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Abstract

We design a tractable Horn fragment of the Halpern-Shoham
temporal logic and extend it to interval-based temporal de-
scription logics, instance checking in which is P-complete for
both combined and data complexity.

Introduction
The aims of this paper are to (i) design a tractable sub-
Boolean fragment of the Halpern-Shoham interval temporal
logicHS (Halpern and Shoham 1991) and (ii) construct on
its basis tractable descriptions logics with temporal interval
operators. The design of these logics is motivated by possi-
ble applications in ontology-based data access over temporal
databases (which will be discussed at the end of the paper).

The Halpern-Shoham logicHS is an extension of proposi-
tional logic with temporal operators of the form 〈R〉, where R
is one of Allen’s (1981) interval relations (after, begins, ends,
during, later, overlaps, equals and their inverses). The propo-
sitional variables of HS are interpreted by sets of closed
intervals [i, j] of some flow of time (such as Z, R, etc.), and
a formula 〈R〉ϕ is regarded to be true in [i, j] iff ϕ is true
in some interval [i′, j′] such that [i, j]R[i′, j′] in Allen’s in-
terval algebra. Unfortunately, this natural and seemingly
simple logic turned out to be highly undecidable (Halpern
and Shoham 1991). One explanation of the bad computa-
tional behaviour of HS is that it can be viewed as a two-
dimensional modal logic interpreted over products of (linear)
Kripke frames, which provide a good playground for sim-
ulating Turing machines, tilings, lossy channels, etc.; see,
e.g., (Marx and Venema 1997; Marx and Reynolds 1999;
Reynolds and Zakharyaschev 2001; Gabelaia et al. 2005;
Konev, Wolter, and Zakharyaschev 2005; Gabelaia et al.
2006; Hampson and Kurucz 2014).

The interest in interval temporal logics was renewed
in the 2000s when decidable fragments of HS were con-
structed by restricting the available sets of temporal op-
erators (Bresolin et al. 2009). The reader can check the
current decidability status of numerous fragments of HS
over various time-lines at itl.dimi.uniud.it/content/logic-hs; see
also (Lodaya 2000; Bresolin et al. 2012b; 2012a; 2014a;
Marcinkowski and Michaliszyn 2014; Bresolin et al. 2014b;
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Montanari, Puppis, and Sala 2014) and references therein.
The computational complexity of the decidable fragments
ranges from NP to EXPSPACE over strongly discrete linear
orders, and from NP to non-primitive recursive over finite lin-
ear orders. Bresolin, Muñoz-Velasco, and Sciavicco (2014)
defined a ‘Horn fragment’ of HS; alas, over Z and other
strongly discrete linear orders, it turned out to be undecid-
able.

In this paper, we consider a somewhat different Horn frag-
ment, denotedHShorn, which comprises formulas ϕ given by
the following grammar:

λ ::= p | 〈R〉λ | [R]λ, λ+ ::= p | [R]λ+,

ψ ::= λ1 ∧ · · · ∧ λk → λ+ | λ1 ∧ · · · ∧ λk → ⊥,
ϕ ::= p[m,n] | [G]ψ | ϕ1 ∧ ϕ2,

where p is a propositional variable, R any interval relation,
[R] the dual of 〈R〉, and [G] the universal modality ‘in all
intervals’. Formulas of the form p[m,n] are initial clauses
(data) stating that p holds in the interval [m,n]; formulas
of the form [G]ψ are universal clauses describing general
transformation rules and constraints; cf. (Fisher, Dixon, and
Peim 2001). Our first result is that the satisfiability problem
for HShorn over the flow of time Z is P-complete (for both
combined and data complexity) provided that the interpreta-
tion of the interval relations is non-strict (e.g., [i, j]L[i′, j′]
iff j ≤ i′—rather than j < i′), which corresponds to the se-
mantics of SQL:2011. Under the strict interpretation,HShorn
becomes PSPACE-hard. Note that the right-hand side of the
implications ψ can only use ‘boxes’ [R]. If ‘diamonds’ 〈R〉
were also allowed, then the resulting fragment would be un-
decidable, as easily follows from the undecidability result of
Bresolin, Muñoz-Velasco, and Sciavicco (2014).

Having identified a tractable fragment of HS, we can
use it as a template to define (hopefully tractable) temporal
ontology languages. In this paper, we construct a temporali-
sationHS-LiteHhorn of the description logic DL-LiteHhorn (Cal-
vanese et al. 2007; Artale et al. 2009), which is a Horn ex-
tension of the ontology-based data access standard language
OWL 2 QL1. InHS-LiteHhorn, we represent temporal data by
means of assertions such as

SummerSchool(RW, t1, t2), teaches(RK,DL, s1, s2),

1www.w3.org/TR/owl2-profiles/#OWL 2 QL
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which say that RW is a summer school that takes place in the
time interval [t1, t2] and RK teaches DL in [s1, s2]. Note that
temporal databases store data in a similar format (Kulkarni
and Michels 2012). Temporal concept and role inclusions are
used to impose various constraints on the data and introduce
new concepts and roles. For example, according to

〈D̄〉MorningSession u AdvancedCourse v ⊥,
advanced courses cannot be given during the morning ses-
sions; the axiom

〈B̄〉LectureDay u 〈A〉Lunch v MorningSession

‘defines’ morning sessions (note that we are not allowed to
replace v with ≡ in this axiom). The inclusion

teaches v [D]teaches

claims that the role teaches is downward hereditary (or sta-
tive) in the sense that if it holds in some interval, then it also
holds in all of its sub-intervals. If, instead, we want to state
that teaches is coalesced (or upward hereditary), in the sense
that teaches holds in any interval covered by sub-intervals
where it holds, then we can use

[D](〈O〉teaches t 〈D̄〉teaches) u
〈B〉teaches u 〈E〉teaches v teaches.

By removing the last two conjuncts on the left-hand side of
this axiom, we make sure that teaches is both upward and
downward hereditary. For a discussion of these notions in
temporal databases, consult (Böhlen, Snodgrass, and Soo
1996; Terenziani and Snodgrass 2004).

Although the complexity of fullHS-LiteHhorn remains un-
known, in this paper we define two interesting fragments,
for which instance checking is P-complete for both com-
bined and data complexity. One fragment, HS-LiteH[G]

horn ,
restricts the use of temporal operators in role inclusion ax-
ioms, where only the ‘universal’ [G] is allowed. The second
one,HS-LiteH/flat

horn , allows only atomic concepts on the right-
hand side of concept inclusions (but does not impose any
restrictions on role inclusions).

The omitted proofs are available in (Artale et al. 2015).

TractableHShorn
The syntax of the logicHShorn was defied in the introduction.
In this paper, we consider the interval relations A, Ā, B, B̄,
E, Ē,D, D̄, L, L̄,O, Ō andG over the set of closed intervals
[i, j] = {n ∈ Z | i ≤ n ≤ j}, for any integer numbers i ≤ j,
defined by taking:
– [i, j]A[i′, j′] iff j = i′, (After)
– [i, j]B[i′, j′] iff i = i′ and j ≥ j′, (Begins)
– [i, j]E[i′, j′] iff i ≤ i′ and j = j′, (Ends)
– [i, j]D[i′, j′] iff i ≤ i′ and j ≥ j′, (During)
– [i, j]L[i′, j′] iff j ≤ i′, (Later)
– [i, j]O[i′, j′] iff i ≤ i′ ≤ j and j ≤ j′, (Overlaps)
and Ā, B̄, Ē, D̄, L̄, Ō to be the inverses of A, B, E, D, L,
O, respectively. Note that we allow single-point intervals
[i, i] and use non-strict ≤ instead of the more common <.

p

〈B̄〉p

〈Ē〉p

q

〈B〉q

〈E〉q

i

j

p

〈Ā〉p

〈A〉p

i

j

Figure 1: Semantics of the temporal operators: intervals [i, j]
are shown as points with the coordinates (i, j) and, e.g., if p
is true in [−1, 1] then 〈Ē〉p is true in all [−k, 1], for k ≤ −1.

Example 1. Consider the followingHShorn-formula

ϕ = p[−1, 0] ∧ q[0, 0] ∧ q[0, 3] ∧
[G](〈E〉p→ q) ∧ [G]([Ā]q ∧ q → r).

The first three conjuncts—p[−1, 0], q[0, 0] and q[0, 3]—are
called initial clauses: they state that p holds in [−1, 0] and
q in [0, 0] and [0, 3]. The numbers occurring in the initial
conditions are called temporal constants and given in binary.

An interpretation, M, forHShorn assigns to every interval
[i, j] in Z a set of propositional variables, p, that are regarded
to be true in [i, j], in which case we write M, [i, j] |= p. This
truth-relation is extended toHShorn-formulas by taking:
– M, [i, j] |= p[m,n] iff M, [m,n] |= p,
– M, [i, j] |= 〈R〉α iff M, [i′, j′] |= α for some interval

[i′, j′] such that [i, j]R[i′, j′],
– M, [i, j] |= [R]α iff M, [i′, j′] |= α for all intervals

[i′, j′] such that [i, j]R[i′, j′],
and the usual clauses for the Booleans; see Fig. 1. AnHShorn-
formula ϕ is satisfiable if there is an interpretation M such
that M, [0, 0] |= ϕ; in this case we call M a model of ϕ
and write M |= ϕ. The length of ϕ is denoted by |ϕ|. Our
main result in this section is a polynomial-time algorithm for
checking satisfiability of HShorn-formulas (this problem is
P-hard as the language contains propositional Horn clauses).

We represent any HShorn-formula ϕ as Ξ ∧ Ψ+ ∧ Ψ−,
where Ξ is a conjunction of the initial clauses in ϕ and Ψ+

(respectively, Ψ−) is a conjunction of the universal clauses
[G]ψ in ϕ with λ+ (respectively, ⊥) on the right-hand side.
Lemma 2. AnyHShorn-formula can be transformed in poly-
nomial time to an equisatisfiable formula Ξ∧Ψ+ ∧Ψ− such
that it does not contain diamond operators, and its box oper-
ators only occur in contexts of the form [G]ψ and [R]p, where
R ∈ {A, Ā,B, B̄, E, Ē,G} and p a propositional variable.

Proof. First, we express every [R]λ and 〈R〉λ in terms of the
operators mentioned above: for instance, [D]p is equivalent
to [B][E]p (see also Fig. 1). Then we replace every nested λ
with a fresh variable pλ and add [G](λ→ pλ) as a conjunct;
we also replace every nested λ+ with a fresh pλ+ and add
[G](pλ+ → λ+). Finally, we eliminate the diamonds by
using the inverse relations: for instance, [G](〈E〉p→ q) from
Example 1 is replaced with an equivalent [G](p→ [Ē]q). q
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Figure 2: Partition of Z with respect to {−1, 0, 3}.

From now on we only consider HShorn-formulas of the
form ϕ = Ξ ∧Ψ+ ∧Ψ− given by Lemma 2. We now define
a canonical (or minimal) interpretation Kϕ for ϕ by taking,
for any variable p and any interval [i, j],

Kϕ, [i, j] |= p iff M, [i, j] |= p for all M |= Ξ ∧Ψ+.

Clearly, Ξ ∧Ψ+ is always satisfiable.
Lemma 3. For any formula ϕ = Ξ ∧ Ψ+ ∧ Ψ−, we have
Kϕ |= Ξ ∧Ψ+. Moreover, ϕ is satisfiable iff Kϕ |= ϕ.

Note that the Horn fragment ofHS defined by (Bresolin,
Muñoz-Velasco, and Sciavicco 2014) does not enjoy this min-
imal model property because 〈R〉 on the right-hand side can
represent disjunction; see (Artale et al. 2007, Theorem 11).

We now show how to construct efficiently the canonical
interpretation for a given formula. We will require the fol-
lowing notation. Let Zω = Z ∪ {−ω, ω} with −ω < i < ω,
for any i ∈ Z. Given i, j ∈ Zω, for i ≤ j, we set
(i, j) = {n ∈ Z | i < n < j}. For a non-empty subset
M = {m0,m1, . . . ,mn} of Z with m0 < m1 < · · · < mn,
we define the partition of Z with respect to M to be the set
IM comprising the following intervals:
– (−ω,m0), (mn, ω) and [mk,mk], for 0 ≤ k ≤ n;
– (mk,mk+1), for (mk,mk+1) 6= ∅ and 0 ≤ k < n.
If M = ∅, we set IM = {(−ω, ω)}. Note that I ∩ I ′ = ∅,
for any distinct I, I ′ ∈ IM , and

⋃
I∈IM I = Z.

Given a formula ϕ = Ξ∧Ψ+∧Ψ−, we denote by Mϕ the
set of integers occurring in Ξ. Note that |IMϕ

| is linear in |ϕ|:
for instance, for ϕ from Example 1, Mϕ = {−1, 0, 3} and

IMϕ = {(−ω,−1), [−1,−1], [0, 0], (0, 3), [3, 3], (3, ω)},
see Fig. 2. The following lemma provides a key to the struc-
ture of canonical interpretations:
Lemma 4. Let ϕ be an HShorn-formula, p a variable and
I, J ∈ IMϕ

. If there exist i ∈ I and j ∈ J with i ≤ j and
Kϕ, [i, j] |= p, then Kϕ, [i

′, j′] |= p for all i′ ∈ I and j′ ∈ J
with i′ ≤ j′.

This lemma shows that the canonical interpretation for
ϕ can be constructed by applying the rules in Ψ+ to the
closed intervals in the finite linear order (IMϕ

,�), where �
is defined by taking I � J , for I, J ∈ IM , iff i ≤ j, for
some i ∈ I and j ∈ J . The interval relations [I, J ]R[I ′, J ′]
in (IMϕ

,�), for R ∈ {A, Ā,B, B̄, E, Ē,G}, are defined as
usual. Now, the canonical interpretation forϕ = Ξ∧Ψ+∧Ψ−

can be constructed using the following chase procedure. We
first set Cϕ = {(p, [m,m], [n, n]) | p[m,n] ∈ Ξ} and then
apply to Cϕ the following rules: Suppose (pk, I, J) ∈ Cϕ,
for 1 ≤ k ≤ h, and (qk, I

′, J ′) ∈ Cϕ, for all I ′, J ′ ∈ IMϕ

with [I, J ]Rk[I ′, J ′] and 1 ≤ k ≤ `, then
– If p1 ∧ · · · ∧ ph ∧ [R1]q1 ∧ · · · ∧ [R`]q` → p is in Ψ+ then

Cϕ := Cϕ ∪ {(p, I, J)}.

Figure 3: Canonical interpretation from Example 5.

– If p1 ∧ · · · ∧ ph ∧ [R1]q1 ∧ · · · ∧ [R`]q` → [R]p is in Ψ+

then Cϕ := Cϕ ∪ {(p, I ′, J ′) | [I, J ]R[I ′, J ′]}.
As Cϕ ⊆ Vϕ × IMϕ

× IMϕ
, where Vϕ is the set of variables

in ϕ, and |IMϕ
| = O(|ϕ|), the chase procedure reaches a

fixed point C∗ϕ after polynomially many steps. The canonical
interpretation Kϕ is now defined by taking Kϕ, [i, j] |= p iff
(p, I, J) ∈ C∗ϕ, i ∈ I and j ∈ J .

Example 5. The canonical interpretation Kϕ for ϕ from
Example 1 can be defined by taking (see Fig. 3):

Kϕ, [i, j] |= p iff i = −1, j = 0,

Kϕ, [i, j] |= q iff i ≤ 0, j = 0 or i = 0, j = 3,

Kϕ, [i, j] |= r iff i = 0, j = 0 or i = 0, j = 3.

As a consequence of the (polynomial) construction of the
canonical interpretations and Lemma 3, we obtain:

Theorem 6. The satisfiability problem forHShorn-formulas
is P-complete.

Another consequence of the construction (which will be
used in the proof of Lemma 13) is that satisfiability ofHShorn-
formulas is preserved under the following scaling of initial
clauses. Let ϕi = Ξi∧Ψ+∧Ψ− andMϕi

= {mi
0, . . . ,m

i
n}

with mi
0 < · · · < mi

n, for i = 1, 2. We say that ϕ1 and ϕ2

are variants if

– min{m1
k+1 − m1

k, 2} = min{m2
k+1 − m2

k, 2}, for any
0 ≤ k < n,

– p[m1
i ,m

1
j ] ∈ Ξ1 iff p[m2

i ,m
2
j ] ∈ Ξ2, for any variable p.

The former condition means that the difference between the
adjacent mi

k is the same for both i modulo counting in terms
of 0, 1 and many. It follows, in particular, that (IMϕ1

,�) and
(IMϕ2

,�) are isomorphic as linear orders (see also Exam-
ple 8). The two conditions together imply the following:

Lemma 7. Any two variants are equisatisfiable.

Example 8. To see that we need all of 0, 1 and 2 in the
first condition above, take ϕ = [G](p ∧ [E]p → ⊥) and
ψ = [G](p → q ∧ [A]q) ∧ [G](p ∧ [E]q → ⊥). Then the
formulas p[0, 1] ∧ ϕ and p[0, 2] ∧ ψ are satisfiable, while
p[0, 0] ∧ ϕ and p[0, 1] ∧ ψ are not.
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Remark 9. If in place of ≤ in the definition of the interval
relations we take <, then reasoning with HShorn becomes
non-tractable (unless P = PSPACE). Indeed, given a Tur-
ing machine A with polynomial tape, we take the following
initial clauses: ai[0, 0] to say that input cell i contains a,
h0[0, 0] to indicate that the head scans the left-most cell,
and q0[0, 0] to fix the initial state q0. Instructions such as
(q, a)→ (q′, a′, R) are encoded by formulas of the form

[G]
(
〈Ē〉[B](q ∧ ai ∧ hi)→ q′ ∧ a′i ∧ hi+1

)
.

(Thus, we represent the consecutive configurations of A on
the ‘diagonal intervals’ [n, n], n ≥ 0, using the ‘previous-
time’ operator 〈Ē〉[B].) Then A accepts the input iff the
conjunction of the above formulas and [G](q1 → ⊥), for
the accepting state q1, is unsatisfiable. At the moment, the
exact complexity ofHShorn under the strict semantics is not
known. Note that the full ĒB-fragment of HS is undecid-
able (Bresolin et al. 2014a).

Data Complexity
As HShorn-formulas consist of initial clauses (that is, data)
and universal clauses, we can also measure the complexity
of the satisfiability problem in terms of the size of the data
regarding the universal clauses fixed.
Theorem 10. HShorn is P-complete for data complexity.

Proof. Theorem 6 gives the upper bound. The proof of
hardness is by a LOGSPACE-reduction of the monotone cir-
cuit value problem, which is known to be P-complete; see
e.g., (Greenlaw, Hoover, and Ruzzo 1995; Miyano, Shiraishi,
and Shoudai 1990). Suppose C is a monotone circuit whose
vertices (sources, gates and sink) are enumerated by con-
secutive positive integers in such a way that if there is an
edge from a vertex n to a vertex m—in which case we write
n ; m—then n < m. Denote by maxC the maximum of
the vertex numbers. We can assume that maxC is the sink
of C (so maxC − 1 ; maxC). We represent C(~x), for
an input ~x, by the conjunction ΞC(~x) of the following initial
clauses:

– t[maxC − 1,maxC],
– t[n,m] (or f [n,m]) if n is a source with input value 1

(respectively, 0) and n; m;
– AND[n,m] (or OR[n,m]) if n is an AND gate (respec-

tively, OR gate) and n; m;
– and[0,m] and t[n,m], for each n such that 0 < n ≤ m

and n 6; m, if m is an AND gate;
– or[0,m] and f [n,m], for each n such that 0 < n ≤ m and
n 6; m, if m is an OR gate.

Let Ψ+ be a conjunction of the following universal clauses:

[G](〈Ā〉f ∧ AND→ f), [G]([Ā]f ∧ OR→ f),

[G]([Ā]t ∧ AND→ t), [G](〈Ā〉t ∧ OR→ t),

[G](and→ [Ē]t), [G](or→ [Ē]f),

and let Ψ− = [G](t ∧ f → ⊥). It is not hard to check that
ΞC(~x) ∧ Ψ+ ∧ Ψ− is satisfiable iff C(~x) = 1. (Intuitively,
the last items in the definitions of the initial and universal

clauses ensure that, for any OR gate m, all intervals of the
form [n,m] with n 6; m are labelled with f ; and dually the
AND gates with t. Thus, the output of any gate only depends
on its inputs.) q

It is of interest to note that a similar Horn fragment of
the point-based LTL is in AC0 for data complexity, while
the whole LTL is NC1-complete (Artale et al. 2014a); we
remind the reader that AC0 $ NC1 ⊆ P.

We now use HShorn as a template for defining a tempo-
ral extension of the description logic DL-LiteHhorn with the
ultimate aim of employing it or its suitable fragments for
ontology-based data access over temporal databases.

Description LogicHS-LiteHhorn
The language of HS-LiteHhorn contains individual names
a0, a1, . . . , concept names A0, A1, . . . , and role names
P0, P1, . . . . Basic roles R, basic concepts B, temporal roles
S and temporal concepts C are given by the following gram-
mar:

R ::= Pk | P−k , B ::= Ak | ∃R,
S ::= R | [R]S, C ::= B | [R]C,

where R is one of the interval relations. An HS-LiteHhorn
TBox is a finite set of concept and role inclusions

C1 u · · · u Ck v C, S1 u · · · u Sk v S,
and disjointness constraints

C1 u · · · u Ck v ⊥, S1 u · · · u Sk v ⊥.
Note that, similarly to Lemma 2, we could also allow the
diamond operators 〈R〉C and 〈R〉S on the left-hand side of
concept and role inclusions and disjointness constraints. They
are omitted to simplify presentation.

AnHS-LiteHhorn ABox is a finite set of atoms of the form
Ak(a, i, j) and Pk(a, b, i, j) in which temporal constants
i ≤ j are given in binary. The set of individual names in A
is denoted by ind(A). AnHS-LiteHhorn knowledge base (KB)
is a pair K = (T ,A), where T is a TBox and A an ABox.

An HS-LiteHhorn interpretation, I, consists of a family
of standard (atemporal) description logic interpretations
I[i, j] = (∆I , ·I[i,j]), for all i, j ∈ Z with i ≤ j, in which
∆I 6= ∅, aI[i,j]

k = aIk for some (fixed) aIk ∈ ∆I ,⊥I[i,j] = ∅,
AI[i,j]
k ⊆ ∆I and P I[i,j]

k ⊆ ∆I ×∆I . The role and concept
constructs are interpreted in I as follows:

(P−k )I[i,j] = {(x, y) | (y, x) ∈ P I[i,j]
k },

(∃R)I[i,j] = {x | (x, y) ∈ RI[i,j], for some y ∈ ∆I},
([R]C)I[i,j] =

⋂
[i,j]R[i′,j′] C

I[i′,j′],

([R]S)I[i,j] =
⋂

[i,j]R[i′,j′] S
I[i′,j′].

The satisfaction relation |= is defined by taking:

I |= A(a, i, j) iff aI ∈ AI[i,j],

I |= P (a, b, i, j) iff (aI , bI) ∈ P I[i,j],

I |=
d
k Ck v C iff

⋂
k C
I[i,j]
k ⊆ CI[i,j], for all [i, j],

I |=
d
k Sk v S iff

⋂
k S
I[i,j]
k ⊆ SI[i,j], for all [i, j],
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and similarly for disjointness constraints. Note that concept
and role inclusions as well as disjointness constraints are
interpreted globally. For a TBox inclusion or an ABox as-
sertion α, we write K |= α if I |= α, for all models I of K
(that is, for all I with I |= K). Similarly, we write T |= α in
case (T , ∅) |= α.

The complexity of reasoning withHS-LiteHhorn is still un-
known. Our aim in the remainder of this paper is to show
that two of its fragments are tractable. The first fragment
only allows those HS-LiteHhorn TBoxes that are flat in the
sense that their concept inclusions do not contain ∃R on the
right-hand side. We denote this fragment byHS-LiteH/flat

horn .

Tractability ofHS-LiteH/flat
horn

We show that, for any HS-LiteH/flat
horn KB K = (T ,A), one

can construct in polynomial time an equisatisfiableHShorn-
formula ϕK.

We require the following notation. For a basic role R, we
set R− = P−k if R = Pk, and R− = Pk if R = P−k . Given
anHS-LiteHhorn TBox T , we denote by rol(T ) the set of basic
roles R such that R or R− occurs in T , and by con(T ) the
set of basic concepts B occurring in T as well as all basic
concepts ∃R, for R ∈ rol(T ).

Theorem 11. The satisfiability problem for HS-LiteH/flat
horn

KBs is P-complete.

Proof. P-hardness is from the propositional Horn logic. The
matching upper bound proof is by a polynomial-time reduc-
tion toHShorn. Given a KB K = (T ,A), take propositional
variables pB,a and pR,a,b, for any B ∈ con(T ), R ∈ rol(T )
and a, b ∈ ind(A). For any concept C = [R1] . . . [Rn]B in
T and a ∈ ind(A), let Ca = [R1] . . . [Rn]pB,a; similarly, for
any role S in T and a, b ∈ ind(A), define Sa,b using pS,a,b.
Let ϕK be a conjunction of the followingHShorn-formulas:

– pA,a[i, j], for A(a, i, j) ∈ A,
– pP,a,b[i, j], for P (a, b, i, j) ∈ A,

– [G](pR,a,b → pR
−,b,a) and [G](pR,a,b → p∃R,a), for any

R ∈ rol(T ) and a, b ∈ ind(A),
– [G](

∧
k C

a
k → Ca), for

d
k Ck v C in T and a ∈ ind(A),

– [G](
∧
k S

a,b
k → Sa,b), for

d
k Sk v S in T , a,b ∈ ind(A),

and similar formulas for the disjointness constraints in T .
One can now show that ϕK is equisatisfiable with K. q

Similarly to the canonical interpretations for HShorn-
formulas, we now define canonical interpretations for
HS-LiteH/flat

horn KBs, which will be used in the next section.
Given a KBK = (T ,A), we denote by T + the set of concept
and role inclusions in T and by T − the set of disjointness con-
straints in T . A canonical interpretation KK = (∆KK , ·KK)
for K is defined by taking, for a, b ∈ ind(A) and i ≤ j,
– ∆KK = ind(A) and aKK = a,

– a ∈ AKK[i,j] iff (T +,A) |= A(a, i, j),

– (a, b) ∈ PKK[i,j] iff (T +,A) |= P (a, b, i, j)

(see Example 12 below). Similarly to Lemma 3, one can
show that KK |= (T +,A) and K is satisfiable iff KK |= K.

Tractability ofHS-LiteH[G]
horn

Our second fragment, denoted HS-LiteH[G]
horn , allows only

the operator [G] in the definition of temporal roles S (with
no restrictions imposed on temporal concepts). Thus, un-
like HS-LiteH/flat

horn , the fragment HS-LiteH[G]
horn contains full

DL-LiteHhorn. We now show that reasoning with this fragment
is also tractable. For any role name P , we reserve two special
concept names, EP and EP−.

Given an HS-LiteH[G]
horn TBox T , we define the flattening

of T to be the TBox T ′ = T1 ∪ T2, where T1 results from T
by replacing every ∃R with ER, and T2 comprises

∃R v ER,
ER v EQ, if T |= R v Q,

ER v [G]EQ, if T |= R v [G]Q,

for allR,Q ∈ rol(T ). Clearly, T ′ is flat and, by Theorem 11,
can be computed in polynomial time.

Let K = (T ,A) be a KB. For any δ ∈ {0, 1, 2} (where
2 stands for ‘many’; see Lemma 7) and R ∈ rol(T ), let dRδ
be a fresh individual name. Let T ′ be the flattening of T .
Given an extension A′ of A with some atoms of the form
P (dPδ , d

P−

δ , 0, δ), for δ ∈ {0, 1, 2}, let K′ = (∆K′ , ·K′) be
the canonical interpretation for K′ = (T ′,A′). We call A′ a
witness ABox for K in case the following is satisfied:

(witn) if EPK′[i,j] 6= ∅ or (EP−)K
′[i,j] 6= ∅, for some i ≤ j,

then P (dPδ , d
P−

δ , 0, δ) ∈ A′, where δ = min{j − i, 2}.
This condition ensures that, for each role name P with non-
empty EP or EP−, we have witnesses dPδ and dP

−

δ in the
intervals of length 0, 1 or 2. By Lemma 7, witnesses for P
in intervals of length greater than 2 can be obtained from the
witnesses for length 2.
Example 12. Suppose T = {A v ∃P, ∃P− v [B̄]∃P }
and A = {A(a,−1, 3)}. Then T ′ consists of

A v EP, EP− v [B̄]EP, ∃P v EP, ∃P− v EP−.

Let A′ = {A(a,−1, 3), P (dP2 , d
P−

2 , 0, 2)}. Then the canon-
ical interpretation K′ = (∆K′ , ·K′) of (T ′,A′) is as follows:

– ∆K′ = {a, dP2 , dP
−

2 };
– AK′[−1,3] = {a}; otherwise, AK′[i,j] = ∅;
– PK′[0,2] = {(dP2 , dP

−

2 )}; otherwise, PK′[i,j] = ∅;
– EPK′[−1,3] = {a}, EPK′[0,2] = {dP2 , dP

−

2 } and, for any
k ≥ 2, EPK′[0,k] = {dP−2 }; otherwise, EPK′[i,j] = ∅;

– (EP−)K
′[0,2] = {dP−2 }; otherwise, (EP−)K

′[i,j] = ∅.
Thus, A′ is a witness ABox for K = (T ,A).

We can now unravel K′ into a model I of K by construct-
ing a sequence of interpretations Ik = (∆Ik , ·Ik), where
Ik+1 extends Ik, and setting I =

⋃
k≥0 Ik. First we use

K′ to define I0 by taking ∆I0 = {a}, AI0[−1,3] = {a},
AI0[i,j] = ∅ for all other intervals, and P I0[i,j] = ∅ for all
[i, j]. We then observe that, in I0, a has a ‘defect’ in the
interval [−1, 3] because it does not have a P -successor re-
quired by a ∈ (EP )K

′[−1,3]. We ‘cure’ this defect in the
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Figure 4: The unravelling construction.

interpretation I1 by adding to ∆I0 a (fresh) copy w of dP
−

2

and setting P I1[−1,3] = {(a,w)} and P I1[i,j] = ∅ for all
other intervals. But now the newly introduced element w in
I1 has a defect in every interval [−1, k], k ≥ 3, because it
does not have a required P -successor: indeed, dP

−

2 belongs
to EP in every such interval in the canonical interpreta-
tion of (T ′, P (dP2 , d

P−

2 ,−1, 3)). To cure those defects, we
add to I1 fresh copies wk of dP

−

2 , for k ≥ 3, and then set
P I2[−1,k] = {(w,wk)} and P I2[i,j] = ∅ for all other inter-
vals, and so forth (see Fig. 4). The proof of Theorem 13
below shows that I |= K iff K′ |= T ′.

Clearly, any KB K has at least one witness ABox.

Theorem 13. K is satisfiable iff there exists a witness ABox
A′ for K such that K′ |= T ′.

The proof of (⇐), illustrated by Example 12, uses an
unravelling technique similar to that of (Artale et al. 2014b,
Theorem 4.1 and Lemma 6.5) developed for point-based
temporal DL-Lite. An essential difference from the earlier
construction is that now we not only shift the interpretation
underlying the timeline of witnesses dRδ in order to cure a
defect, but also stretch (using Lemma 7) some intervals in
these interpretations.

To show (⇒), we first construct a minimal witness ABox
A′ for K by taking (T ′,A) and recursively adding to A the
missing witnesses P (dPδ , d

P−

δ , 0, δ). In fact, we prove that
a fixed point in this construction will be reached in polyno-
mially many steps. Then we consider the unravelling of the
canonical interpretation K′ for K′ = (T ′,A′) and show that
it is homomorphically embeddable into any model ofK. That
K′ |= T ′ follows now by the construction of the unravelling.

As a consequence of this proof we finally obtain:

Theorem 14. The satisfiability problem for HS-LiteH[G]
horn

KBs is P-complete.

Remark 15. Unfortunately, the construction above does not
work for the whole HS-LiteHhorn, where arbitrary operators
[R] can be used in the definition of temporal roles S. To see
why, consider first the HS-LiteH[G]

horn KB K = (T ,A) with
T = { A v ∃P, P v [G]S } and A = {A(a, 0, 0)}. Then
aI ∈ (∃S)I[i,j] for any I |= K and i ≤ j. The axioms of T2

make sure that aI ∈ ESI[i,j].
Consider now the HS-LiteHhorn KB K′ = (T ′,A) with

T = {A v [G]∃P, P v [A]P1, P v [Ā]P2, P1uP2 v S}.
We then have aI ∈ (∃S)I[i,i], for any I |= K′ and i ∈ Z.

However, it is not clear what axioms of T2 could make sure
that aI ∈ ESI[i,i].

Data Complexity of Instance Checking

One of the main reasoning problems in description logic is
instance checking. In our context it can be formulated as
follows: given a KB K = (T ,A) and an atom C(a, i, j),
where C is a concept, a an individual name and i ≤ j, decide
whether K |= C(a, i, j). As instance checking is reducible
to satisfiability, it is P-complete for both HS-LiteH/flat

horn and
HS-LiteH[G]

horn for combined complexity. Moreover, as a con-
sequence of Theorems 10, 11 and 14, we also obtain:

Theorem 16. Instance checking for bothHS-LiteH/flat
horn and

HS-LiteH[G]
horn is P-complete for data complexity (when only

the ABox is regarded to be the input).

This result contrasts with the lower data complexity (AC0

and NC1) of instance checking with point-based temporal
DL-Lite (Artale et al. 2013; 2014a).

Outlook

Our interest in tractable description logics with interval-based
temporal operators is motivated by possible applications in
ontology-based data access (OBDA) over temporal databases.
In the OBDA paradigm, one can query data sources,D, using
the vocabulary of an ontology, T , that provides a unifying
conceptual view of the data and enriches it with background
knowledge (Calvanese et al. 2007). Given a query, q, an
OBDA system rewrites q and T into another query, q′, such
that T , D |= q iff D |= q′, for any data D. A standard on-
tology language that guarantees the existence of a first-order
rewriting q′ is the OWL 2 QL profile of the Web Ontology
Language OWL 2. (In a nutshell, OWL 2 QL is DL-LiteHhorn
in which concept and role inclusions cannot have u on the
left-hand side.) In the context of temporal databases, we
are interested in suitable ontology and query languages with
temporal constructs (although some authors advocate the use
of standard OWL 2 QL with temporal queries (Klarman 2014;
Borgwardt, Lippmann, and Thost 2013)).

As modern temporal databases adopt the (downward hered-
itary) interval-based model of time (Kulkarni and Michels
2012) and use coalescing to group time points into inter-
vals (Böhlen, Snodgrass, and Soo 1996), in this paper we
have launched an investigation of ontology languages that
can be suitable for OBDA over such databases by design-
ing the language HS-LiteHhorn and its tractable fragments
HS-LiteH/flat

horn and HS-LiteH[G]
horn . In view of Theorem 16,

these languages cannot guarantee first-order rewritability of
even atomic queries, though we believe datalog rewritings
are possible. We leave the query rewritability issues, in par-
ticular, the design of DL-LiteHcore-based fragments supporting
first-order rewritability as well as temporal extensions of the
OWL 2 EL and OWL 2 RL profiles of OWL 2 for future
research.
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