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Abstract

In many cases, creating long-term solutions to sustainability
issues requires not only innovative technology, but also large-
scale public adoption of the proposed solutions. Social sim-
ulations are a valuable but underutilized tool that can help
public policy researchers understand when sustainable prac-
tices are likely to make the delicate transition from being an
individual choice to becoming a social norm. In this paper,
we introduce a new normative multi-agent architecture, Cog-
nitive Social Learners (CSL), that models bottom-up norm
emergence through a social learning mechanism, while using
BDI (Belief/Desire/Intention) reasoning to handle adoption
and compliance. CSL preserves a greater sense of cognitive
realism than influence propagation or infectious transmission
approaches, enabling the modeling of complex beliefs and
contradictory objectives within an agent-based simulation. In
this paper, we demonstrate the use of CSL for modeling norm
emergence of recycling practices and public participation in
a smoke-free campus initiative.

Introduction
Large-scale public adoption of proposed solutions is a ma-
jor barrier for addressing sustainability challenges including
mitigating the effects of anthropogenic climate change, im-
proving home energy efficiency, and effectively utilizing re-
cycling options. A dilemma facing public policy planners is
that these sustainability issues often fall under the category
of “wicked problems” that aren’t easily evaluated and offer
reduced opportunities to learn by trial and error (Rittel and
Webber 1973). Modeling and simulation can serve as im-
portant tools for exploring the unforeseen consequences of
potential solutions. For instance, e-Policy, a decision sup-
port system for sustainable policy making, uses agent-based
modeling to assess the impact of policy initiatives (Eaton,
Gomes, and Williams 2014).

One research question is how to accurately model the in-
fluence of norms at governing the adoption of sustainable
practices. Norms play a significant role in determining the
behavior of people in human societies, and have been used
as a computational mechanism for creating coordinated ac-
tion within normative multi-agent systems. Previous work
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on modeling norm lifecycles can be organized into two cat-
egories: internal and external. In the first category, norms
are characterized as arising from internal mental processes
that can be specified using cognitive modeling techniques,
and normative behavior is viewed as the outcome of in-
ternalizing external preferences. The normative agents are
able to acquire new norms, rather than relying on preexist-
ing constructs, and can deliberate about norm compliance
autonomously (Criado, Argente, and Botti 2010). In the sec-
ond category, the focus is on social interactions, and game-
theoretic models are used to quantify the bottom-up pro-
cess of recognizing and complying with norms in the ex-
ternal social system (Sen and Airiau 2007). Convergence
occurs when agents arrive at a mutually agreed upon util-
ity maximization strategy. A limitation of this type of sys-
tem is that the agents lack a sense of normative expecta-
tion and do not distinguish between a strategy and a social
norm (Savarimuthu and Cranefield 2011).

Our proposed architecture, Cognitive Social Learners
(CSL), bridges the gap between these two types of archi-
tectures and provides a computational mechanism for transi-
tioning behaviors learned during repeated social interactions
into the agent’s internal cognitive model of preexisting be-
liefs, desires, and intentions. Rather than modeling the nor-
mative lifecycle as a sequence of stages (e.g., recognition,
adoption, compliance), CSL implements norms through an
iterative process in which the normative behavior is devel-
oped incrementally within each agent’s cognitive model be-
fore it emerges in consistent patterns of observable behavior.

Normative multi-agent systems are a powerful mecha-
nism for modeling complex social problems, including en-
ergy consumption, water usage, and soil conservation. For
instance, social norms have been found to affect enrollment
in payment for ecosystem services (PES) (Chen et al. 2012).
The general purpose of PESs is to provide incentives for
participants who voluntarily decrease the amount of harm-
ful activities to the ecosystem. Group-oriented strategies
for cultivating sustainable practices, such as community-
based social marketing, have been shown to be effec-
tive, because they emphasize the cultivation of community
norms (McKenzie-Mohr 2013).

This paper presents a study of group normative behavior
in a public environment; we illustrate how norm emergence
under our hybrid CSL architecture differs from the perfor-
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mance of a cognitive architecture (NBDI), a social learning
only model (SL), and a specialized single-behavior norma-
tive system for modeling smoking cessation trends (LNA).

Related Work
We selected littering/recycling behaviors for our initial study
as a good example of a sustainable practice governed by a
combination of social norms, environmental factors, habit,
and personality differences. Savarimuthu et al. (2009) also
used a littering scenario to demonstrate the operation of
their normative multi-agent system. Based on human sub-
jects studies, Schultz et al. (2013) note that the presence of
litter positively predicts future littering behavior; unsurpris-
ingly, the availability of trash receptacles is negatively cor-
related with littering. The next sections present an overview
of cognitive (internal) and interaction (external) normative
systems.

Cognition-based Approaches
These methods provide high-fidelity models of the cogni-
tive aspects of normative behavior, while focusing on the
internal part of the norm lifecycle (Elsenbroich and Gilbert
2014). In comparison with the interaction-based models de-
scribed in next section, this category relies less on the use of
reward and punishment to motivate norm adoption, moving
beyond the carrot and stick approach (Andrighetto and Vil-
latoro 2011). For instance, the EMIL architecture includes
a dynamic cognitive model of norm emergence and innova-
tion (Conte, Andrighetto, and Campennl 2013). The main
disadvantage of EMIL is that the agents obey all recog-
nized norms blindly without considering their own motiva-
tions (Criado et al. 2010). However, these architectures can
model norm internalization in which agents manifest behav-
iors, not because of existing rewards or punishments in the
environment, but as a personal objective (Andrighetto, Vil-
latoro, and Conte 2010).

Norm internalization is sometimes implemented via emo-
tions (Criado et al. 2013) and is very closely related to delib-
eration. Dignum et al. (2000) presented an architecture that
allows agents to use deliberation to decide when to follow
or violate norms. The agent generates behavior by creating
and selecting goals on the basis of beliefs and norms, before
choosing actions and plans according to the selected goals.
The deliberation can also be implemented with a modified
BDI interpreter loop that takes norms and obligations into
account (Dignum et al. 2000). A weakness with these mod-
els is that they devote less attention to norm emergence at
the population level.

Like our proposed CSL architecture, several existing nor-
mative architectures also use BDI reasoning as a core com-
ponent. For instance, the BOID architecture (Broersen et al.
2001) adds the notion of obligation as a fourth element to
the original belief, desire and intention model. Normative
BDI (Criado, Argente, and Botti 2010) extends the multi-
context BDI architecture (Sripada and Stich 2005) which in-
cludes two new functional contexts (planner and communi-
cation) to support normative reasoning with additional con-
texts (recognition and normative). In this paper, we evaluate
our proposed CSL architecture vs. NBDI.
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Figure 1: Cognitive Social Learners (CSL) Architecture

Interaction-based Approaches
Interaction-based approaches create agent models that can
detect norms from what they observe in the environment
and their interactions with other agents. Often the agents are
equipped with the ability to learn from experience, and in-
teractions among agents are modeled as repeated games with
payoff matrices. The simplest interaction approach is to im-
itate other agents in the environment —“while in Rome, do
as the Romans do.” For instance, Andrighetto et al. (2008)
present a normative model in which the agents mimic the
majority behaviors; this type of agent is commonly referred
to as a social conformer. Generally these imitation agents
lack high-level reasoning and decision making abilities.

Social learning (Sen and Airiau 2007) offers a richer
model of norm emergence. In social learning, agent inter-
actions are modeled as a staged game (the social dilemma
game). A norm emerges when the entire population’s ac-
tions converge to the same action, based on updates to the
payoff matrix specifying the reward for the possible actions.
Several variants of multi-agent reinforcement learning have
been demonstrated for this interaction model. However, a
general concern that exists about this family of repeated
game interaction models is that 1) they do not capture many
of the rich interactions that take place in real world scenar-
ios and 2) can fail to converge when the agents have a large
action-space (Andrighetto et al. 2013).

Method
This paper introduces a new architecture, Cognitive Social
Learners (CSL), that includes components from the two cat-
egories of normative architectures, and presents a cohesive
model for modeling the emergence of norms related to sus-
tainable practices. Figure 1 shows a schematic view of CSL.
In this architecture, the belief, desire and intention compo-
nents implement the cognitive aspects of norm formation,
while the game theoretic (GT) interaction and reinforce-
ment learning (RL) recognition parts implement the social
aspects.

We will use a littering scenario as an explanatory exam-
ple, to describe the proposed architecture’s elements. Later,
in the experiments section, this scenario is used to evaluate
the performance of the CSL architecture at modeling norm
emergence. The example scenario relates to people who visit
a park. They have five possible actions: littering, recycling,
violating park rules regarding animal feeding, violating park

2018



rules by trespassing on the foliage, and performing no ac-
tion.

The representation used for the BDI components and
the norms is based on a simplified version of the frame-
work introduced by Casali, Godo, and Sierra (2008) and
Criado, Argente, and Botti (2010) in which a certainty
degree is assigned to each representation. For example,
(D−payfine, 0.45) designates a negative desire toward pay-
ing a fine with a certainty degree of 0.45.

Belief, Desire, and Intention
The CSL architecture follows a classic BDI structure. Like
many normative architectures, each agent is initialized with
a set of personal values that model innate preferences.
In CSL, these personal values are used to create type
1 beliefs that have a certainty equal to 1; for instance
(B[happiness = 50], 1) indicates that the personal value of
the agent regarding happiness is equal to 50. The other type
of beliefs (type 2) model the agent’s actions, represented as
(B[α]ϕ, δ). (B[littering]botherRest, 0.30) indicates that
the agent believes, with certainty of 0.30, that littering would
bother the other agents.

Desires can be determined independently or based on the
agent’s beliefs. Desires are represented as (D∗ϕ, δ), which
models the positive or negative (∗ = {−,+}) desire of an
agent regarding state ϕ with certainty of δ. An agent may
update its desires when its beliefs changes. This process is
shown in Equation 1; the certainty value of desire D is up-
dated based on function f , which is is a user-defined func-
tion.

((D∗ϕ, δϕ), (B[α]ϕ, δφ))⇒ (D∗ϕ, f(δϕ, δφ)) (1)
Intentions are derived from the set of positive desires, if

they have a certainty value higher than sum of the certainty
values of all negative desires relevant to the intention. Equa-
tion 2 shows this:

((D+ϕi1 , δϕi1
), ..., (D+ϕin , δϕin

), (planj , δj))

⇒ (Ik, f(δi1 ...δin , δj))

(2)
while Σ(δi1 ...δin) ≥ Σ(δl1 ...δln) and l1 to ln are indices of
negative desires toward effects of Ik. According to this for-
mula, the set of positive desires (from i1 to in) and plan j
will determine the intention k based on a user defined func-
tion f . In the littering case, an agent might have positive de-
sires toward higher happiness and spending less effort, but
negative desires toward paying a fine and being observed by
others. In this case, if the sum of certainty values for hap-
piness and spending effort is more than the sum of certainty
values for paying the fine and being observed (assuming that
littering is part of the agent’s current plan), it will litter.

Game-theoretic Interaction
Instead of deciding its actions based on intentions alone,
which is often the case in BDI-based methods, the agent’s
final action is determined after playing a social dilemma
game with one of its neighbor agents. The maximum cer-
tainty value of available intentions is used to create a two-
by-two matrix. The two possible actions are performing or
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Table 1: Example payoff matrices for the littering (L=litter,
NL=not litter). ι shows the computed payoff value for litter-
ing. ι′ is the payoff for not littering.

not performing that action. After calculating the payoff value
for an action based on the related intentions, fixed values of
α and β are used to increase the value of the elements in the
matrices representing coordinated action (the agent and its
neighbor selecting the same actions) (Easley and Kleinberg
2010). Example of this matrix for the littering scenario are
shown in Table 1.

Based on the outcome of played games, an agent decides
what action to perform. What an agent observes after per-
forming an action may cause an agent to update its personal
values (type 1 beliefs) and learned norms, which in turn
modifies its behavior in subsequent steps. For instance, in
the case of our example scenario, after littering, an agent’s
happiness value will increase; or if there is a punisher in its
vicinity, its paid-fine value will increase.

Norm Recognition using RL
The goal of this component is to construct a practical way
of recognizing/learning norms, while connecting different
components of the architecture. Our RL based recognition
component plays the role of a hub among norms and per-
sonal values (beliefs) on one hand and the game theoretic
interaction on the other hand.

The combination of GT interaction and RL based recog-
nition components is used to implement the social learning
process which propagates norms across the agent popula-
tion. The aim of the social learning framework is different
from similar processes in the domain of multi-agent rein-
forcement learning, in which agents play iterative games to
learn a policy resulting in a competitive or cooperative equi-
librium. Sen and Airiau (2007) note several differences be-
tween social learning and multi-agent RL, including the lack
of equilibrium guarantees. At every timestep, each agent in-
teracts with a single changing agent, selected at random,
from the population. The payoff received by the CSL agent
depends only on this interaction. We use a basic Q-learning
algorithm for recognizing norms in which states are the dis-
cretized current values of an agent’s payoff matrices. Learn-
ing results in modifications to the certainty degree of avail-
able norms. Rewards are calculated based on the changes in
the personal values.

Norms
The process of recognizing a social norm is modeled by
an agent increasing the norm’s certainty value to a pos-
itive value. The agent updates the certainty values of
norms based on its observations after performing an ac-
tion. Our norms are represented using the format intro-
duced in Criado et al. (2013), 〈∆, C,A,E, S,R〉, in which
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∆ designates the type of norm, C is the triggering con-
dition, A and E show the activation and expiration pe-
riod of the norm, and S and R indicate a reward or
sanction. For example, this is an example of a possible
norm: (〈prohibition, littering,−,−, payfine,−〉, δ), which is
always valid since there is no duration on activation, A, and
expiration, E.

All of possible norms are initialized at the beginning of
the simulation with the certainty value of zero. Agents up-
date their norms by increasing or decreasing the certainty
value of each norm after making an observation. For in-
stance, if the agent receives a fine after littering, it will up-
date its current value of (δ) in the above norm example with
(δ + ε), where ε is a user defined value.

An agent’s current norms are used to update its beliefs
and desires. The updating procedure is shown in Equa-
tions 3 to 5. Here, norms are abbreviated as N instead of
〈∆, C,A,E, S,R〉 in order to shorten the formulas. Here, if
there are any relevant rewards R (or sanctions S), the posi-
tive desire D+ (or a negative desire D−) will be updated. f
functions are user defined functions.

((Ni, δN ), (B[α]ϕ, δφ))⇒ (B[α]ϕ, f(δN , δφ)) (3)

((Ni, δN ), (D+ϕ, δϕ), R 6= ∅)⇒ (D+ϕ, f(δN , δϕ)) (4)

((Ni, δN ), (D−ϕ, δϕ), S 6= ∅)⇒ (D−ϕ, f(δN , δϕ)) (5)

As an example, if there exists the norm
(〈prohibition, littering,−,−, payfine,−〉, 0.75) and a
negative desire toward paying fine (D−payfine, 0.55),
assuming the agent has just paid a fine for littering (S 6= ∅)
with f = min(max(0.75, 0.55), 1), the resulting updated
desire would be (D−payfine, 0.75).

Experiments
To demonstrate the utility of our normative architecture at
modeling the adoption of sustainable practices, two case
studies are presented. In first case study, we evaluate the per-
formance of CSL at simulating norm emergence in a park
scenario, as compared to the normative BDI (NBDI) and so-
cial learning (SL) architectures. The second case study is
designed to evaluate the ability of CSL to model the prop-
agation of norms in real-world environments. We compare
the performance of our proposed architecture with an exist-
ing architecture for simulating the propagation of smoking
norms.

Park Case Study
This case study is designed to recreate the frequently ob-
served “tragedy of the commons” in which humans are mov-
ing through a public area like a park and have the option
to improperly dispose of trash and recycling on the ground,
stow their waste for future disposal, or proactively recycle
objects dropped by other passersby. Additionally, there are

two other actions that the agents can perform, which are vio-
lating park visitor rules by feeding the animals and trespass-
ing on the grass. Among this set of actions, littering, feeding
animals and walking on the grass are negative, but poten-
tially contagious, behaviors. Our scenario is a useful model
for describing many public policy social dilemmas, and is
more complicated than the rules of the road scenario, often
used to simulate the emergence of driving conventions.

Agents - In this scenario, the agents have the following
action selections: litter, recycle waste, violate park rules by
feeding animals, violate park rules by trespassing on grass,
or take no action. For these experiments, we fixed the pop-
ulation size at 1000. There is an observable vicinity defined
for each agent. Within that range an agent can observe other
agents’ actions. A certain percentage of agents are assumed
to be punishers (20 percent), which means they will pun-
ish agents who litter, feed animals, and walk on the grass, if
those agents perform these actions in their observable area.
Moreover, recycling while there is someone to observe the
agent, will increase the reputation of agent.

Beliefs, Desires, and Intentions - Each agent has a set
of beliefs, desires and intentions. Also, as part of its beliefs,
each agent has a set of personal variables: happiness, park
usability, reputation, spent time, and paid fine. The certainty
values (δ) for beliefs and desires are assigned uniformly at
random at the beginning of the scenario. Intentions are de-
rived from the set of beliefs, desires and plans. The inten-
tions are determined according to Equation 2.

Payoff Matrices - In both CSL and SL, the agent plays a
game with the closest agent within its observable area each
time that it needs to make an action decision. For each ac-
tion, an agent has a two by two payoff matrix that determines
the agent’s decision. The agent picks the intention with the
highest certainty value. The values of this payoff matrix are
determined by the certainty degree of the selected intention,
as described in the method section. This means that in our
architecture, the intentions do not directly determine agent’s
actions, instead they define payoff matrix values. For in-
stance, each time that an agent generates a piece of trash,
and needs to decide whether to litter or not, it uses its lit-
tering payoff matrix, and plays a social dilemma game with
the closest agent. Similarly, every time that the agent ob-
serves garbage in its vicinity it uses its recycling payoff ma-
trix to decide whether to recycle the garbage or not. Since
the agents move through the park in a random walk, they
have the possibility of encountering new agents during ev-
ery round.

Q-learning - The learning component is implemented us-
ing the Q-learning algorithm. The current values of the pay-
off matrices determine the states of the Q-table. The selected
action modifies the certainty value of norms. After an agent
performs an action, it observes the consequences of its ac-
tion to compute the overall received payoff, which is then
used to update the Q-table. Each of the agent’s actions in-
creases or decreases agent’s personal variable values accord-
ing to a fixed formula applied to all agents in the scenario.
For example, littering would increase happiness, but would
decrease park usability. Littering decreases reputation when
there is an agent in the vicinity; in the presence of a punish-
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ing agent, the offending agent pays a fine.
Norms - All possible norms are initialized as having a

certainty value of zero. During initialization, we create all of
possible norm combinations based on the introduced norm
representation: 〈∆, C,A,E, S,R〉. The type of norm and its
reward or sanction nature can be determined by the value
for C. We assume that all norms are always valid during
the experiment, so we don’t need to take A and E into
account. Thus 24 possible norms are defined for this sce-
nario: |obligation, prohibition, permission|*|littering, recy-
cling, feeding animals, walking on grass|*|reward, sanction|.

Figure 2 shows the pseudocode describing an agent’s be-
havior for one time-step in the CSL implementation. The
certainty value of beliefs and desires are initialized uni-
formly at random at the beginning of the scenario.

init(blf, des, pln, q-tbl)
repeat

generateIntention(blf, des, pln) . Equation 2
updatePMatrix(maxIntention)
if (converged-Qtbl) then

playGame(pMatrix,neighbors)
performAction()
update-qTable(rew, san)

else
performAction()

end if
update-norms(rew, san)
update-beliefs(rew, san, norms) . Equation 3
update-desires(rew, san, norms) . Equation 1, 4 & 5

until agent not selected

Figure 2: CSL pseudocode
(blf=Beliefs, des=Desires, pln=Plans, rew=Rewards, san=Sanctions)

Results - Our proposed framework (CSL) was compared
against two other benchmarks. The first one, NBDI, is a
version of the normative BDI architecture described in Cri-
ado, Argente, and Botti (2010), and the second one, SL, is
the social learning framework introduced in Sen and Airiau
(2007). In order to make a fair comparison between differ-
ent architectures, the NBDI and SL frameworks are imple-
mented by removing some of the components of CSL. The
NBDI benchmark does not play the social dilemma game
and does not use reinforcement learning to generate and up-
date norms. In this case, intentions determine actions, and
then the norms are updated based on the feedback received
from the environment. Note that the way that the norm rep-
resentation was implemented (by modifying the certainty
value of norms) is not part of the original version of NBDI.
The norm recognition part in the original NBDI was as-
sumed to work as a blackbox, and there was insufficient de-
tail about its implementation to recreate it. Hence we simply
used the same norm recognition structure for both CSL and
NBDI. For the SL framework, each agent has payoff matri-
ces, and updates them using Q-learning. SL lacks the BDI

representation, as well as the internal features and explicit
norm representation. Results are presented for an average of
20 runs of the social simulation.

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

%
 s

h
o

w
in

g 
n

o
rm

at
iv

e
 b

e
h

av
io

r

Iteration

CSL

NBDI

SL

Figure 3: % of agents exhibiting normative behaviors

The percentage of agents demonstrating normative behav-
ior is shown in Figure 3. The purpose of this experiment was
to study the overall ability of the agent population to recog-
nize and adopt to social norms. For each agent, normative
behavior is assumed to be occurring when more than 90 ac-
tions of the agent’s last 100 actions are normative actions.
Normative actions refer to: recycling, not littering, not feed-
ing animals and not trespassing on the grass. Obviously, only
when the agents have the possibility of performing these ac-
tions, their action is counted. For instance, only when an
agent is close to animals, it can feed or not feed them. As the
chart shows, a greater percentage of the CSL agents evince
normative behavior, compared to NBDI and SL.

Figures 4a, 4b and 4c illustrate differences between the
cumulative normative vs. non-normative actions that were
performed by a population of 1000 agents averaged over 20
runs of the models. The main goal of this experiment was to
evaluate the ability of each method to propagate conformity
to social norms. In all cases, the sum of all action types ini-
tially rises. In the CSL case, growth of non-normative behav-
iors reaches an asymptote while performance of the (norma-
tive) recycling behavior rises sharply. In NBDI and SL, the
amount of recycling is low compared to the other behaviors.
Moreover the speed and extent of norm emergence exhibited
by CSL is more than the NBDI and SL methods.

Smoking Cessation Case Study
The performance of the CSL architecture was also measured
in a real-world scenario, modeling the propagation of smok-
ing cessation norms after a smoke-free campus initiative.
Here we compare CSL vs. LNA (lightweight normative ar-
chitecture) that was developed specifically for modeling nor-
mative smoking behavior (Beheshti and Sukthankar 2014).

The LNA architecture follows the classic three stage norm
lifecycle (recognition, adoption, and compliance) and uti-
lizes a continuous variable (smoking value, SV) between
0 and 100 to determine the current stage of the agent. We
use the same structures as the original work, and apply the
CSL architecture to this model. LNA uses a set of defined
personal characteristics (individualism, achievement, regret,
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Figure 4: The recycling (cleaning) norm only strongly emerges in CSL, not in NBDI and SL.

health and hedonism); these characteristics were expressed
within CSL as fixed value elements of beliefs (Type 1).

In order to have a fair comparison between the two meth-
ods, we modified the original model as little as possible. In
addition to comparing CSL with LNA, we also examine the
performance of the NBDI architecture on this dataset. Since
LNA includes a component very similar to the social learn-
ing method, the SL method was not implemented indepen-
dently.
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Figure 5: Left: % of predicted smokers vs. empirical data.
Right: the % of predicted students willing to participate in
smoking cessation classes vs. empirical data from Fall 2012.

Figure 5 shows the comparison between the number of
students who were smokers and students willing to attend
smoke cessation classes. The performance of CSL at pre-
dicting the actual adoption of the smoking cessation norm
is comparable to the specialized smoking model (LNA) and
superior to NBDI.

Beta p level
CSL 0.22 0.001
LNA 0.001 0.007
NBDI −0.01 0.005

Table 2: Standard coefficient (Beta) values of the applied lin-
ear regression to perceived social acceptability of smoking
(independent var.) and quit intention (dependent var.)

Table 2 shows a comparison between the different archi-
tectures at predicting the perceived social unacceptability
of smoking. This phenomenon is reported in many smok-

ing studies including Dotinga et al. (2005) and Hammond
et al. (2006) as occurring when smoking bans exist in hu-
man cities. Brown et al. (2005) shows that perceived social
acceptability of smoking among referent groups is indepen-
dently associated with both strength of intention to quit and
actual quitting behavior.

In the LNA architecture, it is assumed that an agent has
the intention to quit smoking if its smoking value (SV) is
within a certain range. The social unacceptability of smok-
ing across the population of agents is determined using the
value for one of the agent’s personal characteristics (IND).
The value of this factor was initialized based on data from
a survey question asking whether the participant believes
smoking is acceptable on campus. Following the works
mentioned above, a linear regression model was used to ex-
amine the relationship between these two elements, and the
standard coefficient (Beta) value of the applied linear regres-
sion is shown in Table 2. The CSL model produces a posi-
tive Beta value, which is consistent with the real-world data.
This shows that, using CSL, agents are able to reason about
the socially perceived unacceptability of smoking behavior,
and modify their behaviors accordingly. Therefore, CSL is
modeling norm emergence in a more realistic manner. On
the other hand, the Beta values for the LNA and NBDI ar-
chitectures is close to zero, which does not accurately reflect
the results reported in independent smoking studies.

Conclusion
Normative multi-agent systems are a promising computa-
tional mechanism for representing group influences on hu-
man social behavior and creating large-scale social simu-
lations for a variety of interesting public policy questions.
The paper presents a normative architecture, Cognitive So-
cial Learners, that bridges the gap between two lines of re-
search on norms. We benchmarked our architecture against
three other models (NBDI, SL, and LNA) at predicting the
adoption of sustainable practices. Our results indicate that
the CSL architecture is more robust than models that rely ex-
clusively on internal or external processes at modeling norm
emergence in complex real-world scenarios.
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