatively young sales team
there. The Logistic model and Cox model perform closely
although the Cox model is assumed to be more suitable as it
considers the observation window. In our analysis this is be-
cause Cox does not consider mutual exciting effect between
interaction and win outcome. The simplified model by TKL

1In fact, we evaluate the model for each week by comparing the
outcome in the next-two-week observation window. The average
AUC over 11 weeks in that quarter are reported in this paper.

Table 2: AUC for win prediction on blind test data 2013Q3.
The score for each lead is generated by integrating its win
intensity λwin over the next two weeks. ‘BL’ denotes ‘Busi-
ness Line’, ‘HW’(‘SW’) for ‘Hardware’(‘Software’).

Market BL Lead # Win% Sales Logit Cox TKL Alg.1

New HW 200K 15.7% .608 .675 .678 .617 .707
New SW 100K 12.5% .586 .659 .661 .614 .701

Mature HW 200K 19.5% .665 .711 .718 .687 .741
Mature SW 150K 14.8% .649 .703 .709 .671 .732

(Zhou, Zha, and Song 2013a) that assumes the homogeneity
of background rate for all leads, shows worse performance
compared with the above two models, even it incorporates
exciting effect. However, when it is combined by the base
intensity personalization as solved in our model, it shows
significant performance improvement. We argue that the rel-
atively poor performance of TKL model further comes from
the biased estimation of the background rate, which induces
additional noise for learning the exciting parameters. Due to
this limitation, the TKL model would also probably cause
biased estimation in other applications such as (Yan et al.
2013b; Ertekin, Rudin, and McCormick 2013), which can be
solved by our model by personalizing the background rate.

Interference test We release the scoring report to sales
team in 2013Q4. Separate sales teams are receiving scoring
reports generated by different models, and the performance
is computed separately. For sales teams, they can make their
resource allocation decision according to our predictions.
The corresponding performance is reported in table 3. Com-
pared with the blind test, our model still outperforms as it
is likely that sellers’ actions are influenced by prediction.
They may invest more resource on the high-propensity leads
judged by our model which induces regenerative effects be-
tween prediction and action. It is also worth noting that the
sellers’ estimation is improved compared with the blind test-
ing data 2013Q3. Apart from the fluctuation across quarters
due to other external factors, we do receive some feedback
from sales team that some sellers would cross-check our re-
port before enter their subjective ratings. This implies our
report help sellers better evaluate their leads. We leave the
analysis for how prediction and action influences each other
to our long-term research agenda as it requires more data to
calibrate other external factors.

Further discussion We believe we are still in the initial
stage of advancing machine learning and AI in sales analyt-
ics which is a complex real-world problem yet relatively new
to the computer science research community. Our model
can further benefit from other data sources such as sales-
person profile and activity, as well as marketing and pro-
motion. New performance metrics beyond ROC AUC shall
be studied. More comprehensive methodologies can be de-
signed beyond the scope of this paper such as reinforcement
learning (Kober and Peters 2012), or specifically Markov de-
cision processes (MDPs) (White III and White 1989) and
graph matching for resource allocation optimization (Tian
et al. 2012; Yan et al. 2013a; 2014).

1950



Table 3: AUC on interference test data 2013Q4.

Market BL Lead # Win% Sales Logit Cox TKL Alg.1

New HW 200K 18.3% .628 .681 .680 .612 .729
New SW 100K 15.1% .618 .672 .664 .604 .715

Mature HW 200K 21.3% .689 .727 .721 .693 .751
Mature SW 150K 18.2% .680 .731 .712 .689 .749

Conclusion
We have presented a modern machine learning method for
sales pipeline win prediction, which has been deployed in
a multinational Fortune 500 B2B-selling company. The pro-
posed method is applicable to other real-world problems due
to its generality and flexibility as discussed in the paper. We
hope this paper can timely raise the wide attentions from in-
dustries as selling is essential to most business companies.
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