Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

Knowledge Forgetting in Circumscription: A Preliminary Report

Yisong Wang
Department of Computer Science,
Guizhou University, 550025, China

Abstract

The theory of (variable) forgetting has received signif-
icant attention in nonmonotonic reasoning, especially,
in answer set programming. However, the problem of
establishing a theory of forgetting for some expressive
nonmonotonic logics such as McCarthy’s circumscrip-
tion is rarely explored. In this paper a theory of for-
getting for propositional circumscription is proposed,
which is not a straightforward adaption of existing ap-
proaches. In particular, some properties that are essen-
tial for existing proposals do not hold any longer or have
to be reformulated. Several useful properties of the new
forgetting are proved, which demonstrate suitability of
the forgetting for circumscription. A sound and com-
plete algorithm for the forgetting is developed and an
analysis of computational complexity is given.

Introduction

The ability of discarding irrelevant information from knowl-
edge bases is a significant feature for logic-based agent
systems (Lin and Reiter 1994; Lang, Liberatore, and Mar-
quis 2003; Zhang and Zhou 2009). It can be naturally
formalised as a form of knowledge forgetting in artificial
intelligence (AI). Forgetting closely correlates with vari-
ous notions in logics and Al, including irrelevance (Lake-
meyer 1997), the weakest sufficient and strongest neces-
sary conditions (Lin 2001; Doherty, Lukaszewicz, and Sza-
las 2001), uniform interpolation (Goranko and Otto 2007).
Knowledge forgetting has been extensively applied in ar-
tificial intelligence (Lang, Liberatore, and Marquis 2003),
such as cognitive robotics (Liu and Wen 2011; Rajarat-
nam et al. 2014), resolving conflict (Zhang and Foo 2006;
Eiter and Wang 2008) and handling inconsistence (Lang and
Marquis 2010), belief update (Delgrande, Jin, and Pelletier
2008), and ontology engineering (Lutz and Wolter 2011;
Wang et al. 2014a).

Recent approaches to knowledge forgetting fall into two
major streams. One stream covers works about forget-
ting for monotonic logical formalisms including proposi-
tional logic, predicate logic and its subclasses (typically,
description logics), and (epistemic) modal logics, such as
(Lang, Liberatore, and Marquis 2003; Lin and Reiter 1994;

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Kewen Wang and Zhe Wang and Zhiqiang Zhuang

School of Information and Communication Technology,

1649

Griffith University, QLD 4111, Australia

Kontchakov, Wolter, and Zakharyaschev 2008; Wang et al.
2010). Another stream is about forgetting for nonmono-
tonic logics, especially, logic programs under answer set
semantics (Zhang and Foo 2006; Eiter and Wang 2008;
Wang, Wang, and Zhang 2013; Wang et al. 2014b). Due
to the pivotal role of commonsense reasoning in artificial
intelligence, it is worthwhile to study forgetting in dominat-
ing nonmonotonic formalisms, such as circumscription (Mc-
Carthy 1980), default logic (Reiter 1980) and autoepistemic
logic (Moore 1985).

For instance, a commonsense knowledge about birds is
that they can fly unless there exists abnormality. Let us con-
sider the following simple propositional case:

. bird(tweety) A —ab(tweety) — fly(tweety)
| bird(tweety)

In terms of circumscription' (Lifschitz 1994), one can use
CIRC[X; ab; fly| to represent such a commonsense knowl-
edge. It has a unique model {bird(tweety), fly(tweety)}.
If bird(tweety) is discarded from ¥ in the circumscrip-
tion, a natural question is: what would be the resulting
theory of circumscription? In propositional logic, the re-
sult of forgetting bird(tweety) is ¢» = —ab(tweety) —
fly(tweety) ab(tweety) V fly(tweety) for which the
atom ab(tweety) is not circumscribed. Ideally, the result of
forgetting bird(tweety) in X should be CIRC[¢); ab, fly],see
Example 1.

As suggested by Delgrande (2015), the central ideal about
forgetting is to retain exact “knowledge content” that is irrel-
evant from being forgotten signatures. From the perspective
of knowledge content, the circumscription CIRC[X; ab; fly]
specifies a knowledge base X as well. Thus, if X' is a result
of discarding bird(tweety) from ¥ in the circumscription
then ¥’ and X should be semantically as close as possible
under circumscription.

Forgetting is known as an operator of quantifier elimina-
tion and thus in this way, it is closely related to circumscrip-
tion. Some variants and (slight) generalizations of classical
forgetting have been used to define and compute circum-
scription, e.g. literal forgetting (Lang, Liberatore, and Mar-
quis 2003), literal forgetting with varying atoms (Moinard

'A propositional circumscription is a quantified Boolean for-
mula, which is equivalent to a propositional formula. See the next
section for a formal definition of circumscription.

2007), and projection and scope-determined circumscription
(Wernhard 2012). However, none of these approaches con-
siders a definition of forgetting for circumscription itself and
it is not obvious to come up with such a suitable definition.

As a preliminary step towards knowledge forgetting in
circumscription, we first introduce the concepts of strong
equivalence and irrelevance for circumscription, and present
some useful properties of them. Then we propose a notion of
forgetting for circumscription, which takes into account the
knowledge content of both circumscription and its knowl-
edge base. This is not a straightforward extension of exist-
ing definitions, which can be seen from both the definition of
forgetting and its major properties. The result of forgetting
for circumscription always exists and is unique up to strong
equivalence of circumscription. To provide some further in-
sights into the proposed theory of forgetting, we present sev-
eral important properties of the forgetting, demonstrate that
some properties holding for previous approaches do not hold
any longer and explain why they should not hold.

Moreover, we present an algorithm for computing the re-
sult of forgetting for circumscription and present some pre-
liminary results on computational complexity of the forget-
ting.

Propositional Circumscription

We consider a propositional language £ with a finite sig-
nature .4 of propositional atoms (or, variables). Formulas
of £A are built from A, T and L using the connectives
-, A\, V,—, <> as usual. For S C A, we denote S = A\ S
and =S = {-p|p € S}.

An interpretation of £ is identified as a set of atoms,
which assigns frue to each element in the set, and false to the
others. A model of a formula is defined as usual. The set of
all models of a formula ¢ is denoted Mod(y). Two formulas
o and v are equivalent, written p = 1, if they have the
same models. Given formulas £, o, ¥, we write £[¢ /1] for
the formula obtained from £ by replacing occurrences of
with . By Var(p) we denote the set of atoms occurring in
®.
The expression ¢(P,Q,Z) means that ¢ is a formula
in £4 and {P,Q,Z} is a partition of A. For simplic-
ity, o(P,Q,Z) can be just written as (P, Q) due to the
fact that Z = P U Q. For convenience we identify a tu-
ple (t1,...,t,) of pairwise distinct objects with the set
{t1,...,t,} when there is no confusion. This way, when X
and Y are tuples of variables of the same length as P and
@ respectively we use ¢(X, Y, Z) to denote the formula ob-
tained by simultaneously replacing all elements of P and)
in ¢ by the elements of X and Y, respectively.

For P = (p1,...,pr) and @ = (q1, .. ., qx), we denote

P=Q for (p1 <> qi) N+ A (pr < ar);
P<Q for (p1 = @) A A Dk — qi);
P<Q for(P<Q)A—(P=Q).

In particular, if & = 0 then both P = @ and P < @ are
equivalent to T; while P < @ is equivalent to .

1650

Definition 1 The circumscription of P in ¢(P,Q, F') with
atoms in @ being allowed to vary and the atoms in F be-
ing fixed, written CIRC|p; P; Q)], is the following quantified
formula

e A-3XY (o(X,Y,F)AX < P), (1)

where X and Y are tuples of distinct variables having the
same length as P and Q), respectively. For convenience,
CIRC[p; P; Q) is shortened as CIRC|p; P if Q = (.

A model of a circumscription is defined as that of the
quantified Boolean formula. As it is well-known Jp.p =
¢(p/L) V ¢(p/T) and Vp.p e(p/L) N op/T),
CIRC|yp; P; Q)] is equivalent to a propositional formula.

Let M; (i = 1,2) be interpretations and P,) two disjoint
sets of atoms. We say that M, is as least as (P; Q)-preferred
to My, written M7 <Fi9 M,, whenever it holds that

MiNnPUQ=MNPUQ and M1NP C M>NP. (2)

By M; <PQ M, we mean My <9 M, but not My <Fi9
M;. An interpretation M is [P; Q]-minimal with respect to
(wrt) a collection M of interpretations whenever there is no
M' € M such that M’ <T3@ M. The following proposition
is well-known (Lifschitz 1985).

Proposition 1 An interpretation M is a model of circum-
scription CIRC[p(P, Q); P; Q] iff M |= ¢ and M is [P; Q-
minimal wrt Mod(y).

The condition of minimality can be defined in a more
general way. Let M be a collection of interpretations, P
and @ be two disjoint sets of atoms. We say that M is
[P; Q]-minimal if every element of M is [P;Q]-minimal
wrt M. By MM(p,)(M) we denote the set of all [P;Q]-
minimal elements of M; MM (M) denotes the set of min-
imal (under set inclusion) ones in M. For a formula ¢, by
MM p.q) () (resp. MM(p)) we denote MM |p.q)(Mod(y))
(resp. MM(Mod())).

Given a collection M of interpretations, by Form(M, A)
we mean the following formula (over the signature 4):

\V (Aaru-an) 3)
MeM
In particular, Form(M,A) = 1 if M = {, and

Form(M,A) = T if A = (> and M = {0}. When the
underlying signature A is clear from its context, we shorten
Form(M, A) as Form(M).

By the definition of circumscription, it is easy yo see the
following two properties.

Proposition 2 Let o(P, Q) and ¢(P, Q) be two formulas.
(i) CIRC[p; 0; Q] = CIRC[ip; 0; 0] = .
(ii) If ¢ =) then CIRC[p; P; Q] = CIRC[¥); P; Q.

2Please note that 24 = {¢} if A = 0.

Strong Equivalence and Irrelevance

In this section we adapt two important concepts strong
equivalence and relevance to circumscription. The former
is needed in several application domains such as knowledge
reuse since it is necessary to guarantee that when a module
in a knowledge base (KB) is replaced with an ‘equivalent’
module, the resulting KB is still ‘equivalent’ to the original
KB. The latter is closely relevant to knowledge forgetting.

Strong equivalence

Two formulas ¢ (P, Q) and ¥ (P, Q) are called

(1) [P; Q]-equivalent if CIRC[p; P; Q)] CIRC[); P; Q),
denoted by ¢ =cire[p;q] Vs

(2) strongly [P; Q]-equivalent, written p = =eirc[P;q) Vo EA
© Zcire[P;qQ) € A ¢ for any formula §.

The following result shows that the above definition of
strong equivalence is sufficient for the purpose of knowledge
module reuse.

Proposition 3 Let ¢(P, Q) and (P, Q) be two formulas.
Then o and v are strongly [P; Ql-equivalent iff § =cire[p;
&l /] for any formula €.

Proof sketch: We write ¢ éiirc[P;Q] Y if & =eire[P,
&[e/¥] holds for any formula &; It is easy to show that
@ = 1 implies ¢ *grc P Q] 1, and ¢ *ﬁm[P 1 implies
%) chQ] . If cmPQ] 1) but ¢ # 1) then we can
construct a formula ¢ = A (M U —M) such that M = ¢
and M [~ ¢, or M =+ and M [~ ¢. Either case implies
EN @ FeirelP;Q) E N, Viz @ égirc[P;Q] 1) does not hold, a
contradiction.]

By the definition of strong equivalence, we have the fol-
lowing simple but useful result.

Proposition 4 If two propositional formulas ¢ and v are
equivalent in propositional logic, then they are strongly
equivalent in circumscription.

Irrelevance

Let V' C A. Recall that a formula ¢ is irrelevant to V in
propositional logic, written IR(p, V), if there exists a for-
mula v containing no atoms from V' such that ¢ =). This
notion of irrelevance can be easily generalised to the circum-
scription as shown in the next definition.

For convenience, a singleton {E} is identified with F
when it is clear from its context.

Definition 2 ([P;)]-irrelevance) Ler V' C A. A formula
@(P, Q) is [P; Ql-irrelevant from V', written IR[p,q) (¢, V),
if there is a formula 1) containing no atoms from 'V such that
CIRC[¢p; P; Q] = CIRC[y); P; Q).

It is easy to see that IR(p, V') implies IR[p.q)(p, V),

but not vice versa. For instance, over the signature {p, ¢},

CIRC[=p; {p, q}] = CIRC[=g;{p,q}] = CIRC[T;{p, g},
thus both —p and —q are [{p, q}; #]-irrelevant from p and q.

However, IR(—p, p) does not hold.

1651

Proposition 5 IR|p o)(p, V') implies IR(p, V') if and only if
MMp q)(p) = Mod(p).

It shows that, whenever all models of ¢ are [P, Q]-minimal
wrt Mod(p), IR[p,g) (¢, V') is identical with IR(¢, V).

It would be difficult to determine if a formula ¢ (P, Q) is
[P; Q]-irrelevant from V using Definition 2. To provide an
alternative characterisation of [P;Q]-irrelevance, we need
the following two lemmas.

Two sets M and N of atoms are V -bisimilar, denoted by
M~y Nif M\V =N\V.

Lemma 1 Let (P, Q) be a formula and V- C A with V N
(P U Var(y)) = 0. Then M = CIRC|p; P; Q] iff M’ =
CIRC|p; P; Q)] for each M' ~vy M.

This lemma shows that when checking the validity of
IR[p.)(¢, V), we need only consider one representative
among all V-bisimilar interpretations. We then provide
some characterisations of [P; Q]-irrelevance from a single
atom.

Lemma 2 Let o(P,Q, F) be a formula and p € A.

(i) Ifp € QUF then @ is |P; Q]-irrelevant from p iff M =
CIRC[p; P; Q] implies M' |= CIRC|p; P; Q)] for each
pair of interpretations M and M’ with M’ ~,, M.

(ii) For p € P, ¢ is [P;Q]-irrelevant from p iff
CIRC[p; P; Q] = —p

(i) If V! C V. C A then IRp,(p,V) implies
IR[P;Q] (507 V/)

Now we are ready to provide a model-theoretic character-
isation of [P; Q]-irrelevance.

Theorem 1 (Characterization of [P; Q]-irrelevance) A
SJormula ¢ is [P; Ql-irrelevant from a set V' of atoms iff the
following two conditions hold:

(i) CiRclgs P5Q) = A~(V 1 P), and
(i) M [CIRC|p; P; Q] implies M' |= CIRC|p; P; Q) for
each pair of interpretations M and M' with M' ~y\ p

Proof sketch: (=) The condition (i) follows from (ii) of
Lemma 2, while the condition (ii) follows from Lemma 1.
(<) Let v = Form(Mod(CIRC|p; P; Q]), A). By (iii)
of Proposition 2, it holds CIRC[CIRC[¢); P; Q]; P; Q)]
CIRC[); P; Q] = 1. We can show that, under the conditions
(1) and (ii), IR(x), V).]

The [P; Q]-irrelevance of a formula from a union of two
sets of atoms is reduced to the irrelevance from each set.

Proposition 6 Letr V; and V3 be sets of atoms, and (P, Q)
be a formula. Then IR p.q)(0; Vi UV2) iff IR[p.q (@, Vi) for
i=1,2
Proof sketch: (=
A (V1 U V) N P) due to CIRC[<p,P Q] |—
P) (i = 1,2). By (ii) of Theorem 1, M |= CIRC[yp;
implies, for every M’ ~Vi\P M M E CIRC|p;
[¢;

for every M sz\p M’ by IRp,q)(¢p, V2), i.e. M"
CIRC[p; P; Q] for each M" ~ v,y \p M.

(«<=) It follows from (iii) of Lemma 2. [|

By the above proposition, a formula is [P; Q]-irrelevant
from a set V' C A if and only if it is [P; Q]-irrelevant from
each element in V.

Knowledge Forgetting in Circumscription
Let S and V be two subsets of A and S C 24. We define:
e The exclusion of S on V, written SW’ is the set S\ V;
e The projection of S on V, written S|V, istheset SNV;
o The expansion of S on V, written S;v, is the collection
{5'|8" ~v S}
o Sy ={Sw|S €Sk
o Sy ={Sv|S €Sk

* Sty =Uges Siv-

Recall that in propositional logic, a formula v is a re-
sult of forgetting V' C A from a formula ¢ iff Mod(y)) =
Mod(y)+v (Lang, Liberatore, and Marquis 2003). A syn-
tactic counterpart is the quantified formula V.. Its rep-
resentation theorem says that 3V.¢ consists of the knowl-
edge/information of ¢ which is irrelevant to V, i.e. 3V.p =
{¢IIR(&, V) and ¢ |= &}. We denote the result of classical
forgetting V' in ¢ by F(p, V).

Definition 3 Ler ¢(P,Q) be a formula and V. C A. A
formula 1 is a result of forgetting V' in CIRC[p; P; Q], or
[P; Q]-forgetting V in ¢, if the following two conditions
hold:

(a) IR(v, V), and
(b) Mod(v) is a maximal subset set of Mod()+v such that,

MMp.q|(V)rv = MM[p.q)(Mod(CIRC[p; P; Q])yv). (4)

Condition (a) requires that the result ¢ of forgetting for
circumscription is irrelevant to V', which is standard for
all definitions of forgetting. However, condition (b) is not
obvious and some elaboration on it is necessary. A ma-
jor condition for a definition of forgetting is that the re-
sult of forgetting should preserve the consequences of orig-
inal theory that are irrelevant to the signature to be for-
gotten. Given condition (a), without loss of generality, let
us assume that 1 does not contain any symbols in V.
Then for condition (b), Mod(v)) C Mod(p)+y is to guar-
antee that every consequence ¢ of [P;Q]-forgetting V' in
@ is entailed by ¢ if £ is [P;Q]-irrelevant to V. while
the maximality of Mod(t)) assures a theory closest to ¢
is obtained. Eq.(4) is the major part of condition (b). We
could have Mod(CIRC[¢); P; Q]) = Mod(CIRC[p; P; Q])yv
instead of Eq.(4). However, this is infeasible. The rea-
son is that some interpretations in Mod(CIRCp; P; Q])y
may be comparable when allowing atoms in @ varied;
but the models of CIRC[¢); P; Q] (equivalently, the [P; Q]-
minimal models of) must be incomparable. This is why
we take MM p.o)(Mod(CIRC[p; P;Q])yy) instead of sim-
pler Mod(CIRC|y; P; Q])y .

Note that a result of [P, Q]-forgetting V' is only needed to
be semantically irrelevant to V' and thus it may not be syn-
tactically irrelevant. That is, a result of [P, Q]-forgetting V'

1652

may still contain variables in V. Moreover, one might wish
to require that a result of [P, Q]-forgetting V' does not con-
tain symbols in V. This is possible and we just need to re-
place (4) with the following equation:

MM[p/yQ/] (1/))“/ = MM[P/,Q/] (MOd(CIRC[Lp; P; Q]))(V)

where P’ = Py and Q' = Qyy .

However, we can show that these two definitions are
equivalent in the sense that (1) each result £ of forgetting
defined by Eq.(4) is that defined by Eq.(5) if £ does not con-
tain variables to be forgotten; and (2) conversely, each result
of forgetting defined by Eq.(5) is that defined by Eq.(4).

Example 1 Consider circumscription theory CIRC[Y; P; Q)]
in Introduction where P {ab(tweety)} and Q@ =
{fly(tweety)}. Then ¢ = ab(tweety) V fly(tweety) is a
result of [P; Q]-forgetting bird(tweety) in CIRC[X; P; @),

(&)

which can be seen from ¢ = IV.X = JV.CIRC[Z; P; Q).

Theorem 2 For any formula ¢(P,Q) and any V. C A
there always exists a result of forgetting V' in CIRC|p; P; Q)

Proof sketch: A result of forgetting V' in CIRC[y; P; Q] is
constructed as follows.

My = Mod(CIRC[p; P; Qv
My = {Myy |M € Mod(p)y, and 3M’ € M,

such that M’ <% My}, (6)

M = M1 UMs,,
Y = Form(M, V).

It is obvious that Mod(¢)) C Mod(p)+y and IR(¢), V).

Let M' = Myy and ¢’ = Form(M’, A). On the one
hand, we can see that ¢ = ¢’ and MM[p,q)(M1)yy =
MM p.q)(M)yy = MM[p,q(M')yy . On the other hand, the
maximality of M’ follows from the construction and the fact
that IR(¢, V). |

The above theorem shows that [P; Q]-forgetting results
are unique up to equivalence in propositional logic (and thus
strongly equivalent in circumscription by Proposition 4). For
this reason, by Fp,q) (¢, V') we denote an arbitrary result of
forgetting V' in CIRC[yp; P; Q).

From the proof of Theorem 2, we have the following
corollary.

Corollary 3 Let 1) be a result of [P; Q|-forgetting V. C A
in p(P,Q). Then

(i) AV.CIRC[p; P; Q] |E ¢ and ¢ = V.,

(ii) CIRC[t); P; Q] = CIRC[); Py ; Qpv] A AN —=(V N P).

According to Theorem 2 in (Lee and Lin 2006),
CIRC|p; P; Q)] is equivalent to ¢ A ¢’ where ¢’ is the con-
junction of the conjunctive loop formulas for CIRC[p; P; Q).
Thus, item (i) of this corollary shows a relationship between
definitions of forgetting for circumscription and for propo-
sitional logic due to V.CIRC[p; P; Q] = V(o A ¢') =
Flo Ay, V).

Example 2 Consider ¢ = p V ¢ over the signature {p, ¢},

and V {p}. Then Mod(p) {{r}.{a}. {p.a}}.
Mod(p)+v = Mod(p) U {0} and, F(¢,V) = T.

(1) Let P {p} and @ = 0. Since CIRC[p; P;Q] =
(p V q) A=(p A q) whose models are {p} and {q},
we have Mod(CIRC[p; p])ry = {0,{q}}. By Eq. (6),
M = {0, {q}}, which is [P; Q]-minimal. Thus,

= Form(M,V)=qV—-q=T= Fipq(e; V).

It is evident that ¢ |= v but ¢ [~ .

Let P {p,q} and @ (). One can ver-
ify that CIRC[yp; P; Q] (pVq) AN—(p A q) and
Mod(CIRC|p; P; Q])yv {0,{q}}, which is not
[P; Q)-minimal due to § <@ {g}. According to
the construction of M in Eq. (6), one can verify that
F[p;Q](QD, V) = T

In the next proposition, item (i) shows that [P;Q]-
forgetting is a generalization of the forgetting for proposi-
tional logic; item (ii) states that results of [P; Q)]-forgetting
in two equivalent knowledge bases are still equivalent.
Proposition 7 Let ¢(P, Q) be a formula and V C A.

(i) If P = 0 then Fip,q(0, V) = F(p, V).

(ii) Ifgo = 1[) then F[P;Q} ((,07 V) = F[P;Q] ("LZ), V)
(iii) Fipq)(p,V) = IV.CIRC[p; P; Q] whenever Mod(yp)
is [P, Q]-minimal.
Proposition 8 Let (P, Q) be a formula and V- C A. It
holds that IR(p, V') iff ¢ = Fip,q) (¢, V).

Proof sketch: (=) By IR(p, V), if M}y |= ¢, then My
is [P; Q]-minimal wrt Mod(CIRC[y; P; Q)) iff it is [P; Q-
minimal wrt Mod(CIRC|p; P; Q). Therefore, M
Mod(p)yy, where M is defined as in Eq.(6).

(@)

As IR(p,V) implies IR[p.,q)(p, V), this proposition
shows that the results of [P;Q]-forgetting V' from ¢ are
[P; QJ-irrelevant from V/, i.e. IR p.q) (Fip.qi (¢, V), V).

Properties that are different from classical
forgetting

In this subsection, through some examples we will demon-
strate that our new theory of forgetting is distinct from clas-
sical forgetting and previous approaches to forgetting in an-
swer set programming.

First, if the original formula is Horn, the [P; Q]-forgetting
result may not be Horn expressible. This can be seen
from the following example. This is a difference of [P; Q)]-
forgetting from classical forgetting and (knowledge) for-
getting in answer set programming (Wang et al. 2014b;
Wang, Wang, and Zhang 2013).

Example 3 Let o = pAsA—qVPpASA—TV—(pVqVsVr)
over the signature {p, ¢, r, s}. Then

MOd(QO) = {wa {pa S}v {pa q, S}, {pa r, S}}

It is obvious that ¢ is Horn expressible, i.e., there is a Horn
formula ¢’ such that ¢ ¢, as Mod(p) is closed un-
der intersection. For P = {p} and Q = {s}, we can see
that Mod(CIRC[p; P;Q)) = {0, {p. 4,5}, {p,,5}]. Here
{p,s} W CIRC[p; P; Q] is due to h <T@ {p, s}. For

1653

V = {p}, by Eq. (6), we have that, over the signature
q,7, 58},

M= MOd(F[P;Q] (SOa V)) = {(Z)’ {(L 8}’ {7“, S}}

The reason for {p,s}y = {s} ¢ M is that {s} is
[P; Q]-minimal wrt Mod(CIRC[p; P; Q])yv, and it is not in
Mod(CIRC[p; P; Q])yv. Thus, Fip,q) (¢, V) is not Horn ex-
pressible.

The next example indicates that in general, Fip,q (p, 11U
V2) may not entail Fip,q)(Fip,q)(¢, V1), V2). Therefore,
[P; Q]-forgetting is sensitive to the orders of being forgot-
ten atoms.

Example 4 Let ¢ = pA—gA—rV-pAgAr, Vi = {p}, Vo =
{q}, P = {q} and Q = {r}. We have the following:

o)= F[p;Q]((p,Vl U V2) =T.
o 1 =Fp.q(p, V1) =qATV =g A
e 2 =Fp.g(p,V2) =pA-rV-pAr.
e Fip,q(¥1,V2) = —-rand Fip,q)(¢2, V1) = T.

The following example shows that V; C V5 does not im-
ply Fip.01(¢, V1) = Fip,qi(@, V2). Thus, the operator of
[P; Q]-forgetting V' is nonmonotonic wrt V.

Example 5 Leto = pAgArVpA—-gA-r, P={p,q},
Q@ ={r}, Vi ={p}and V2 = {p, ¢}. Then

o Mod(p) = {{p}. {p,a.7}}, MMp.q () = {{p}}-
e Fip.qi(o, Vi) =qArV g A -

o F[p;Q] ((p, VQ) =g A\,

It is evident that {q, 7} is a model of F(p,q) (¢, V1). How-
ever, it is not a model of Fp, (¢, V5).

While several properties of classical forgetting do not
hold for [P; Q]-forgetting, in the next subsection we iden-
tify conditions under which these properties hold.

Further properties of [P; Q)]-forgetting

In this subsection we present some further properties of
[P; Q]-forgetting.

Let M C 24 and F C A. We define a binary relation
~pon M as My ~p My iff My NF = My N F where
My, My € M. It is evident that ~p is reflexive, symmet-
ric and transitive, and thus it is an equivalence relation. For
x € M, by [z] = {N € M|N ~p z} we denote the equiv-
alence class to which x belongs. The set of all equivalence
classes of M by ~p, denoted M /~p, is the quotient set
of M by ~p, ie. M/~p = {[z]|lx € M}. So M/~F is
a partition of M. It is easy to see that CIRC[y; P; ()] has a
model in [z] for each [z] € Mod(p)/~F where F = P U Q.

Before we present some properties of forgetting for cir-
cumscription, we observe two lemmas.

Lemma 3 Let o(P, Q) be a formula and M a model of ¢.
(i) M € MMp,q() iff M|p € MM([M]p).
(ii) IfV.C Qor P CV C A then M € MMp,q () iff
My € MMipq (@)

Please note that in item (ii) of the lemma, condition V' C
() cannot be weakened to V' C F U Q.

Lemma4 Let o(P,Q) be a formula, V. C A and ¢p =
Fip.q(e, V).

(i) MMp.q)(V)|r = (MMp.q)(#)1v) |-
(i) If V. € Q or P g V' then MM[p;Q](QO)fV =
MMp.q)(¥)yv-

(iii) If V. C F U Q then Mod()) = Mod(p)+v

Proof sketch: (i) and (ii) follow from Lemma 3.

(iii) It suffices to show My, € M for each M |= ¢
where M is defined as in Eq. (6). It is clear that M}, € M
if M = CIRC[p; P; Q). In the case M = ¢ and M [~
CIRC|ip; P; @], there exists M’ = CIRC[p; P; Q] such that
M’ <P9 M, which implies M}, <"¢ My due to
V C FUQ. Therefore, My, € M.]

By Lemma 4 (iii), we have the following representation
theorem for [P; Q]-forgetting (under some condition).

Proposition 9 Let o(P, Q) be a formula and V C F U Q.
The following statements are equivalent:
(i) Fieiqi(e, V),
(ii) F(p, V),
(iii) {&|p = € and Var(€) NV = 0},
Moreover, under the same condition, [P;Q)]-forgetting

possesses several other interesting properties of classical for-
getting.

Proposition 10 Let o(P,Q, F), (P, Q, F) be two formu-
las, V, V1 and V5 are subsets of F' U Q. Then

(i) Fip,q(w, Vi U Va) = Fipiq(Fipq (), V1), Va).

[
(ii) Fip,o1(@ Vb, V) = Fip.o)(p, V) V Ep.g (¥, V).
(iii) Fip,qi(@ A, V) = Fipgi(@, V) AV IfIR(4), V).
(v) Fip,q(w, V1) E Fipiqi(p, V) if Vi C Va.

The next theorem provides some sufficient (and neces-
sary) conditions for “consequence preserving”.

Theorem 4 Let o(P, Q) be a formula, V C A, £ a formula
with IR(§, V') and 1) = Fip,q)(¢, V).

(i) If CIRC[p; P; Q] |= &, then CIRC[¢); P; Q] = €.
(ii) Under the condition V- C Q or P C V, it holds that
CIRC[p; P; Q] = & iff CIRC[¢); P; Q] = &
(iii) Whenever MMp.o1(¢)yv is [P; Q]-minimal, it holds
that CIRC[ip; P; Q] = & iff CIRC[3); P; Q] = €.

An algorithm and computational complexities

The proof of Theorem 2 actually hints a brute force algo-
rithm for computing [P, Q)]-forgetting.

The algorithm first find out all models of the input cir-
cumscription theory and then remove all variables of V' from
each of these models. From the resulting collection of inter-
pretations, we choose those minimal ones, which are actu-
ally the models of the result of forgetting in the circumscrip-
tion theory. Based on these minimal models, we are able to
construct the result of [P; Q)]-forgetting.

1654

Algorithm 1: Computing [P; Q]-forgetting result

Input : A formula p(P,Q)and V C A
Output: A result of [P; Q)]-forgetting V from ¢

1 M < Mod(CIRC[p; P; Q])yv;
foreach M s.t. M |= o and M ¢ M do
if 3M’ € M such that M' <9 My, then
| M= MU{My};

2
3
4
5 end
6
7
8

end

d’ A \/MeM (/\(M U

return ¢;

=(V\ M)));

Theorem 5 Algorithm I computes Fp,q(p, V).

Since | M| in Algorithm 1 is possibly exponential in the
size of p(P, Q) and V, it generates a formula which is in
exponentially large in the worst case.

It is known that the model checking problem for proposi-
tional circumscription, i.e. deciding if a model M of a for-
mula ¢ is a model of CIRC][p; P; @], is coNP-complete, cf.
Theorem 3 of (Cadoli 1992), whereas the inference problem,
i.e., deciding if a clause is derivable from CIRC[p; P; Q)], is
Hg—complete (Eiter and Gottlob 1993). Thus, we are able to
show the following results of computational complexity for
[P; Q]-forgetting.

Proposition 11 Let ¢(P,Q) be a formula, V- C A and
& a formula with IR(E, V). The problem of deciding if

CIRC[Fp,q1(0,V); P; Q] = {is in Hg.

Proof sketch: If CIRC[F[p,q| (0, V); P; Q] % & then there
exists M |= CIRC[p; P; Q] such that M,y is [P; Q]-minimal
wrt MM|p.)(¢)yv, Which is tractable by calling an I5-
oracle. As model checking for propositional circumscription
is in cONP, the problem is in IT5.]

Theorem 6 Let (P, Q) be a formula, V C A. Deciding if
0 =Fipp, V) is 115 -complete.

Proof sketch: Its hardness follows from the fact ¢

Fipio) (i, V) iff @ = F(ip, V), which is TIE-complete.

Concluding Remarks

For a propositional circumscription CIRC[y; P; @], we have
defined the notions of strong [P; Q)]-equivalence and [P; Q]-
irrelevance, which lay a foundation for our theory of [P; Q]-
forgetting for circumscription. [P; Q]-forgetting is a natural
generalization of forgetting for propositional logic. We in-
vestigated various properties of [P; (Q)]-forgetting, and pro-
vided some preliminary results on computational complex-
ity of [P; Q]-forgetting as well. Our work shows that the task
of defining a suitable concept of forgetting for circumscrip-
tion is non-trivial, which can be seen from both the definition
of [P; Q]-forgetting and its properties that are different from
classical forgetting and forgetting for answer set program-
ming.

There are a few interesting issues for future work. First,
given the complexity of [P; Q]-forgetting, it would infeasi-
ble to develop efficient algorithms. So, it is worthwhile to
identify useful classes of circumscription theories for which
[P; Q]-forgetting is tractable or has lower complexity. An-
other challenging issue is to extend our theory of [P; Q)]-
forgetting to first-order circumscription. Since the semantics
of several DL ontology languages is defined in terms of cir-
cumscription (Bonatti, Lutz, and Wolter 2009), it is worth-
while to investigate applications of [P; Q]-forgetting in these
ontology languages.

Acknowledgement

We thank reviewers for their helpful comments. Yisong
Wang is partially supported by NSF of China under
grant 63170161 and Stadholder Foundation of Guizhou
Province under grant (2012)62. This work was also par-
tially supported by Australian Research Council (ARC) un-
der DP130102302 and DP1093652.

References

Amir, E. 2002. Interpolation theorems for nonmonotonic
reasoning systems. In JELIA, volume 2424 of LNCS, 233-
244. Springer.

Bonatti, P. A.; Lutz, C.; and Wolter, F. 2009. The complexity
of circumscription in DLs. J. Artif. Intell. Res. 35:717-773.

Cadoli, M. 1992. The complexity of model checking for
circumscriptive formulae. Inf. Process. Lett. 44(3):113-118.

Delgrande, J., and Wang, K. 2015. A syntax-independent
approach to forgetting in disjunctive logic programs. In
AAAI 2015.

Delgrande, J. P; Jin, Y.; and Pelletier, F. J. 2008. Composi-
tional belief update. J. Artif. Intell. Res. 32:757-791.

Doherty, P.; Lukaszewicz, W.; and Szalas, A. 2001. Com-
puting strongest necessary and weakest sufficient conditions
of first-order formulas. In IJCAI, 145-154. Morgan Kauf-
mann.

Eiter, T., and Gottlob, G. 1993. Propositional circumscrip-
tion and extended closed-world reasoning are 15’ -complete.
Theor. Comput. Sci. 114(2):231-245.

Eiter, T., and Wang, K. 2008. Semantic forgetting in answer
set programming. Artif. Intell. 172(14):1644-1672.

Gabbay, D. M.; Pearce, D.; and Valverde, A. 2011. Interpo-
lable formulas in equilibrium logic and answer set program-
ming. J. Artif. Intell. Res. 42:917-943.

Goranko, V., and Otto, M. 2007. Handbook of Modal Logic,
volume 3. Elsevier. chapter 5 Model Theory Of Modal
Logic, 249-329.

Kontchakov, R.; Wolter, F.; and Zakharyaschev, M. 2008.

Can you tell the difference between dl-lite ontologies? In
KR 2008, 285-295. Sydney, Australia: AAAI Press.

Lakemeyer, G. 1997. Relevance from an epistemic perspec-
tive. Artif. Intell. 97(1-2):137-167.
Lang, J., and Marquis, P. 2010. Reasoning under incon-

sistency: A forgetting-based approach. Artif. Intell. 174(12-
13):799-823.

1655

Lang, J.; Liberatore, P.; and Marquis, P. 2003. Propositional
independence: Formula-variable independence and forget-
ting. J. Artif. Intell. Res. 18:391-443.

Lee, J., and Lin, F. 2006. Loop formulas for circumscription.
Artif. Intell. 170(2):160-185.

Lifschitz, V. 1985. Computing circumscription. In IJCAI
1985, 121-127. Morgan Kaufmann.

Lifschitz, V. 1994. Circumscription. In Gabbay, D. M.;
Hogger, C. J.; and Robinson, J. A., eds., Handbook of Logic
in Artificial Intelligence and Logic Programming (Vol. 3).
New York, NY, USA: Oxford University Press, Inc. 297-
352.

Lin, F.,, and Reiter, R. 1994. Forget it! In In Proceedings of
the AAAI Fall Symposium on Relevance, 154—159.

Lin, F. 2001. On strongest necessary and weakest sufficient
conditions. Artif. Intell. 128(1-2):143—159.

Liu, Y., and Wen, X. 2011. On the progression of knowl-
edge in the situation calculus. In IJCAI 2011, 976-982.
Barcelona, Catalonia, Spain: [ICAI/AAAL

Lutz, C., and Wolter, F. 2011. Foundations for uniform in-
terpolation and forgetting in expressive description logics.
In IJCAI 2011, 989-995. Barcelona, Catalonia, Spain: 1J-
CAI/AAAL

McCarthy, J. 1980. Circumscription - a form of non-
monotonic reasoning. Artif. Intell. 13(1-2):27-39.

Moinard, Y. 2007. Forgetting literals with varying proposi-
tional symbols. J. Log. Comput. 17(5):955-982.

Moore, R. C. 1985. Semantical considerations on nonmono-
tonic logic. Artif. Intell. 25(1):75-94.

Rajaratnam, D.; Levesque, H. J.; Pagnucco, M.; and
Thielscher, M. 2014. Forgetting in action. In KR 2014.
AAALI Press.

Reiter, R. 1980. A logic for default reasoning. Artif. Intell.
13(1-2):81-132.

Wang, Z.; Wang, K.; Topor, R. W.; and Pan, J. Z. 2010.
Forgetting for knowledge bases in DL-lite. Ann. Math. Artif.
Intell. 58(1-2):117-151.

Wang, K.; Wang, Z.; Topor, R. W.; Pan, J. Z.; and Antoniou,
G. 2014a. Eliminating concepts and roles from ontologies
in expressive descriptive logics. Computational Intelligence
30(2):205-232.

Wang, Y.; Zhang, Y.; Zhou, Y.; and Zhang, M. 2014b.
Knowledge forgetting in answer set programming. J. Artif.
Intell. Res. 50:31-70.

Wang, Y.; Wang, K.; and Zhang, M. 2013. Forgetting for
answer set programs revisited. In IJCAI 2013, 1162-1168.
Beijing, China: ICAI/AAAL

Wernhard, C. 2012. Projection and scope-determined cir-
cumscription. J. Symb. Comput. 47(9):1089-1108.

Zhang, Y., and Foo, N. Y. 2006. Solving logic program
conflict through strong and weak forgettings. Artif. Intell.
170(8-9):739-778.

Zhang, Y., and Zhou, Y. 2009. Knowledge forgetting: Prop-
erties and applications. Artif. Intell. 173(16-17):1525-1537.

