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Abstract

Merton’s portfolio optimization problem in the pres-
ence of transaction costs for multiple assets has been an
important and challenging problem in both theory and
practice. Most existing work suffers from curse of di-
mensionality and encounters with the difficulty of gen-
eralization. In this paper, we develop an approximate
dynamic programing method of synergistically com-
bining the Löwner-John ellipsoid approximation with
conventional value function iteration to quantify the
associated optimal trading policy. Through construct-
ing Löwner-John ellipsoids to parameterize the optimal
policy and taking Euclidean projections onto the con-
structed ellipsoids to implement the trading policy, the
proposed algorithm has cut computational costs up to
a factor of five hundred and meanwhile achieved near-
optimal risk-adjusted returns across both synthetic and
real-world market datasets.

Introduction
Dynamic portfolio choice problems have taken on increas-
ing importance in finance industry such as mutual funds, en-
dorsements and private wealth management (Brandt 2010).
The seminal work of Merton (Merton 1969) shows that
investors who wish to maximize the utility of their final
wealth should always hold a constant fraction of total wealth
on each asset. However, implementing such a strategy re-
quires rebalancing continually as assets prices fluctuate,
and therefore will lead to high or even infinite transaction
costs. Since then researchers have tried to address this is-
sue by solving Merton’s portfolio problem in the presence
of transaction costs. Thereinto, the proportional transaction
costs model, as a suitable model for brokerage commis-
sions and bid-ask spread costs, typifies the common sit-
uation for normal investors (Brandt 2010; Cvitanic 2001;
Davis and Norman 1990).

Portfolio optimization with proportional transaction costs
is naturally modeled as a multistage stochastic program. But
the stochastic program framework limits the size of solvable
problems due to the exponential growth of scenarios with
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investment periods. Thus, researchers often recast it to a dy-
namic program. However, the associated dynamic program
with continuous decision and state spaces is still difficult
as its computational costs increase exponentially with the
number of involved assets, namely the curse of dimension-
ality (Cai and Judd 2014; Rust 2008). Therefore, most of the
relevant studies focus on simple settings with only one or
two risky assets. Representative methods include solving the
associated Hamilton-Jacobi-Bellman (HJB) partial differen-
tial equation to achieve optimal solutions, which generally
fails to scale up to higher dimensions (Davis and Norman
1990; Magill and Constantinides 1976; Shreve and Soner
1994; Muthuraman and Kumar 2006).

To numerically solve this type of dynamic programming
problems, one can appeal to value function iteration (VFI)
or policy parameterization (Powell 2007; Rust 2008). How-
ever, in a high-dimensional space, conventional VFI be-
comes intractable and suffers from error amplification in
iteration. Although the policy parameterization consumes
cheaper computing power, it falls short on accuracy due to
the complexity of policy structures in high dimensions.

Realizing the limitations of the existing work, in this
paper we propose an approximate dynamic programming
(ADP) method to tackle the multi-asset portfolio optimiza-
tion problems with proportional transaction costs in a dis-
crete time and finite horizon setting. Through synergistically
combining the VFI framework with policy parameterization,
the proposed ADP method enjoys complementary advan-
tages of low approximation errors from VFI and high com-
putational efficiency from policy parameterization. Briefly,
the components from VFI pave the way for effectively pa-
rameterizing a complex policy in a high-dimensional space;
the components from policy parameterization provide a
pathway to efficiently evaluating the strategy and bypassing
the issue of error amplification. In particular, by adopting the
Löwner-John ellipsoid approximation to the optimal policy,
we are able to address the conundrum of parameterizing a
complex policy through depicting its geometric shape and
location in a high-dimensional state space. Once the param-
eterized policy is available, the determination of rebalancing
is simply conducted as an Euclidean projection process onto
the estimated ellipsoids. Hence, the computational costs are

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

1854



drastically reduced and meanwhile the generated strategy is
robust and sufficiently flexible to capture complex features
of the true policy for multiple assets. Further, to validate the
proposed method, across various parameter settings we com-
pare our strategy with several state-of-the-art strategies on
both synthetic and real-world datasets. The results clearly
illustrate the superiority of the proposed approach in both
risk-adjusted returns and computational costs. Besides, this
new methodology of handling dynamic programs with con-
tinuous decision and states spaces can be explored and ex-
ploited to other applications.

Background and Related Work
In this section, we first succinctly introduce the classic port-
folio problem by Merton (Merton 1969; 1971). We then ex-
pand the discussion of the relevant work on portfolio op-
timization with proportional transaction costs and approxi-
mate dynamic programming. We will inherit the notations
defined in this section and incorporate the transaction costs
model into Merton’s portfolio problem in the next section.

Merton’s Portfolio Problem
Merton’s portfolio problem is developed in a frictionless
market. In a discrete time and finite horizon setting, the trad-
ing periods consist of tk = k∆t, k = 0, . . . ,m, where
the initial time is t0 = 0 and the terminal time is tm =
m∆t = T . For simplicity, we use k as the time index
to indicate the trading period at time tk hereafter. We as-
sume that investors with the constant relative risk aversion
(CRRA) utility have access to one risk-free (cash account)
and n risky assets (stocks). The risk-free asset pays a gross
risk-free return Rf . The risky assets pay a stochastic return
Rk = (Rk,1, . . . , Rk,i, . . . , Rk,n)>, where Rk,i is the gross
return of the i-th asset from time tk−1 to tk. The stochas-
tic return is modeled by a multivariate geometric Brownian
motion as

lnRk = µ− 1

2
σ2 + ek, (1)

where µ = (µ1, . . . , µi, . . . , µn)> ∈ Rn is the asset re-
turn vector, σ = (σ1, . . . , σi, . . . , σn)> ∈ Rn+ is the re-
turn volatility vector, and ek ∼ N (0,Σe) is the stochastic
increment from a multivariate normal distribution with the
covariance matrix Σe ∈ Rn×n.1

Further, the positions on the risk-free and risky as-
sets at time tk are denoted by xk and yk =
(yk,1, . . . , yk,i, . . . , yk,n)>, respectively. In time, investors
can either spend money from the risk-free account to
buy risky assets or add money to the risk-free ac-
count by selling risky assets. At time tk, denote Lk =
(Lk,1, . . . , Lk,i, . . . , Lk,n)> as an n-vector where Lk,i rep-
resents the amount of money spent from the risk-free ac-
count to buy the i-th risky asset. Similarly, denote Uk =

1This return model is originally adopted in Merton’s portfolio
problem (Merton 1969; 1971). Although a vast number of other
return models are proposed to improve the predictability, no con-
sensus has been achieved and this return model is still the building
block for new methodologies and testing (Rapach and Zhou 2012).

(Uk,1, . . . , Uk,i, . . . , Uk,n)> as an n-vector where Uk,i rep-
resents the amount of money received from selling the i-th
risky asset. Given a policy (Uk,Lk) at time tk, the evolution
of the dollar positions of risk-free and risky assets from time
tk to tk+1 is modeled by the following transition equation:(

xk+1

yk+1

)
=

(
Rf (xk +

∑n
i=1(Uk,i − Lk,i))

Rk+1 ◦ (yk + Lk −Uk)

)
, (2)

where ◦ denotes the element-wise product of two vectors.
Also, to prohibit short selling and borrowing, which is the
typical case for normal investors, the trades at time tk are
restricted to a convex set, i.e., a solvency set:

Ck = {Uk,Lk ∈ Rn+ : xk +
n∑
i=1

(Uk,i − Lk,i) ≥ 0,

yk + Lk −Uk � 0}. (3)

Furthermore, the wealth Wk at time tk is the sum of the
dollar positions across the risk-free and risky assets, i.e.,

Wk(xk,yk) = xk +
n∑
i=1

yk,i. (4)

The objective of investors is to choose (Uk,Lk) at each time
tk for k = 0, . . . ,m− 1 to maximize the expected utility of
the wealth at the final time tm = T :

max
(Uk,Lk)∈Ck
k=0,...,m−1

E[U(Wm)], (5)

where the CRRA power utility function characterizes in-
vestors’ risk tolerance as

U(x) =
xγ

γ
, γ < 1, γ 6= 0, (6)

with γ as the degree of relative risk aversion.
To solve the multistage stochastic program (5), Merton

first recasts it to a dynamic program with state variables
(xk,yk) and control variables (Uk,Lk) and then obtains
a closed-form solution to the optimal trades that investors
should always execute in time (Merton 1969; 1971).

Related Work
With transaction costs even in a simple proportional form,
the above portfolio problem becomes more challenging and
has no closed-form solution. Generally, the optimal pol-
icy to a stochastic program is a full-fledged characteriza-
tion of the solution. To this end, many papers report results
of the optimal policy for transaction costs problems. For
the simplest case with one risky asset, a no-trading region
serving as the optimal trading policy is conjectured, con-
firmed and analyzed in (Magill and Constantinides 1976;
Davis and Norman 1990) and (Shreve and Soner 1994).
They find that if the position of the risky asset lies within
this region, the optimal policy is not to trade; if it lies out-
side, the optimal policy is to bring the position back to this
region. Intuitively, trades should only take place if they can
bring sufficient benefits to cover costs. Therefore, obtaining
and understanding such a no-trading region is the crux. For
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example, (Muthuraman and Kumar 2006) and (Lynch and
Tan 2010) identify a quadrilateral no-trading region for a
two risky assets problem. However, the predominant diffi-
culty in numerically solving the multi-asset problems roots
in the lack of effective techniques to handle the curse of di-
mensionality (Rust 2008). Although computing and analyz-
ing the optimal policy for cases with a few risky assets drives
deep insights (Goodman and Ostrov 2010), the idea of utiliz-
ing policy structures to design efficient algorithms for high-
dimensional problems is less investigated. Meanwhile, ma-
chine learning researchers focus on designing empirical al-
gorithms to incorporate market signals (Agarwal et al. 2006;
Borodin, El-Yaniv, and Gogan 2004; Dirk and Peter 2001;
Kalai and Vempala 2003; Li and Hoi 2012; Shen, Wang, and
Ma 2014; Moody and Saffell 1999; Neuneier 1996).

On the other hand, ADP is aiming at developing practi-
cal and high-quality approximated solutions when dynamic
programs are hard to solve exactly (Powell 2007). It has
previously been applied in various portfolio related applica-
tions (Bhat, Moallemi, and Farias 2012; Brandt et al. 2005;
Garlappi and Skoulakis 2010; Lynch and Tan 2010). In
particular, applying ADP in VFI starts with approximating
value functions locally by kernel methods (Bhat, Moallemi,
and Farias 2012; Garlappi and Skoulakis 2010; Lynch and
Tan 2010) or globally by regression techniques (Brandt et
al. 2005; Longstaff and Schwartz 2001). The approxima-
tion process is then repeated backward from the second-
to-last period to the first period. In each period, the solu-
tion is found by maximizing the one-step ahead expecta-
tion of the approximated value function derived in the pre-
vious iteration. The multi-asset portfolio optimization prob-
lem with proportional transaction costs can be naturally for-
mulated as a dynamic program with continuous decision
and state spaces in a high dimension. However, applying
the above algorithm to this type of dynamic programs re-
mains challenging because accurate results require rigorous
error control to reduce error amplification in backward it-
eration. More detailed illustrations and discussions over a
wide range of applications and conclusions about ADP and
VFI can be found in (Bertsekas 2011; Cai and Judd 2014;
Judd, Maliar, and Maliar 2011; Powell 2007; Rust 2008),
and the extensive references therein.

Methodology
In this section, we first formulate the portfolio optimization
problem with proportional transaction costs. Then we will
present a fast ADP solution that combines the Löwner-John
ellipsoid approximation with the conventional VFI frame-
work to ameliorate the difficulty in high-dimensional prob-
lems. Finally we will compute lower bounds for the problem
and complement them with upper bounds.

Formulation
We adopt the same notations, including the discrete time and
finite horizon setting, the objective function, and the return
dynamics from the previous section. In a frictional market,
let β = (β1, . . . , βi, . . . , βn)> ∈ Rn+ be the factor of the
transaction costs for buying and selling. Specifically, buy-
ing the i-th risky asset priced at Lk,i will cost (1 + βi)Lk,i

in the risk-free account; selling the i-th risky asset priced at
Uk,i will add a dollar amount of (1 − βi)Uk,i to the risk-
free account. By incorporating the proportional transaction
costs into the evolution of the positions (2), the new transi-
tion equation becomes:(

xk+1

yk+1

)
=

(
Rfx

+
k

Rk+1 ◦ y+
k

)
, (7)

where x+k stands for the post-trade risk-free position xk −∑n
i=1[(1 + βi)Lk,i − (1 − βi)Uk,i] and y+

k represents the
post-trade risky position yk + Lk − Uk. Accordingly, the
new solvency set is:

Ck = {Uk,Lk ∈ Rn+ : x+k ≥ 0,y+
k � 0}. (8)

Similar to Merton’s portfolio problem, this stochastic pro-
gram can be casted as a dynamic program with state vari-
ables (xk,yk) and control variables (Uk,Lk). In particu-
lar, denote the value function at time tk as the maximized
expected utility of the final wealth by selecting a sequence
of control variables (Uτ ,Lτ ) for τ = k, . . . ,m− 1:

Vk(xk,yk) = max
(Uτ ,Lτ )∈Cτ
τ=k,...,m−1

Ek[U(Wm)], (9)

where the investment positions follow the transition equa-
tion (7) and the symbol Ek[·] represents the conditional
expectation conditioned on the information up to time tk.
For a fixed level of the wealth Wk, equation (9) shows
that the value function Vk solely depends on the state vari-
able (xk,yk).2 Further, by Bellman’s principle of optimal-
ity (Bertsekas 2011), equation (9) is equivalent to a series of
one-period iteration problems:

Vk(xk,yk) = max
(Uk,Lk)∈Ck

Ek[Vk+1(xk+1,yk+1)]. (10)

To attack (10), a typical method starts with the terminal con-
dition of the value function Vm = U(Wm) and performs
backward value function iteration to compute earlier value
functions Vk from time tm−1 to t0. Since the optimization
problem (10) has no closed-form solution, we appeal to an
ADP approach to numerically conduct VFI.

VFI with Löwner-John Ellipsoid Approximation
Conventional VFI boils down to finding accurate functional
approximation to the value function Vk(xk,yk) at each time
step. In particular, the typical process consists of three key
steps. First, it needs to construct a grid of the states (xk,yk)
in a multidimensional space by taking the tensor-product of
discretized points in each dimension. Second, it solves the
corresponding optimization problem (10) for each grid point
(xk,yk), where it numerically computes the expectation on
the right hand side of (10) by a multidimensional Gauss-
Hermit quadrature rule. Third, given the optimal values of
the value function on the grid points, the VFI algorithm ap-
proximates the value function over the entire state space by

2According to the homothetic property of the problem, state
space, value functions and optimal policy could all be normal-
ized to the case with unit wealth level (Davis and Norman 1990;
Goodman and Ostrov 2010).
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Algorithm 1 Löwner-John Ellipsoid Construction with VFI
Input Parameters: γ, β, T , µ, σ, I , Σe, k = m− 1
while the change of the constructed ellipsoid is larger than
a threshold do

Construct I grid points of current positions (xk,yk) by
the Sobol low discrepancy numbers;
Take numerical expectation by sampling return scenar-
ios using the Sobol low discrepancy numbers;
Compute the post-trade position y+

k for each of the I
grid points by numerically solving (10);
Approximate Vk(xk,yk) by a complete set of polyno-
mials of state variables to get V̂k(xk,yk);
Derive the Löwner-John ellipsoid Ek by solving (12);
k ← k − 1;

Output:
The ellipsoids Ek, k = j, . . . ,m− 1, the break step j.

polynomial basis functions that are generated through taking
the tensor-product of monomials from each dimension, i.e.,
V̂k(xk,yk) ≈ Vk(xk,yk).

However, conventional VFI severely suffers from the
curse of dimensionality because the grid sampling in step
one, the numerical expectation in step two, and the num-
ber of basis functions in step three, all confront with an
exponential growth of computational costs with respect to
the number of assets. To circumvent these issues, we sam-
ple grid points and return scenarios in the first two steps
through the Sobol low discrepancy numbers (Niederreiter
1992), and employ the complete set of polynomials in the
third step (Judd, Maliar, and Maliar 2011). After finishing
VFI based on those novel elements, to evaluate the strategy
characterized by V̂k(xk,yk) for k = 0, . . . ,m − 1, we still
need to expensively optimize over V̂k at each time step for
different return paths. Generally, a sub-optimal solution at
an early time step will affect the whole trading trajectory of
the later steps. Therefore, rigorous error control in each step
of the algorithm should be set up to retard the error growth,
which is effectively expensive for computing. To speed up
the computation, alleviate error amplification in backward
iteration and obviate sacrificing much utility, we propose
to explore the Löwner-John ellipsoid approximation tech-
nique to quantify the optimal trading policy for the transac-
tion costs problem.

In particular, for the transaction costs-aware portfolio
problem, a no-trading region Ωk exists in the state space
at each time step representing the trading policy: when yk
falls into Ωk, investors do not trade; otherwise investors re-
balance the position yk back to the boundary of Ωk. Previ-
ous study shows that the no-trading region Ωk in high di-
mensions is close to a polyhedron (Goodman and Ostrov
2010). In addition, the regions in different early investment
periods are similar and moderately expand as the invest-
ment approaches the end (Lynch and Tan 2010; Dai and
Zhong 2010). Besides, the transaction costs-aware portfo-
lio problem will degenerate to Merton’s portfolio problem
when the transaction costs factor β = 0. Early research has
shown Merton’s optimal solution y∗k lies around the cen-
ter of the no-trading region Ωk (Shreve and Soner 1994;

Algorithm 2 Lower Bound Evaluation using Monte Carlo
Simulation with Ellipsoid Projection

Input: γ, β, T , µ, σ, Σe, m, {E0, . . . , Em−1}
Initialization: Simulate S returns paths;
for s = 1→ S do

for k = 0→ m− 1 do
if yk falls outside Ek then

Project yk onto Ek to derive y+
k and (Lk,Uk) by

solving equation (13)
Compute E[U(Wm)] = 1

S

∑S
s=1 U

(
W s
m

)
Output:
Performance of the proposed method measured by
E[U(Wm)].

Goodman and Ostrov 2010). Hence, we consider approxi-
mating the no-trading region Ωk by a Löwner-John ellipsoid
Ek centered at Merton’s optimal solution y∗k at time tk (John
1948). This approximation is an intuitively appealing means
to lump its detailed geometry into a single quadratic surface.
Denote by Ek the Löwner-John ellipsoid as the minimum
volume ellipsoid that covers a bounded set with nonempty
interior:

Ek =
{
zk : ‖Ak(zk − y∗k)‖2 ≤ 1

}
, Ak � 0. (11)

To employ the Löwner-John ellipsoid to approximate the no-
trading region and derive the optimal policy, we develop the
following two main steps.

Ellipsoid Construction: At time tk, given I optimal post-
trade risky asset positions yi,+k , i = 1, . . . , I , the minimum
volume ellipsoid that covers all the post-trade positions of
risky assets can be computed by solving the following con-
vex optimization problem (Boyd and Vandenberghe 2004):

min
Ak�0

detA−1k

s.t. ‖Ak(yi,+k − y∗k)‖2 ≤ 1, i = 1, . . . , I, (12)

where the quantity detA−1k is proportional to the volume
of the ellipsoid. As summarized in Algorithm 1, backward
from the last rebalance period tm−1, each of the I optimal
post-trade positions yi,+k is solved from (10) by applying the
VFI framework with the Sobol low discrepancy numbers in
the first two steps and the complete set of polynomials in
the third step. In each step of VFI, given yi,+k s and y∗k, con-
vex optimization problem (12) approximates the no-trading
region Ωk by a Löwner-John ellipsoid Ek. Since the con-
structed ellipsoids become identical after a few backward
steps, an early break of the process is expected and compu-
tational costs are saved. Specifically, we will identify a break
step j, before which all the ellipsoids are assumed the same,
i.e., Ek = Ej for k = 0, . . . , j − 1, after which all the el-
lipsoids are constructed by solving (12), i.e., Ek ≈ Ωk for
k = j, . . . ,m− 1.

Ellipsoid Projection: To implement a strategy we need to
decide the trading policy in each rebalance time. When the
risky position yk falls outside the no-trading region Ek in the
k-th period, it needs rebalancing back to the boundary of Ek.
We take Euclidean projection to map yk onto the ellipsoid
Ek as an approximation of the post-trade position y+

k . Being
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Table 1: Annualized certainty equivalent rates of return for lower and upper bounds
Data Lower Bounds Upper Bounds Best Performance

NO. EA RBH MO CB MT MG LB UB GAP

1 CER(%) 8.65 8.60 8.62 8.50 8.90 8.80 8.65 8.80 0.15
CPU(s) 259 80745 59582 1 0 1527 EA MG

2 CER(%) 13.06 12.95 12.98 12.84 13.47 13.36 13.06 13.36 0.30
CPU(s) 406 68982 42107 1 0 1498 EA MG

3 CER(%) 9.73 9.23 5.91 9.35 11.91 9.79 9.73 9.79 0.06
CPU(s) 24 1031 781 1 0 1530 EA MG

4 CER(%) 11.36 10.51 5.93 10.96 11.91 11.42 11.36 11.42 0.06
CPU(s) 15 7845 2216 3 0 48678 EA MG

slightly larger than the associated no-trading region, the con-
structed ellipsoid gives a conservative but suitable approxi-
mation. Numerically, the optimal post-trade position y+

k can
be computed by solving the following convex optimization
problem:

min
y+
k ∈Ek

∥∥y+
k − yk

∥∥2
2
. (13)

This problem can be rewritten as an Euler Lagrange equa-
tion with respect to the Lagrange multiplier, which can be
further simplified to be a polynomial equation (Boyd and
Vandenberghe 2004). Therefore, an effectively closed-form
for y+

k is obtained and the computation is much faster than
numerically solving the optimization problem (10) or (13).
After obtaining the post-trade position y+

k , the trading pol-
icy (Uk,Lk) can be trivially backed out from the transition
equation (7).

Lower and Upper Bounds
According to the proposed algorithm, we will implement
Monte Carlo simulation to evaluate its performance (Brown
and Smith 2011). Denote the path of stochastic returns by
#»

Rk = (R0, ...,Rk−1) and the policy vectors by
#»

Lk =

(L0, ...,Lk−1) and
#»

Uk = (U0, ...,Uk−1). The expected
utility of the final wealth is estimated by the average of the
S simulation trails:

E[U(Wm)] =
1

S

S∑
s=1

U
(
W s
T (

#»

Rm,
#»

Lm,
#»

Um)
)
, (14)

where W s
m(

#»

Rm,
#»

Lm,
#»

Um) represents the generated wealth
for the s-th simulation trial by following the ellipsoid pro-
jection method. Implementing Monte Carlo simulation is vi-
tal as it offers an unbiased estimate of a strategy (Boyle,
Broadie, and Glasserman 1997). We first simulate a return
path

#»

Rm. Then, in each period, we compute optimal trading
policy (Lk,Uk) and post-trade positions (x+k ,y

+
k ) by the

ellipsoid projection. Finally, we take the mean of the utility
of the final wealth over the S simulated paths as the lower
bound estimate (14). Algorithm 2 summarizes the detailed
steps of applying Monte Carlo simulation to evaluate the
proposed portfolio strategy. Intuitively, our portfolio strat-
egy could only give lower bounds to the original problem.

To objectively assess its performance, we also provide up-
per bounds to evaluate our lower bounds.

Briefly, the upper bound method developed by (Brown,
Smith, and Sun 2010) is based on two elements: (1) relax
the nonanticipativity constraints that require the trading de-
cisions to depend on the information available when the de-
cision is made; and (2) impose penalty that punishes viola-
tions of nonanticipativity constraints. Denote by C the feasi-
ble set in which each entity of (

#»

Lm,
#»

Um) is feasible, and de-
note by π(

#»

Rm,
#»

Lm,
#»

Um) the penalty function that depends
upon the sequence of trades and returns in a given simu-
lation trial. A penalty function π is called dual feasible if
E[π(

#»

Rm,
#»

Lm,
#»

Um)] ≤ 0 for any feasible trading strategy.
Intuitively, the dual feasible penalty function does not pe-
nalize nonanticipative trades but penalizes those trades that
do not satisfy the nonanticipativity constraints. The follow-
ing result in (Brown, Smith, and Sun 2010) gives the upper
bound. For any feasible trading strategy (

#»

Lm,
#»

Um) and any
dual feasible penalty π,

E [U(Wm)] ≤ E[ max
(

#»
Lm,

#»
Um)∈C

{U(Wm(
#»

Rm,
#»

Lm,
#»

Um)

− π(
#»

Rm,
#»

Lm,
#»

Um)}]. (15)

To compute the right hand side of (15), we once again
apply Monte Carlo simulation to compute the expectation.
For simulated return paths, the mean over all maximum so-
lutions on the right hand side of (15) offers an upper bound.
In particular, we will specify a gradient-based penalty func-
tion from a modified problem and take path-wise optimiza-
tion for each simulated return path (Brown, Smith, and Sun
2010). Thus far the gaps between lower bounds calculated
by equation (14) and upper bounds by equation (15) can
quantify the quality of the proposed portfolio policy.

Empirical Studies

In this section, to understand the performance of the pro-
posed strategy we compare our results with other lower
bound strategies as well as upper bounds across both syn-
thetic and real-world datasets.
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Figure 1: Ellipsoid approximation to no-trading regions in
state spaces: the top row has correlation ρ = 0.7 and the
bottom row ρ = 0.4. From left to right, it represents the
trading periods from t10 to t8. Common parameters: n = 2,
m = 10, T = 10, γ = −2, β1 = β2 = 2%, µ1 = µ2 =
15%, σ1 = σ2 = 35%, rf = 1%. The red curves represent
the no-trading regions computed by VFI and the blue curves
represent the approximate ellipsoids.

Settings and Baselines
Here we briefly describe the settings and evaluation metrics
for our experiments and comparison.

Data and simulation settings: In our experiments, we
test across four parameter settings based on synthetic and
real-world datasets. Two parameter settings as synthetic data
are taken from the relevant work (Muthuraman and Kumar
2006). The other two parameter settings based on market
data are chosen from (Brown and Smith 2011).

Baselines: We first compare the proposed ellipsoid ap-
proximation strategy (EA) with three representative lower
bound strategies (Brown and Smith 2011): (a) the rolling
buy-and-hold strategy (RBH), (b) the myopic strategy (MO),
and (c) the cost blind strategy (CB). Briefly, applying the
RBH strategy, investors incorporate transaction costs into
the transition equation of the current period and assume the
portfolio will follow its dynamics freely without further re-
balancing in future periods. It then maximizes the yield ex-
pected utility of the final wealth to attain the trades in the
current period. For the MO strategy, investors use power
utility function as value functions for all the periods. To fol-
low CB, investors always trade to Merton’s solution and then
subtract the incurred transaction costs.

Then, we compare EA with two upper bounds: (i) Mer-
ton’s model (MT) and (ii) the modified gradient-based
penalty method (MG). As Merton’s model does not incorpo-
rate transaction costs, it naturally offers an upper bound. MG
is a gradient-based penalty method derived from an ad hoc
modified model by (Brown and Smith 2011), which usually
provides tighter upper bounds than MT in various settings.
Through computing gaps between lower and upper bounds,
we can better conclude how close lower bounds are to opti-
mal solutions.

Evaluation metrics: For fair comparison, our results are
reported in risk-adjusted return: annualized certainty equiv-
alent rates of return (CER) (Brandt 2010) . We run a suffi-
cient number of simulation trials to ensure the corresponding
95% confidence intervals are smaller than 1% of the mean.
Given the initial investmentW0 and the investment period of
T years, the annualized certainty equivalent rates of return
is computed by

CER = T

√
U−1(E[U(Wm)])

W0
− 1. (16)

Intuitively, investors with a higher CER can earn more return
by taking the same level of risk. We also report the CPU time
in second for the different strategies.

Results
Table 1 shows that among the tested lower bounds the
proposed EA method constantly achieves the highest CER
across all the datasets. In addition, compared with other
transaction costs-aware lower bounds methods, EA im-
proves the computational efficiency by 40-500 times. As
CB method hinges on the closed-form Merton’s solution, its
computational time is negligible. But without considering
transaction costs, CB always gets much lower risk-adjusted
returns than EA. Further, we compare the lower bounds by
EA with the upper bounds by MT and MG. As MT has an ef-
fectively closed-form solution, we can get its results instan-
taneously. On the other hand, MG always provides tighter
upper bounds of CER than MT. Following the evaluation
in (Brown and Smith 2011), we compute gaps of CER be-
tween the best lower and upper bounds in Table 1. The table
illustrates that the lower bounds by EA are always higher
than other strategies and near-optimal, i.e., that the gaps for
the annualized returns range from 0.06% to 0.30%. Finally,
Figure 1 demonstrates the constructed ellipsoids in an exam-
ple with two risky assets. It shows that the ellipsoid approxi-
mation closely and robustly captures features of the true no-
trading region computed by VFI. It also echoes the notable
conclusion that the no-trading regions are almost identical in
early periods.

Conclusions and Discussions
In this paper, we have studied a broadly existing investment
problem for investors: portfolio optimization in the presence
of transaction costs under a discrete time and finite horizon
setting. Our approach leverages the Löwner-John ellipsoid
approximation technique into the conventional VFI frame-
work to characterize the associated optimal trading policy.
The proposed solution has not only significantly reduced
computational costs up to two orders of magnitude but also
obtained near-optimal risk-adjusted returns across both syn-
thetic and real market datasets. Besides those promising re-
sults for this particular problem, the novel idea of combining
VFI and policy parameterization to attack dynamic program-
ming problems can be explored and utilized in other applica-
tions. Our future work includes appropriately incorporating
other market friction models into Merton’s portfolio prob-
lem, such as capital gain taxes and market impacts.
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